ㄷㅌFRAN

850-1650-1850
Double PID temperature controller

INSTALLATION AND INSTRUCTION MANUAL
code: 80290E - 06-2021

⑳

CONTENTS

CONTENTS 1
INTRODUCTION 7
Device data 7
Warnings and safety 7
Typographical conventions used in this manual 8
Glossary 8
Disclaimer 9
Copyright 9

1. GENERAL DESCRIPTION 10
1.1. Profile 10
1.2. Differences among models 11
1.3. 850 Controller 12
1.3.1. Display and keys 13
1.3.2. Drilling dimensions and templates 14
1.4. 1650 Controller 15
1.4.1. Display and keys 16
1.4.2. Drilling dimensions and templates 17
1.5. 1850 Controller. 18
1.5.1. Display and keys 19
1.5.2. Drilling dimensions and templates 20
2. INSTALLATION 21
2.1. Mounting the controller21
2.1.1. General installation rules 21
2.1.2. Drilling dimensions 21
2.1.3. Protection against infiltration of dust and
water 21
2.1.4. Vibrations 22
2.1.5. Minimum space for ventilation 22
2.1.6. Positioning 22
2.1.7. Fastening to the panel 22
2.2. Connections 23
2.2.1. General rules for connections 23
2.2.2. Electromagnetic compatibility (EMC) 23
2.2.3. Cables 23
2.2.4. Power supply 23
2.2.5. Connecting inputs and outputs 24
2.3. 850 connection diagrams 25
2.3.1. General diagram. 25
2.3.2. Power supply 26
2.3.3. Inputs 26
2.3.4. Outputs 26
2.3.5. Digitali inputs 27
2.3.6. Serial line. 28
2.3.7. CT Inputs 28
2.3.8. Auxiliary inputs 28
2.3.9. Auxiliary outputs 28
2.4. 1650 connection diagrams 29
2.4.1. General diagram. 29
2.4.2. Power supply 30
2.4.3. Main input (MAIN) 30
2.4.4. Outputs 30
2.4.5. Digital inputs 31
2.4.6. Serial line. 32
2.4.7. CT Inputs 32
2.4.8. Auxiliary inputs (AUX1) 32
2.4.9. Third Analogue input (AUX2) 33
2.4.10. Analog outputs 33
2.5. 1850 connection diagrams. 34
2.5.1. General diagram. 34
2.5.2. Power supply 36
2.5.3. Main input (MAIN) 36
2.5.4. Output 36
2.5.5. Digital inputs 37
2.5.6. Serial line 38
2.5.7. CT Inputs 38
2.5.8. Auxiliary input (AUX1) 38
2.5.9. THIRD ANALOGUE INPUT (AUX2) 39
2.5.10. Analog outputs. 39
2.5.11. Connections with option optional1139
2.6. Serial RS485 Wiring Diagram 40
2.7. Ethernet port wiring diagram 42
3. COMMISSIONING 43
3.1. Information on displays and use of keys. 43
3.1.1. Navigating the menus 43
3.1.2. Displays 43
3.1.2.1. Display characters 43
3.1.2.2. Scrolling messages 44
3.2. Sequence at power-on 44
3.3. First power-on 45
3.3.1. Fast configuration 45
3.4. Setting up quick configuration 49
3.4.1. Setting up the Alarm 49
3.4.2. \quad Setting up the Heater Break Alarm 50
3.4.3. \quad Setting up the PID 51
4. CONFIGURATION 52
4.1. Programming/Configuration Menu. 52
4.1.1. First: know what you're doing 52
4.1.2. Passwords 52
4.1.3. Password in the User Menu 52
4.2. Main menu 53
4.2.1. Functional schema. 55
4.3. Legend for submenus and parameters 56
4.3.1. Submenu. 56
4.3.2. Parameter 56
4.4. Submenu INFO - Information display 57
4.4.1. SW.VER - Software version 58
4.4.2. CODE - Identifying code of controller. 58
4.4.3. ERR. 1 - Main input error 58
4.4.4. ERR. 2 - Auxiliary input error 58
4.4.5. Auxiliary input error 2 (IN3) 59
4.4.6. M.ERR. x^{*} - Math function block x^{*} error 59
4.4.7. SAP.C - SAP code 59
4.4.8. SER.N - Serial number of controller. 59
4.4.9. \quad xxxxx - Model of controller 60
4.4.10. \quad xxxxx - Type of controller. 60
4.4.11. FUNC.B - Logic and Math functions option available60
4.4.12. CALEN - Calendar Available 60
4.4.13. IN.AUX - Auxiliary input available 60
4.4.14. I.AUX2 - Auxiliary input 2 available 61
4.4.15. OUT.AN - Analog output available 61
4.4.16. CTx - Current transformer input available. 61
4.4.17. x.IN.DG - Digital input available 61
4.4.18. RS485 - RS485 serial port available 61
4.4.19. MAC.E - Controller Ethernet Address 62
4.4.20. IO.AUX - Auxiliary digital I/Os available. 62
4.4.21. IO.RELE - Auxiliary relays available 62
4.4.22. PS.MAI - Sensor power supply available for main input. 62
4.4.23. PS.AUX - Sensor power supply available for auxiliary
input. 62
4.4.24. OUT1 - Type of output 1 63
4.4.25. OUT2 - Type of output 2 63
4.4.26. OUT3 - Type of output 3 63
4.4.27. OUT4 - Type of output 4 63
4.4.28. OUT1.S - Number of switchings output 1 63
4.4.29. OUT2.S - Number of switchings output 2 64
4.4.30. OUT3.S - Number of switchings output 3 64
4.4.31. OUT4.S - Number of switchings output 4 64
4.4.32. NDG.S - Digital input switchings number 64
4.4.33. T.DAYS - Total working days 64
4.4.34. P.DAYS - Partial working days 65
4.4.35. T.INT - Internal temperature of controller 65
4.4.36. T.M65
4.4.37. T.MAX - Maximum internal temperature of the control-ler.65
4.4.38. TIME - Internal time. 65
4.4.39. DATE - Internal date 65
4.5. INFO.E Submenu - Displaying Ethernet Information 66
4.5.1. VERS.E - Ethernet Software Version 67
4.5.2. TY.S.E - Ethernet assignment mode status. 67
4.5.3. CON.E - Ethernet Connection status 67
4.5.4. LIN.E - Ethernet link status. 67
4.5.5. SPD.E - Ethernet speed status. 67
4.5.6. IP.E - Ethernet IP Address 68
4.5.7. SUB.E - Subnet mask Ethernet. 68
4.5.8. GAT.E - Ethernet Gateway address 68
4.5.9. STA.E - Ethernet Network status 68
4.6. MASTER Submenu - Display of Master Modbus communica- tion information and values
4.6.1. STAT - Master communication status.694.6.2. MAS. $x x$ - Master communication value $x x\left({ }^{*}\right)$.70
4.6.3. ERR. $x x$ - Master communication error $x x$ (*). 70
4.7. RECIP Submenu - Configuring parameters recipes 71
4.7.1. RECP.N - Selecting a recipe 71
4.7.2. ACRxx* - Parameter $x x^{* *}$ of recipe 71
4.8. Submenu PR.OPT - Configuring programs. 72
4.8.1. PR.OP.N - Selecting program 73
4.8.2. FI.STP - Number of first step assigned to program... 73
4.8.3. LA.STP - Number of last step assigned to program.. 73
4.8.4. STRT - Restart mode 73
4.8.5. RST.SP - Type of control after program restart. 73
4.8.6. WAIT.S - Option to start execution of program. 74
4.8.7. END - Action at end of program 74
4.8.8. LIMIT - Limitation of step duration 74
4.8.9. MSG.EN - Message assigned to end of program. 74
4.9. Submenu PR.STP - Configuration of program steps75
4.9.1. PR.NUM - Program selection 76
4.9.2. PR.ST.N - Programming step. 76
4.9.3. ST.END - End step of the program configuration 76
4.9.4. REFE - Step reference programmer 76
4.9.5. SETP - Programming step setpoint. 76
4.9.6. RAMP.T - Step time ramp 77
4.9.7. HOLD.T - Hold time in step. 77
4.9.8. HBB - Enable Hold Back Band function 77
4.9.9. BAND - Maximum deviation for HBB 77
4.9.10. HBB.R - Enabling HBB during ramp. 78
4.9.11. HBB.H - Enabling HBB during hold. 78
4.9.12. HBB2 - Enabling HBB with respect to the auxiliary input. 78
4.9.13. S.SP.EN - Enabling retransmission of setpoint to ana-log output.78
4.9.14. SUB.SP - Setpoint value of slaved controller 79
4.9.15. S.RM.EN - Enabling ramp for slaved controller 79
4.9.16. ENBL. 1 - Consent 1 to execute step79
4.9.17. ENBL. 2 - Consent 2 to execute step 79
4.9.18. ENBL. 3 - Consent 3 to execute step 80
4.9.19. ENBL. 4 - Consent 4 to execute step 80
4.9.20. EN.ST.N - Other programmer step as consent to exe-cute step80
4.9.21. EVN.R. 1 - Event 1 during step ramp. 80
4.9.22. EVN.R. 2 - Evento 2 durante la rampa del passo 81
4.9.23. EVN.R. 3 - Event 3 during step ramp 81
4.9.24. EVN.R. 4 - Event 4 during step ramp 81
4.9.25. EVN.H. 1 - Event 1 during step hold. 81
4.9.26. EVN.H. 2 - Event 2 during step hold 82
4.9.27. EVN.H. 3 - Event 3 during step hold. 82
4.9.28. EVN.H. 4 - Event 4 during step hold. 82
4.9.29. GROP.R - Group of parameters assigned to ramp 82
4.9.30. GROP.H - Group of parameters assigned to hold 83
4.9.31. MSG.R - Message associated with the ramp.. 83
4.9.32. MSG.H - Message associated with the maintenance83
4.10. Submenu INPUT - Configuring analog inputs 84
4.10.1. Functional schema. 85
4.10.2. INP.N - Selecting the analog input 85
4.10.3. TYPE - Selecting sensor type 86
4.10.4. SBR.E - Enabling SBR error 89
4.10.5. FUNC - Selecting auxiliary input function.90
4.10.6. LIN - Selecting linearization type 91
4.10.7. UNIT - Selecting the displayed unit of measurement 914.10.8. FILT - Digital filter91
4.10.9. FILT.D - Digital filter on PV display 92
4.10.10. DEC.P - Number of decimals displayed 92
4.10.11. LO.SCL - Lower limit of scale 93
4.10.12. HI.SCL - Upper limit of scale 93
4.10.13. OF.SCL - Scale offset correction 94
4.10.14. LO.SP - Lower limit for setpoint. 94
4.10.15. HI.SP - Upper limit for setpoint. 94
4.10.16. LO.AL - Lower limit for alarms 94
4.10.17. HI.AL - Upper limit for alarms 94
4.10.18. MSG.LO - Selecting the message assigned to Low.. 95
4.10.19. MSG.HI - Selecting the message assigned to HIGH. 95
4.10.20. MSG.ER - Selecting the message assigned to Err 95
4.10.21. MSG.SB - Selecting the message assigned to Sbr... 96
4.11. Submenu IN.CT - Configuration of current inputs 97
4.11.1. Functional diagram 97
4.11.2. IN.CT.N - Configuring current transformers. 98
4.11.3. FILT - Digital filter 98
4.11.4. HI.SCL - Maximum scale limit 98
4.11.5. OF.SCL - Scale offset correction 98
4.12. Submenu ALARM - Configuration of alarms. 99
4.12.1. Functional diagram 100
4.12.2. ALARM -Selecting the alarm to be configured 100
4.12.3. REFE - Selecting the alarm reference 101
4.12.4. DI.IN - Selecting direct or inverse alarm 102
4.12.5. AB.RE - Selecting absolute or deviation alarm. 102
4.12.6. NO.SY - Method for applying hysteresis 102
4.12.7. PWON.E - Disabling the alarm at power-on 102
4.12.8. SP1C.E - Disabling alarm on Setpoint1 change 103
4.12.9. SP2C.E - Disabling alarm on Setpoint2 change 103
4.12.10. LATCH - Memorizing the alarm 103
4.12.11. HYSTE - Hysteresis 103
4.12.12. DELAY - Alarm trip delay 104
4.12.13. MSG.AL - Message associated with tripping of alarm . 104
4.12.14. BLK.AL - Flashing of PV display 104
4.13. Submenu AL.HB - Configuring the Heater Break alarm 105
4.13.1. Functional diagram 106
4.13.2. LOW.ON - Alarm due to insufficient current draw 106
4.13.3. HIG.ON - Alarm due to excessive current draw 106
4.13.4. HI.OFF - Alarm due to excessive current draw. 107
4.13.5. TIME - HB alarm trip delay. 107
4.13.6. THR.PE - Percentage of HB current compared to calibration 107
4.13.7. OUT - Control output associated with HB alarm 107
4.13.8. LOAD - Selecting type of connected load 108
4.13.9. MSG.HB - Message associated with tripping of HB alarm 108
4.13.10. BLK.HB - Flashing of PV display 108
4.14. Submenu AL.PW - Configuring power alarm 109
4.14.1. Functional diagram 110
4.14.2. AL.PW - Select the Power alarm to configure 110
4.14.3. PV.BND - Process variable stability band. 110
4.14.4. PW.BND - Power stability band 110
4.14.5. TIME - Power alarm trip delay 111
4.14.6. MSG.PW - Message associated with tripping of power alarm 111
4.14.7. BLK.PW - Flashing of PV display when power alarmtrips111
4.15. Submenu PID - Configuring control parameters.
4.15.4. SOFT.S - Enabling Soft-Start 115
4.15.5. SOFT.T - Soft-Start Time 115
4.15.6. A.TUNE - Enabling Auto-Tuning. 115
4.15.7. AUT.T - Selecting type of Auto-Tuning 116
4.15.8. CNTR - Selecting type of control. 116
4.15.9. DERV.S - Derivative sampling time 116
4.15.10. H.PB - Proportional heating band or hysteresis in ON- OFF control 117
4.15.11. H.IT - Integral heating time 117
4.15.12. H.DT - Derivative heating time 117
4.15.13. H.P.HI - Maximum limit of heating power 117
4.15.14. H.P.LO - Minimum limit of heating power 117
4.15.15. COOL - Selecting cooling fluid 118
4.15.16. C.SP - Cooling setpoint with respect to heating setpoint 118
4.15.17. C.PB - Proportional cooling band or hysteresis in ON- OFF control 118
4.15.18. C.IT - Integral cooling time. 118
4.15.19. C.DT - Derivative cooling time 118
4.15.20. C.P.HI - Maximum limit of cooling power 119
4.15.21. C.P.LO - Minimum limit of cooling power 119
4.15.22. RESET - Manual reset 119
4.15.23. P.RST - Power reset 119
4.15.24. A.RST - Antireset 119
4.15.25. FEEDF - Feedforward power 120
4.15.26. DEAD.B - Deadband 120
4.15.27. FAULT - Fault action power 120
4.15.28. GRAD.I - Setpoint gradient in increase 120
4.15.29. GRAD.D - Setpoint Gradient in decreasing 121
4.15.30. UNIT - Unit of measurement of gradient 121
4.15.31. GRAD.O - Gradient of control output 121
4.15.32. LBA.TM - Tripping delay 121
4.15.33. LBA.PW - Power delivered when LBA alarm trips ... 121
4.16. Submenu PID.GR - Configuring groups of control parame-
ters. 122
4.16.1. PID.N - Selecting PID for parameters to be configured 1234.16.2. PID.G.N - Selecting PID for parameters group to beconfigured123
4.16.3. H.PB - Proportional heating band or hysteresis in ON-OFF contro123
4.16.4. H.IT - Integral heating time 123
4.16.5. H.DT - Derivative heating time 123
4.16.6. H.P.HI - Maximum heating power 124
4.16.7. H.P.LO - Minimum limit of heating power 124
4.16.8. C.PB - Proportional cooling band or hysteresis in ON- OFF control 124
4.16.9. C.IT - Integral cooling time 124
4.16.10. C.DT - Derivative cooling time 124
4.16.11. C.P.HI - Maximum limit of cooling power 125
4.16.12. C.P.LO - Minimum limit of cooling power 125
4.16.13. PV.THR - Threshold PV for the activation of the group of PID parameters 125
4.17. CAL.EV sub-menu - Enable Calendar events 126
4.17.1. CAL.E - Enable calendar 126
4.17.2. MONDA - Enable Monday 126
4.17.3. TUESD - Enable Tuesday. 127
4.17.4. WEDNE - Enable Wednesday 127
4.17.5. THURS - Enable Thursday 127
4.17.6. FRIDA - Enable Friday. 127
4.17.7. SATUR - Enable Saturday. 127
4.17.8. SUNDA - Enable Sunday 128
4.18. CALE.C sub-menu - Enable Event Calendar 129
4.18.1. D.O.E - Event day selection 129
4.18.2. EVE.N - Event number selection 129
4.18.3. HH - Hour of the event 130
4.18.4. MM - Minute of the event. 130
4.18.5. \quad SS - Seconds of the event 130
4.18.6. ACt - Seconds of the event 130
4.19. Submenu IN.DIG - Configuring digital inputs 131
4.19.1. Functional diagram 132
4.19.2. I.DIG.N - Selecting the digital input 133
4.19.3. STAT - Defining the input state 133
4.19.4. F.IN - Selecting the assigned function 133
4.19.5. ST.EN.N - Setting assigned consent number 135
4.19.6. PRE.SW - Prescaler setting for number of input swi-tchings135
4.19.7. SWTCH - Number of input switching setting for signa-ling .. 135
4.19.8. MSG.IN - Selecting the digital input message 136
4.20. Submenu OUTPU - Configuring outputs 137
4.20.1. Functional diagram 138
4.20.2. OUT.N - Selecting the output. 139
4.20.3. STAT - Defining the output state. 139
4.20.4. F.OUT - Selecting the function assigned to relay, logicor Triac output.140
4.20.5. TYPE - Defining the type of continuous output 141
4.20.6. F.OU.C - Selecting the function assigned to continuo-us output.141
4.20.7. EVNT.N - Setting the event number 142
4.20.8. FB.O.N - Setting the Function Block output number.....142
4.20.9. IN.DG.N - Setting the digital input number 142
4.20.10. MAST.N - Setting the Master communication parame-ter number.142
4.20.11. SWTCH - Setting the number of switchings for signal..142
4.20.12. FAULT - State of output with broken input 143
4.20.13. MSG.OU - Selecting the output message 143
4.20.14. LO.C - Low limit for continuous output / HI.C 143
4.20.15. HI.C - Massimo di scala per uscita continua. 143
4.20.16. CY.TIM - Cycle time of output 144
4.21. Submenu OUT.AN - Configuring the analog retransmission output145
4.21.1. Functional diagram 146
4.21.2. OU.AN.N - Selecting the output 146
4.21.3. STAT - Defining the state of the analog output. 146
4.21.4. TYPE - Defining the type of analog output 147
4.21.5. FUNC - Selecting the function assigned to the analogoutput.147
4.21.6. MAST.N - Setting the Master communication parame-ter number.148
4.21.7. CY.TIM - Output cycle time 148
4.21.8. LO.SCL - Scale minimum 148
4.21.9. HI.SCL - Scale maximum. 148
4.22. Submenu VALVE - Configuring valve parameters 149
4.22.1. FUNC - Defining valve function 150
4.22.2. KEY.MO - Enabling valve operation with keys 150
4.22.3. TRAVL - Valve actuator travel time 150
4.22.4. TIM.LO - Minimum power change for valve drive. 150
4.22.5. \quad TIM.HI - Impulse mode setpoint 151
4.22.6. TIM.ON - Minimum valve impulse time or ON time in impulse mode 151
4.22.7. TIM.OF - OFF time in impulse mode 151
4.22.8. DEAD.B - Deadzone symmetrical to setpoint. 151
4.23. Submenu EN.FUN - Configuration of enablings 152
4.23.1. PID2.E - Enabling PID.2 153
4.23.2. APP.T - PID control application type 153
4.23.3. CAS.R - Cascade control reference 153
4.23.4. PROGR - Enabling the setpoint programmer 153
4.23.5. RECP.N - Number of parameters recipes 154
4.23.6. ALRM.N - Number of alarms enabled. 154
4.23.7. ON.OF - Enabling software shutdown from keys 154
4.23.8. DIG - Defining type of digital inputs 154
4.23.9. T.SAMP - Main and Auxiliary input sample time 154
4.23.10. FREQZ - Defining power line frequency 155
4.23.11. S.PROG - Enabling Simplified Programming mode 155
4.23.12. EN.EDI - Enabling Editor configurator Menu 155
4.23.13. WEB.E - Enabling webserver mode 155
4.23.14. MAP.T - Map type 155
4.24. Submenu MODE - Configuring functioning mode 156
4.24.1. MODE.N - Selecting function mode 157
4.24.2. PID.G.N - Number of groups of control parameters 1574.24.3. MA.AU - Defining transition from Manual to Automatic.157
4.24.4. AU.MA - Defining transition from Automatic to Manual. 157
4.24.5. LO.RE - Defining transition from remote SP to local SP158
4.24.6. MA.P.L - Enabling manual power latch 158
4.24.7. MAN.P - Enabling change of manual power value 158
4.24.8. TMER - Enabling Timer function 158
4.24.9. MUL.SP - Enabling Multiset function 159
4.24.10. SP.REM - Enabling the remote setpoint. 159
4.24.11. SPR.T - Defining absolute or deviation remote setpoint 159
4.24.12. T.PRO - Setting the programmer base time 159
4.24.13. ENERG - Enabling the energy counter function. 159
4.25. Submenu TIMER - Configurazione parametri timer 160
4.25.1. Functional diagram 161
4.25.2. TIME.N - Selecting timer 162
4.25.3. FUNC - Selecting Timer function mode. 162
4.25.4 ST.ST - Selecting the Start/Stop timer command 162
4.25.5. S.S.T - Defining the Start/Stop timer command logic 162
4.25.6. RESE - Selecting the Reset timer command........... 163
4.25.7. RES.T - Defining the timer reset command logic... 163
4.25.8. BAND - Band for timer count 163
4.25.9. END - Selecting the function activated at end of count 163
4.25.10. TIMER - Timer value 164
4.25.11. MSG.TM - Selecting message assigned to end of count 164
4.26. Submenu ENERG - Configuring energy counter parameters165
4.26.1. Functional diagram 166
4.26.2. ENRG.N - Selecting energy counter 167
4.26.3. ENERG - Selecting the output for energy calculation167
4.26.4. V.LINE - Nominal line voltage 167
4.26.5. P.LOAD - Nominal power of load 167
4.26.6. E.COST - Nominal cost per kWh 167
4.27. Submenu SERIA - Configuring serial communication 168
4.27.1. CODE - Identification code 168
4.27.2. KBAUD - Selecting communication speed 168
4.27.3. PAR - Selecting parity 169
4.27.4. SCANR - Setting delay between two consecutive Mo- dbus master with Ethernet option. 169
4.28. ETHER Submenu - Ethernet parameter configuration....... 170
4.28.1. TYP.E - Network parameter assignment method 171
4.28.2. CODE.E - Ethernet identification code 171
4.28.3. IP.AD1 - Address IP 1 171
4.28.4. IP.AD2 - Address IP 2 171
4.28.5. IP.AD3 - Address IP 3 171
4.28.6. IP.AD4 - Address IP 4 172
4.28.7. SUB.M1 - Subnet mask 1 172
4.28.8. SUB.M2 - Subnet mask 2 172
4.28.9. SUB.M3 - Subnet mask 3 172
4.28.10. SUB.M4 - Subnet mask 4 172
4.28.11. GT.AD1 - Gateway Address 1 173
4.28.12. GT.AD2 - Gateway Address 2 173
4.28.13. GT.AD3 - Gateway Address 3 173
4.28.14. GT.AD4 - Gateway Address 4 173
4.28.15. TIM.NT - Network Time Protocol server update time 1734.28.16. IP.NT1 - IP address 1 for Network Time Protocol server1744.28.17. IP.NT2 - IP address 2 for Network Time Protocol server1744.28.18. IP.NT3 - IP address 3 for Network Time Protocol server174
4.28.19. IP.NT4 - IP address 4 for Network Time Protocol server174
4.28.20. BRO.NT - Broadcast definition for Network Time Proto-col server174
4.28.21. GMT.OF - Offset in relation to GMT (Greenwich Mean Time) 175
4.29. Submenu HMI - Display configurationy 176
4.29.1. HOM.S - Selecting Home page 176
4.29.2. BAR.E - Enable bargraph display on Home menus 177
4.29.3. LANG - Selecting language for messages 177
4.29.4. SPEED - Message scrolling speed 178
4.29.5. BACKL - Backlighting level. 178
4.29.6. QUICK - Quick configuration menu 178
4.30. Submenu HOME - Configuration of display and keyboard inHome1 and Home2179
4.30.1. HOME - Selecting Home. 180
4.30.2. BUT. 1 - Selecting function key 1 180
4.30.3. BUT. 2 - Selecting function key 2 180
4.30.4. BUT. 3 - Selecting function key 3 180
4.30.5. DS.SP - Selecting the SV display 181
4.30.6. DS.F - Selecting the F display 182
4.30.7. BAR. 1 - Selecting bargraph 1 display 183
4.30.8. BAR. 2 - Selecting bargraph 2 display 184
4.30.9. BAR. 3 - Selecting bargraph 3 display 185
4.30.10. LED. 1 - Enable RUN led flashing 186
4.30.11. LED. 2 - Enabling MANUAL led
187
4.30.12. LED. 3 - Enabling TUNE led 1874.30.13. LED. 4 - Enabling RAMP led
4.30.14. LED. 5 - Enabling REMOTE led 187
4.30.15. LED. 6 - Enabling SP1/2 led 187
4.31. Submenu LNR.4.P - Permits configuration of custom lineari- sation 4 points 188
4.31.1. LNR.4.N - Selection of custom 4-point linearisation1884.31.2. Md.4P - Selection of custom 4-point linearisationmode.188
4.31.3. X 1 - Selection of custom 4-point linearisation mode.189
4.31.4. Y1-Ordinate of the first 4-point linearisation point.. 189
4.31.5. $\quad \mathrm{X} 2$ - Abscissa of second linearisation point 189
4.31.6. Y2- Ordinate of the second 4-point linearisation point. 189
4.32. Submenu LINRZ - Configuring custom linearization. 190
4.32.1. LNRZ.N - Selecting custom linearization 190
4.32.2. STP.xx - Value of step $x x$ 190
4.32.3. MV.STA - Setting mV at start of scale 191
4.32.4. MV.FUL - Setting mV at full scale 191
4.32.5. MV.50c - Setting mV at temperature of $50^{\circ} \mathrm{C}$. 191
4.33. Submenu US.CAL - Calibrazioni utente 192
4.33.1. U.CAL - Selecting the user calibration 193
4.33.2. FI.CAL - Resetting the factory calibration. 194
4.33.3. C.LOW - Calibrating minimum current / voltage 194
4.33.4. C.HIGH - Calibrating maximum current / voltage 195
4.33.5. RTD.LO - Calibrating minimum resistance value 195
4.33.6. RTD.HI - Calibrating maximum resistance value 195
4.33.7. HOUR - Setting hours 195
4.33.8. \quad MIN - Setting minutes 195
4.33.9. SEC - Setting seconds. 196
4.33.10. DAY - Setting day of week 196
4.33.11. DATE - Setting day 196
4.33.12. MONT - Setting month 196
4.33.13. YEAR - Setting year 196
4.33.14. C.LO - Setting analog output minimum 196
4.33.15. C.HIG - Setting analog output maximum 197
4.34. PASCO - Setting level password 0 197
4.35. PASC1 - Setting level 1 password 197
4.36. PASC2 - Setting level 2 password 197
4.37. FI.CFG - Entering the reset code 197
5. EXAMPLES AND APPLICATION NOTES 198
5.1. Heat/cool control application 198
5.1.1. Connection diagram. 198
5.1.2. Quick configuration procedure for model 850-D-R00- 00000-1 199
5.2. Heating control and current (CT) application 200
5.2.1. Connection diagram. 200
5.2.2. Quick configuration procedure for model 850-D-R00-00000-1201
5.3. Ingresso ausiliario. 202
5.4. 4-point input correction. 202
5.4.1. Entering linearisation parameters with the LINRZ menu
203
5.5. Current inputs 203
5.6. Alarms 204
5.6.1. AL1...AL4 Generic alarms 204
5.6.2. HB alarm 205
5.6.3. LBA alarm 206
5.6.4. Power alarm 206
5.7. Retransmission output 207
5.8. Switching the software on/off 207
5.8.1. How to switch it off 207
5.8.2. How to switch it on 207
5.9. Soft-Start. 207
5.10. Tuning 208
5.10.1. Tuning actions. 208
5.10.1.1. Influence of Proportional, Derivative and Integralactions on response of controlled process 208
5.10.2. Manual tuning 208
5.10.3. Self-Tuning 208
5.10.4. Auto-Tuning 209
5.10.5. Examples of tuning 209
5.10.6. Heat/Cool tuning with relative gain 210
5.10.7. Cascade controls. 210
5.10.7.1. Tuning two PIDs configured for cascade control .. 211
5.10.8. Ratio control 211
5.10.8.1. Activating the ratio controller 211
5.11. Timer 212
5.11.1. Start/Stop Timer 212
5.11.2. Stabilization timer 213
5.11.3. Start timer 213
5.11.4. Variables available for the user configuration menu 213
5.12. Multiset, setpoint gradient 214
5.13. Setpoint programmer 214
5.13.1. What is a program. 214
5.13.2. Example of setting a program from digital inputs. 215
5.13.3. Programmer functions 215
5.13.4. Programmer behavior 217
5.13.5. Program examples 217
5.13.5.1. ONE STEP program 217
5.13.5.2. ONE STEP program 217
5.13.5.3. Program with assigned events 218
5.13.5.4. Cyclical program with 3 setpoints and 3 steps219
5.13.5.5. Program with HBB (hold back band) function. 219 219
5.13.6. Fast simulation of program 219
5.13.7. Controlling the program from the
keypad 219
5.13.8. Programmer Reset mode 219
5.13.9. Restart with step search 219
5.13.10. Managing a double programmer 220
5.13.10.1. Programmers in asynchronous mode 220
5.13.10.2. Programmers in synchronous mode 222
5.13.11. Program times. 222
5.13.12. SIMPLIFIED PROGRAMMER MODE 223
5.14. Managing motorized valves 224
5.14.1. Valve control parameters 224
5.14.2. Valve control modes. 225
5.15. Energy counter 228
5.16. Logic Oforations 229
5.16.1. Function logic blocks 229
5.16.2. Groups of variables. 229
5.16.3. Programming logic Function Blocks 233
5.16.3.1. Configuration page. 233
5.16.3.2. Enabling logic function block and selecting the type of logic function. 234
5.16.3.3. Configuring input variables 235
5.16.3.4. Configuring the output 236
5.16.3.5. Configuring delays 236
5.16.3.6. Copy of a Logical Function Block 236
5.17. Math oforations 237
5.17.1. Math function blocks 237
5.17.2. Groups of variables 237
5.17.3. Programming Math Function Blocks 238
5.17.3.1. Configuration page. 238
5.17.3.2. Enabling a function block and selecting the type of math function242
5.17.3.3. Configuring input variables 243
5.17.3.4. Configuring the output 243
5.17.3.5. Copy of Math Function Blocks. 243
5.18. Recipe management 244
5.18.1. Defining parameters recipes 244
5.18.2. Setting the active recipe 244
5.18.3. Saving parameters in active recipe 244
5.18.4. Copying recipes 244
5.19. Master Modbus Communication. 245
5.19.1. Master communication blocks. 245
5.19.2. Programming Master communication blocks. 246
5.19.2.1. Set-up page. 246
5.19.2.2. Enabling communication block 247
5.19.2.3. Selecting scanning speed 247
5.19.2.4. Selecting remote device parameters. 248
5.19.2.5. Selecting an internal variable to be retransmitted 248
5.19.3. \quad Setting the Master Modbus serial port 249
5.19.4. Modbus object summary page 249
5.20. Slave Communication in Modbus TCP 250
$\begin{array}{ll}\text { 5.20.1. } & \text { Sett } \\ & 250\end{array}$
5.20.2. Modbus TCP communication diagnostics 251
5.20.3. Oforation as a deviceBridge with other devices252
5.20.4. Synchronising the internal clock via NTP server 252
5.20.5. Private networks and public networks 253
5.20.6. Firewall 253
5.20.7. Router 253
5.21. Webserver function 254
5.22. Instrument menu set-up 258
5.23. Calendar 259
5.23.1. Calendar management via keyboard 261
5.24. Customisable Modbus memory map 261
5.24.1. Custom map 262
5.24.2. Rescalable user map in WORD (16bit access) 262
5.24.3. WORD user map (16bit access) with read-only bit structure 263
5.24.4. WORD user map (16bit access) with read/write bit structure. 263
5.24.5. User map with BIT access 263
5.24.6. Support variables 263
5.25. Protection of controller configuration via GF_eXpress by password. 264
5.25.1. Password Setting 265
5.25.2. Access to a device with password-protected configu-ration via GF_eXpress265
5.25.3. Opening a password-protected configuration file with GF eXpress 266
6. PROGRAMMING WITH PC 267
6.1. Controller-PC connection 267
6.2. Programming Tool 267
6.2.1. GF_eXpress 267
6.2.1.1. System requirements 267
7. OPERATOR GUIDE 268
7.1. Displays and keys 268
7.1.1. Navigating the menus 268
7.2. Power-on 268
7.3. Operation as controller. 268
7.4. Operation as programmer 269
7.4.1. Activating the programmer 269
7.4.2. Display indication 269
7.5. Errors during operation 270
7.6. Configuration (User menu) 271
8. MAINTENANCE 273
8.1. Replacing the controller 273
8.2. Replacing the gasket. 273
8.3. Cloning the configuration 273
8.4. Cleaning 274
8.5. Troubleshooting 274
9. TECHNICAL DATA 275
9.1. Controller 850 275
9.2. Controller 1650 280
9.3. Controller 1850 285
9.4. Isolation block diagram 850 290
9.5. Isolation block diagram 1650-1850. 291
10. ORDER METHODS 293
10.1. Controller 850 293
10.2. Controller 1650 294
10.3. Controller 1850 295
11. ACCESSORIES 296

INTRODUCTION

Device data

In the space below, write the order code and other plate data shown on the label attached to the outside of the controller (see figure).
If you need technical assistance, this information must be given to Gefran Customer Service.

Numero di matricola	SN	
Codice prodotto finito	CODE	
Codice di ordinazione	TYPE	
Tensione di alimentazione	SUPPLY	
Versione firmware	VERS.	

Warnings and safety

Make sure that you always have the latest version of this manual, downloadable at no cost from Gefran's website (www.gefran.com).
The devices described in this manual must be installed by trained personnel in conformity to current laws and regulations, following all of the instructions in this manual. Installers and/or maintenance personnel MUST read this manual and scrupulously follow all of the instructions contained herein and in the attachments.
Gefran will not be liable for any damage/harm caused to persons and/or property, or to the device itself, if all of such instructions are not followed.
This manual must always be available to people who use or work on the devices described herein.
Before using the 850-1650-1850 controllers, the operator must be adequately instructed with regard to operating, emergency, diagnostics, and maintenance procedures.
If the 850-1650-1850 controllers are used in applications with risk of harm to persons or damage to machines or materials, auxiliary alarm devices must be installed.
It is advisable to provide the possibility, during normal operation, of checking whether any alarms have tripped. DO NOT touch the terminals when the device is powered. In case of supposed malfunction, and before contacting Gefran Customer Service, we advise you to consult "Troubleshooting" in the Maintenance section and the F.A.Q. (Frequently Asked Questions) section on Gefran's website (www.gefran.com).

Pay attention when you see these symbols in the manual.

Indicates very important information on correct product function or on safety, or an instruction that MUST be followed.

Indicates risk for the safety of the installer or user due to the presence of high voltage

Indicates a point to which the reader's attention is called

Indicates a suggestion that could be useful for better use of the device

Indicates a reference to other technical documents that can be downloaded from www.gefran.com.

Glossary

Allarme

Auto Tune Function that lets you calculate and easily set the P, I and D parameters thanks to the controller's self-learning.
Cool Control used for cooling.
Heat/Cool Control used for both heating and cooling (requires two control outputs).
Heat Control used for heating.
Hysteresis
When, at a precise moment, the value of the controlled quantity depends not only on another reference quantity but also on the values that the controlled quantity had previously, there is hysteresis. Hysteresis can therefore be considered inertia that influences the control system, causing variable delays between the change of the reference quantity and the change of the controlled quantity.

ON-OFF
Current used as signal transmitted by certain sensors or in a specific way to control a device, such as a motorized valve.

Output that trips when a certain condition is reached, for example, a defined temperature.

Function that lets you calculate and easily

Control procedure based on activation and deactivation of the output. For heating, the output stays on until PV is less than SV by a certain quantity (offset), and then stays off until PV is not greater than SV by the same quantity (or different quantity, depending on controller configuration). For cooling, the output stays on until PV > SV - offset and stays off until PV < SV + offset. This type of control is not intelligent, does not consider noise, and is not very accurate, but ensures a limited number of switchings of the output.

[^0]Acronym for Set Value, i.e., the value that the process variable (temperature, valve opening, etc.) has to reach and maintain.
Thermocouple Sensor that transmits an electrical signal of a few millivolts. Cannot be tested for galvanic continuity. It needs specially designed extension cable.

Undershoot Situation in which PV does not reach SV because the control action stopped too soon. The ON OFF controls have an undershoot greater than the PID controls.

Controll output

Output that controls the process and is switched on and off as needed.

Disclaimer

Although all of the information in this manual has been carefully checked, Gefran S.p.A. assumes no liability regarding the presence of any errors or regarding damage to property and/or harm to individuals due to any improper use of this manual.

Gefran S.p.A. also reserves the right to change the contents and form of this manual, as well as the characteristics of the devices described herein, at any time and without notice

The technical data and performance levels specified in this manual are to be considered a guide for the user in order to determine the device's suitability for a defined use, and do not constitute a guarantee. They may be the result of test conditions at Gefran S.p.A., and the user must compare them to his/her real application requirements.

Under no circumstances will Gefran S.p.A. be liable for any damage to property and/or harm to individuals due to tampering, incorrect or improper use, or use not conforming to the characteristics of the controller and to the instructions contained in this manual.

Copyright

This manual and its attachments may be freely reproduced provided its contents are not changed in any way and provided every copy includes the above Disclaimer and the statement of ownership of Gefran S.p.A..

Gefran and GF_eXpress are registered trademarks of Gefran S.p.A.

This manual may make reference to or reproduce trademarks and logos of third parties. Gefran S.p.A. acknowledges such parties' ownership of these trademarks and logos.

1.1. Profile

Operator Interface

Large backlit LCD screen with high visibility and high contrast. Two to three rows on the screen display variables, setpoints and alphanumerical information, scrolling up to 75 configurable messages of 32 characters each in three different languages. The selection of languages and easily comprehensible scrolling texts regarding diagnostics, alarms , and process statuses ensure that the controllers speak the users' language.

Control

One or two PID control loops with two universal inputs configurable for thermocouples, thermoresistances and linear inputs. They may be used independently to manage two different forms of control or they may interact with cascade or ratio control. An optional third linear analogue input may be used to acquire signals such as remote setpoints or retroactive valve feedback, while also supplying the necessary potentiometer power supply.
If the appropriate four-point calibration is performed in the field, the controller meets the requirements of standard AMS2750E and may be used in applications requiring the NADCAP directive.

Easy Configuration

Set-up wizard for manual-free programming with only a few indispensable parameters, commented by online help messages. Opportunity to create your own password-protected "User menu" containing only the parameters required for the application.
Advanced set-up and work recipe creation can be achieved via PC and GF_eXpress software, even without powering the controllers. GF_eXpress may be used to define, for each menu and parameter, which values will be shown to the controller to ensure easy use in the field.
Controllers can still be configured directly in the field using only four keys, associated with led lights that provide fee-
dback when a button is pressed and guide the user by indicating the appropriate operations. Factory settings can be restored if necessary, either on the keyboard or using the GF_eXpress software tool. Diagnostics, preventive maintenance and consumption monitoring.
Exhaustive diagnostics for breakage or incorrect connection of probes, total or partial load breakdown, off-scale variables and anomalies in the control ring. Counters for the number of relay and comparator switches, with alarm thresholds, permit scheduling of preventive maintenance to replace worn actuators. Two internal energy counters with alarms for anomalous variations count total energy consumption in kWh and its cost, permitting ongoing energy monitoring.

Diagnostics, preventive maintenance and consumption

 monitoring.Exhaustive diagnostics in the event of breakage or incorrect connection of probes, total or partial breakage of the load, off-scale variables and anomalies in the adjustment ring. Relay switch counters and comparators with alarm signals permit planning of preventive maintenance work for replacement of worn actuators. Two internal energy counters with alarms for signalling anomalous variations totalise energy consumption in kWh and its cost, permitting uninterrupted energy monitoring.

Functional application blocks

Thirty-two logical AND, OR, Flip-Flop, Comparator, Counter and Timer Function Blocks permit creation of customised logical sequences for complete, flexible machine control. Eight mathematical Function Blocks permit processing of analogue variables and calculation of differences, sums, multiplication and division, averages, top and bottom values, square root calculation and logarithms. Function Blocks also permit management of $8+8$ additional inputs/outputs available for models $18501 / 4 \mathrm{DIN}$.

Tuning

Advanced tuning algorithms refined over time guarantee stable, accurate control even with critical or very rapid thermal systems, automatically activated when necessary.

Timers

Three different types of timer permitting waiting times to be set before activating control, maintenance times on setpoint values, and scheduled set changes over time.

Setpoint programmers

Up to 192 steps are available for applications with setpoint profiles, each with a ramp and maintenance time, which can freely be grouped into up to 16 programmes. Each segment may be associated with enabling inputs, event outputs, and configurable messages to be displayed. In models 1850, the display also permanently shows the step number and programme number underway. Double programmer mode, with a synchronous or asynchronise timing base, permits activation of two different setpoint profiles which may be independent of one another and may be associated with two control loops. The clock/weekly calendar function with a real-time clock and buffer battery facilitate starting and stopping of various programmes in default automatic mode.
Simplified keyboard configuration permits creation and editing of simple programmes with only three parameters per step, with no need for a PC, cables, or configuration software, while the extended configuration with Gf_ eXpress also offers graphic functions for displaying the profiles created.

Valve positioner

Models are available for motorised valve control, with or without position feedback. The position of floating valves is calculated; for valves with potentiomenters, auxiliary inputs can be used to control valve position and display it in numerical form or in one of 3 configurable bar graphs (for models 1650/1850)

Connectivity

850/1650/1850 "Performance" controllers have three different levels of communication with automation and supervision devices:
-RS485 Modbus RTU slave serial communication for interface with Master Modbus
-RS485 Modbus RTU master serial communication for reading/writing information toward Modbus slave devices such
as power controllers or other controllers
-RJ45 Ethernet Modbus TCP port, which can also be used as a bridge toward Modbus RTU slave devices.
An Ethernet connection may be used to access the Web Server service offering a number of monitoring, diagnostics and configuration pages, accessible via local or remote networks with an ordinary browser and two password levels.

General features

Performance controllers are entirely configurable using the software and keyboard, without accessing their internal electronics, but the controller can be replaced at any time by simply pulling it out from the front, with no further operations, maintaining IP65 protection for the front.

Main features

- Models $1 / 16$ DIN (850); 1/8 DIN (1650); $1 / 4$ DIN (1850)
- Accuracy 0.1%, AMS2750E compliance
- Sampling time 60ms
- Operator interface with large LCD display and three configurable bar graphs (mod. 1650/1850)
- Diagnostic scroll messages, configurable, in the selected language
- Easy setup, wizard, copy/paste parameters even without power
- Preventive maintenance, with energy counters (kWh) and load switching
- 32 logical application blocks
- 8 mathematical application blocks
- Timers, setpoint programmers and algorithms to control motorised valves
- Advanced control parameter tuning
- Differentiated password levels
- 2 universal inputs configurable for thermocouples, thermoresistances, linear inputs
- 3rd linear input for remote setpoint and potentiometer feedback (mod. 1650/1850)
- 2 PID control loops
- - 2 setpoint programmers (192 steps in 16 programs, or 12 programs with 16 fixed steps each)
- Relay, logic, isolated analogue outputs
- Up to two TA inputs for interrupted load diagnostics
- Modbus RTU Master and Slave communication
- Ethernet Modbus TCP and Modbus bridge communication
- Weekly clocklcalendar with RTC
- Extractable from the front for immediate replacement

1.2. Differences among models

	$\mathbf{c \|} 850$	1650	1850
Display dimensions	$35 \times 30 \mathrm{~mm}$	$37 \times 68 \mathrm{~mm}$	$83 \times 68 \mathrm{~mm}$
PV display	4 digit, 7 seg., $\mathrm{H}=17 \mathrm{~mm}$	4 digit, 7 seg., $\mathrm{H}=17 \mathrm{~mm}$	4 digit, 7 seg., $\mathrm{H}=23 \mathrm{~mm}$
SV display	5 digit, 14 seg., $\mathrm{H}=7,5 \mathrm{~mm}$	4 digit, 7 seg., $\mathrm{H}=14 \mathrm{~mm}$	4 digit, 7 seg., $\mathrm{H}=11 \mathrm{~mm}$
Display F	n / a	5 digit, 14 seg., $\mathrm{H}=9 \mathrm{~mm}$	7 digit, 14 seg., $\mathrm{H}=9 \mathrm{~mm}$
Bargraph PV/SP	n / a	dual, 11 segments	dual, 11 segments
Configurable Bargraph	n / a	11 segments	11 segments
Keys	4	4	6
Max. digital inputs	3	5	$5+8$
Power dissipation	10 W	10 W	12 W
Dimensions	$48 \times 48 \mathrm{~mm}(1 / 16 \mathrm{DIN})$	$48 \times 96 \mathrm{~mm}(1 / 8 \mathrm{DIN})$	$96 \times 96 \mathrm{~mm}(1 / 4 \mathrm{DIN})$
Weight	$0,16 \mathrm{~kg}$	$0,24 \mathrm{~kg}$	$0,35 \mathrm{~kg}$

$\mathrm{n} / \mathrm{a}=$ not available

Dimensions $48 \times 48 \times 100 \mathrm{~mm}$ (1/16 DIN)

Main features

- Operator interface with large LCD Display
- Scrolling diagnostics messages, configurable, in the selected language
- Easy, guided configuration, copy/paste parameters even with power off
- Preventive maintenance with energy counters (kWh) and load switching
- 32 function block applications
- 8 Math application blocks
- Timer, setpoint and algorithm programmer for controlling motorized valves
- Advanced tuning of control parameters
- Different password levels
- 2 configurable universal inputs for Thermocouples, resistance Thermometers, Linear inputs
- 2 PID control loops
- 2 setpoint programmers (192 steps in 16 programs, or 12 programs with 16 fixed steps each)
- Relay, logic, isolated analog outputs
- Up to two TA inputs for interrupted load diagnostics
- RS485 serial communication in Modbus RTU slave
- RS485 serial communication in Modbus RTU master for reading/writing information to Modbus slave devices
- Ethernet Modbus TCP communication in Slave mode
- Web server for browser access to web pages residing in the device, for monitoring and setting parameters
- Bridge function for creation of Modbus RTU 485 sub-network
- Weekly clocklcalendar with RTC
- Removable faceplate for immediate replacement
- Accuracy $0,1 \%$, sampling time 60 ms

1.3.1. Display and keys

1 Unit of measurement or number of program running or number of loop displayed.
2 State of outputs OUT1, OU2, OUT3, OUT4.
3 Controller function states::

- RUN = functioning (flashing = normal functioning, steady
on = program running);
- $/$ - = rsetpoint ramp active;
- TUN = PID parameters tuning active;
- MAN = manual/automatic (off = automatic control,
on = manual control);
- REM = remote setpoint enabled;
- $\mathrm{SP} 1 / 2$ = setpoint active (off = setpoint 1 , on = setpoint 2).

4 Work mode key (manual/automatic) in standard mode. A function can be assigned via parameter but1. The key is active only when the display shows the process variable (HOME).
5 TUp/down keys: raise/lower the value of the parameter displayed on the SV or PV display.

6 F key: lets you navigate among controller menus and parameters. Confirms the parameter value and selects the next parameter.
7 Key pressed signals.
8 SV display: setpoint value, description of parameters, diagnostics and alarm messages. Configurable with parameter dS.SP (default = setpoint).
9 PV display: process variable, parameter values.

Figure 1 - Description of 850 display and keys

1.3.2. Drilling dimensions and templates

Figure 2-850 drilling dimensions and templates

Note : the electronic components of a 850 instrument made after January 2020 cannot be inserted in the casing of an instrument made prior to this date. If it should be necessary
to replace an 850 controller manufactured before January 2020 with a similar controller manufactured after this date, the casing anchored to the panel must also be replaced.

Dimensions $48 \times 96 \times 80 \mathrm{~mm}$ ($1 / 8 \mathrm{DIN}$)

Main features

- Operator interface with large LCD Display and three configurable bargraphs
- Scrolling diagnostics messages, configurable, in the selected language
- Easy, guided configuration, copy/paste parameters even withe power off
- Preventive maintenance with energy counters (kWh) and load switching
- 32 function block applications
- 8 Math application blocks
- Timer, setpoint and algorithm programmer for controlling motorized valves
- Advanced tuning of control parameters
- Different password levels
- 2 configurable universal inputs for Thermocouples, Resistance thermometers, Linear inputs
- 1 ingresso analogico lineare configurabile per funzioni ausiliarie
- 2 PID control loops
- 2 Setpoint programmers (128 steps in 16 programs
- Relay, logic, isolated analog outputs
- Up to two TA inputs for interrupted load diagnostics
- RS485 serial communication in Modbus RTU slave
- - RS485 serial communication in Modbus RTU master for reading/writing information to Modbus slave devices
- Ethernet Modbus TCP communication in Slave mode
- Web server for browser access to web pages residing in the devvice, for monitoring and setting parameters
- Bridge function for creation of Modbus RTU 485 sub-network
- Weekly clocklcalendar with RTC
- Removable faceplate for immediate replacement
- Accuracy $0,1 \%$, sampling time 60 ms

1.4.1. Display and keys

Figure 3 - Description of 1650 display and keys

1 Unit of measurement or number of program running or number of loop displayed.
2 State of outputs OUT1, OU2, OUT3, OUT4
3 Controller function states:

- RUN = functioning (flashing = normal functioning, steady on = program running);
- /-- = setpoint ramp active;
- TUN = PID parameters tuning active;
- MAN = manual/automatic (off = automatic control, on = manual control);
- REM = remote setpoint enabled;
- SP1/2 = setpoint active (off = setpoint 1 , on = setpoint 2).

4 Work mode key (manual/automatic) in standard mode.
A function can be assigned via parameter but1.
The key is active only when the display shows the process variable (HOME).
5 Up/down keys: raise/lower the value of the parameter displayed on the SV or PV display.
6 F key: lets you navigate among controller menus and parameters. Confirms the parameter value and selects the next parameter.
7 Key pressed signals.
8 Displays percentage of power or current, configurable with parameter bAr.3.
9 Display of percentage of process variable and of setpoint.
10 F display: parameters, diagnostics and alarm messages. Configurable with parameter dS.F (default = \% control power).
11 SVdisplay: parameter values. Configurable with parameter dS.SP (default = setpoint).
12 PV display: process variable.

1.4.2. Drilling dimensions and templates

Figure 4-1650 drilling dimensions and templates

Note : the electronic components of a 1650 instrument made after January 2020 cannot be inserted in the casing of an instrument made prior to this date. If it should be necessary
to replace an 1650 controller manufactured before January 2020 with a similar controller manufactured after this date, the casing anchored to the panel must also be replaced.

1.5. 1850 Controller

Dimensions $96 \times 96 \times 80 \mathrm{~mm}$ (1/4 DIN)

Main features

- Operator interface with large LCD Display and three configurable bargraphs
- Scrolling diagnostics messages, configurable, in the selected language
- Easy, guided configuration, copy/paste parameters even with power off
- Preventive maintenance with energy counters (kWh) and load switching
- 32 function block applications
- 8 Math application blocks
- Timer, setpoint and algorithm programmer for controlling motorized valves
- Advanced tuning of control parameters
- Different password levels
- 2 configurable universal inputs for Thermocouples, Resistance Thermometers, Linear inputs
- 1 linear analogue input configurable for auxiliary functions
- 2 PID control loops
- 2 setpoint programmers (192 steps in 16 programs, or 12 programs with 16 fixed steps each)
- Relay, logic, isolated analog outputs
- Up to two TA inputs for interrupted load diagnostics
- RS485 serial communication in Modbus RTU slave
- RS485 serial communication in Modbus RTU master for reading/ writing information to Modbus slave devices• Ethernet Modbus TCP communication in Slave mode
- Web server for browser access to web pages residing in the device, for monitoring and setting parameters
- Bridge function for creation of Modbus RTU 485 sub-network
- Weekly clocklcalendar with RTC
- Removable faceplate for immediate replacement
- Accuracy $0,1 \%$, sampling time 60 ms

1.5.1. Display and keys

Figure 5 - Description of 1850 display and keys

1 Unit of measurement or number of program running or number of loop displayed.
2 State of outputs OUT1, OU2, OUT3, OUT4.
3 Displays program number, step number, unit of measurement (\%, A, kW, kWh).
4 Controller function states:

- RUN = functioning (flashing = normal functioning, steady
on = program running);
- _/- = setpoint ramp active;
- TUN = PID parameters tuning active;
- MAN = manual/automatic (off=automatic control, on = manual control);
- REM = remote setpoint enabled;
- SP1/2 = setpoint active (off = setpoint 1, on = setpoint 2).

5 Work mode key (manual/automatic) in standard mode. A function can be assigned via parameter but1. The key is active only when the display shows the process variable.
6 Key function configurable with parameters but2 and but3. The keys are active only when the display shows the process variable (HOME).
7 Up/down keys: raise/lower the value of the parameter displayed on the SV or PV display.
8 F key: lets you navigate among controller menus and parameters. Confirms the parameter value and selects the next parameter.
9 Key pressed signals.
10 Displays percentage of power or current, configurable with parameter bAr3.
11 Display of percentage of process variable and of setpoint
12 F display: parameters, diagnostics and alarm messages. Configurable with parameter dS.F (default = \% control power).
13 SV display: parameter values. Configurable with parameter dS.SP (default = setpoint).
14 PV display = Process variable
15 Display of inputs/outputs state (only with 8 INS/OUTS and/or 8 relays).

1.5.2. Drilling dimensions and templates

Figure 6-1850 drilling dimensions and templates

Note : the electronic components of a 1850 instrument made after January 2020 cannot be inserted in the casing of an instrument made prior to this date. If it should be necessary
to replace an 1850 controller manufactured before January 2020 with a similar controller manufactured after this date, the casing anchored to the panel must also be replaced.

2. INSTALLATION

Attention! The devices described in this manual must be installed by trained personnel in conformity to current laws and regulations, following all of the instructions in this manual.

Before installing, check that the controller is in perfect condition and was not damaged in shipment. Make sure that the package contains all of the accessories listed on the accompanying document, especially the gasket and the fastening brackets.

Check that the order code matches the configuration required for the intended application (supply voltage, number and type of inputs and outputs). See Chapter 10 - Ordering code - to check the configuration corresponding to each order code.

Attention! If even one of the requirements mentioned above (trained technician in, device in perfect condition, correct configuration) is not satisfied, interrupt the installation and contact your Gefran dealer or Gefran Customer Service.

2.1. Mounting the controller

2.1.1. General installation rules

The controller is designed for permanent indoor installation. It must be mounted on electrical panels or on panels controlling machines or production process plants that are able to protect the exposed terminals on the rear of the controller.

Attention! DO NOT install the controller in a potentially inflammable or explosive atmosphere. It can be connected to elements that work in such atmospheres only by means of appropriate interfaces that conform to safety regulations in force in the country of installation.

\triangle
Attention! the controller is used in applications with risk of harm/damage to persons/property, it MUST be connected to dedicated alarm devices.
It is advisable to provide the possibility, during normal functioning of the controller and of the system or equipment that it controls, of checking whether any alarms have tripped.

The controller must be installed in a location that is not subject to sudden temperature changes or to freezing or condensation, and no corrosive gases must be present.

The controller can work in Pollution Degree 2 environments (presence of non-conductive dust, only temporarily conductive due to possible condensation).
Do not allow scrap or metal particles from machining or condensation products to reach the device.
The controller is sensitive to strong electromagnetic fields. Do not position it near radio devices or other equipment that may generate electromagnetic fields, such as power contactors, relays, thyristor power units (especially phase angle), motors, solenoids, transformers, high-frequency welders, etc.

2.1.2. Drilling dimensions

For correct installation, respect the dimensions of each hole and the distance between adjacent holes shown in the figures for each model (Figure 2-850 drilling dimensions and templates 14, Figure 4-1650 drilling dimensions and templates 17, Figure 6-1850 drilling dimensions and templates 20).

Attention! The support on which the operator panel is mounted must:

- be sufficiently rigid and robust to support the device without bending during use;
- be from 1 to 4 mm thick to allow the device to be fastened with the supplied bracket.

2.1.3. Protection against infiltration of dust and water

The front of the controller has an IP65 protection index, so the device can be installed without problems in rooms that are very dusty or subject to splashing water provided:

- the housing in which the device is inserted is dust-tight and watertight;
- the support on which the device is installed is perfectly smooth and without undulations on the front;
- the hole on the support scrupulously respects the specified drilling dimensions;
- the device is fully tightened to the support to ensure that the gasket inserted between the device and the panel is watertight

Attention! If not adequately protected, the controller has an IP20 protection index (rear container and terminal board.

2.1.4. Vibrations

The controller can support vibrations from 10 to 150 Hz , $20 \mathrm{~m} / \mathrm{s} 2(2 \mathrm{~g})$, in all directions (X, Y and Z).
If the device is mounted on a support that exceeds these limits, it is advisable to provide a suspension system to reduce vibrations.

2.1.5. Minimum space for ventilation

The temperature in the housing containing the controller must NEVER exceed $55^{\circ} \mathrm{C}$.
NEVER block the ventilation slits.
Advice. The lower the temperature in which the device works, the longer the life of its electronic components.

\triangle
Attention! Forced cooling (for example, with a fan) of the rear of the controller may cause measurement errors.

2.1.6. Positioning

The controller must be positioned so that the display is not subject to direct sunlight or to very strong sources of light. If necessary, filter direct light, for example, with a reflective screen.
The controller must be tilted between 30° and 120°, as shown in the figure.

Figure 7 - Positioning the controller

2.1.7. Fastening to the panel

1. Insert the die-cut rubber gasket between the controller and the panel. The gasket (supplied) is indispensable for ensuring the declared protection index of the faceplate.
2. Insert the device into the hole previously made on the panel.
3. Place the supplied bracket(s) onto the rear of the controller.
4. Tighten the screws to fasten the device to the panel. The tightening torque must be between 0,3 and $0,4 \mathrm{~N} \mathrm{~m}$

The following figures show how to fasten the three controller models.

Figure 8 - Fastening the 850

Figure 9 - Fastening the 1650

Figure 10 - Fastening the 1850

2.2. Connections

Attention! Failure to follow the instructions in this section may cause problems in electrical safety and electromagnetic compatibility, in addition to voiding the warranty.

2.2.1. General rules for connections

1. Connected external circuits must have double isolation.
2. In case of shielded cables, the shield must be grounded at a single point, possibly near the controller.
3. Input cables must be physically separated from power cables, output cables, and power connections.
4. Do not connect unused terminals.
5. Tighten the terminals without forcing. Loose terminals may cause sparks and fires.
The recommended tightening torque is 0.5 Nm .
6. When making connections, respect polarity where required.
7. Do not bend or twist the cables beyond the limits specified by the manufacturers.
8. After connecting the cables, apply the transparent cover to protect the terminals.
The terminal teeth limit and define the correct direction for applying the cover.

2.2.2. Electromagnetic compatibility (EMC)

For electromagnetic conformity, the strictest general rules have been applied, using the following test configuration:

Connection	Cable section	Length
Power supply	$1 \mathrm{~mm}^{2}$	1 m
Relay	$1 \mathrm{~mm}^{2}$	$3,5 \mathrm{~m}$
Serial port	$0,35 \mathrm{~mm}^{2}$	$3,5 \mathrm{~m}$
Thermocouple	$0,8 \mathrm{~mm}^{2}$	5 m compensated
Potentiometer, linear, "PT100" resistance thermometer	$1 \mathrm{~mm}^{2}$	3 m
Analog retransmission output	$1 \mathrm{~mm}^{2}$	$3,5 \mathrm{~m}$
Digital input/outputs	$1 \mathrm{~mm}^{2}$	$3,5 \mathrm{~m}$
Ethernet port	UTP $4 \times 2 \times$ xWG24 cat 6	4 m

2.2.3. Cables

Always use cables appropriate for the voltage and current limits specified in the Technical Characteristics.

Use copper cables with $60 / 75^{\circ} \mathrm{C}$ insulation.
Use twisted and shielded cables for non-power connections.
The controller's terminal board has screw terminals (M3) that accept stripped cables and crimped terminals for a tightening torque of 0.5 N m .
Two ring or crimped fork terminals can be connected on each terminal

The following table shows the characteristics of the cables and terminals that can be used.

Cable / terminal	Cable / terminal section	Terminal size
Rigid cable	$\begin{aligned} & 0,8 \ldots . .2,5 \mathrm{~mm}^{2} \\ & (18 \ldots 14 \mathrm{AWG}) \end{aligned}$	
Twisted	$\begin{aligned} & 0,8 \ldots 2,5 \mathrm{~mm}^{2} \\ & (18 \ldots 14 \mathrm{AWG}) \end{aligned}$	
\square Tag terminal (to be crimped)	$\begin{aligned} & 0,25 \ldots 2,5 \mathrm{~mm}^{2} \\ & (23 \ldots 14 \mathrm{AWG}) \end{aligned}$	
 Fork terminal (to be crimped)		5,8 mm max
Ring terminal (to be crimped)		5,8 mm max

Attention! Anchor the cables, at least in pairs, so that mechanical stresses do not discharge on the terminal connections.

2.2.4. Power supply

今Attention! Before powering the controller, make sure that the supply voltage matches the one shown on the controller data plate.

Because the controller does not have a switch, a bipolar switch with fuse must be inserted upline. The switch, or isolator, must be positioned in the immediate vicinity of the device and must be easily reached by the operator. A single switch can control multiple controllers.

The controller must be powered by a line separated from the one used for electromechanical power devices (relays, contactors, solenoids, etc).

It is advisable to install a ferrite core on the power line, as close as possible to the device, to limit the controller's susceptibility to electromagnetic noise.

If the controller's power line is heavily disturbed by the switching of thyristor power units or by motors, it is advisable to use an isolation transformer only for the controller, grounding the shield.

Use appropriate line filters in the vicinity of high-frequency generators or arc welders.
Use a voltage stabilizer if there are wide shifts in line voltage.
20... 27 VAC/VDC models must be powered by a class II or low-voltage limited-energy source.
The power supply must use a line separated from the one used for electromechanical power devices, and low-voltage power cables must run along a path separated from the system or machine power cables.

Attention! Make sure the ground connection is efficient. Absent or inefficient grounding can make the device unstable due to excessive noise.
Specifically, check that:

- voltage between mass and ground is $<1 \mathrm{~V}$;
- resistance is $<6 \Omega$

2.2.5. Connecting inputs and outputs

The controller's input and output lines must be separated from the power line.
To prevent noise, the controller's input and output cables must be kept away from the power cables (high voltages or high currents).
The input and output cables and the power cables must not be placed parallel to one another.
Use shielded cables or separate cable trays.
To connect the output to an inductive load (relay, contactor, electrovalve, motor, fan, solenoid, etc.) that works in AC, mount a snubber, i.e., an RC group (resistor and condenser in series) placed parallel to the load. Installing this filter lengthens the life of the relays.

NOTE: All condensers must conform to VDE (class X2) standards and support voltage ≥ 220 VAC. The power of the resistor must be $\geq 2 \mathrm{~W}$.

Figure 11 - Snubber connection diagram (AC)
For inductive loads that work in DC, mount a 1N4007 diode parallel to the coil.

Figure 12 - Snubber connection diagram (DC)
ers must be connected as close as possible to th
Figure 12 - Snubber connection diagram (DC)
The filters must be connected as close as possible to the controller.
 .

Attention! If the controller is connected to devices that are NOT electrically isolated (such as thermocouples), ground with a specific conductor to prevent grounding directly through the machine
structure.

2.3. 850 connection diagrams

2.3.1. General diagram

LEGEND

```
~
~
+ Linear input
_ voltage / current
Input for
8 current transformer
```


2.3.2. Power supply

Power supply	
	Standard: $\begin{aligned} & 100 \ldots 240 \mathrm{VAC} / \mathrm{VDC} \pm 10 \% \\ & 50 / 60 \mathrm{~Hz}, \max 10 \mathrm{~W} \end{aligned}$ Optional:: 20... 27 VAC/VDC $\pm 10 \%$ $50 / 60 \mathrm{~Hz}$, max 10 W (*) ground connection for option 20...27VAC/DC only

2.3.3. Inputs

TC Inputs	Available thermocouples:: J,K,R,S,T,C,D, B, E, L, L-GOST, U, G, N, Pt20Rh-Pt40Rh
ITS90 or custom linearization	

Input PT100/JPT100-2-wires connection

Attention:
with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate.

Input PT100/JPT100-3-wires connection

Attention:

with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate screen.
The resistance of the three wires must be equal, the line resistance must be less than 20 ohm

2.3.4. Outputs

Characteristics of outputs are defined when the controller is ordered.

Output Out 1 - relay 5 A

Output Out 1 - logic

Logic $24 \mathrm{~V} \pm 10 \%$
(min 10 V a 20 mA)

2.3.5. Digitali inputs

2.3.6. Serial line

Serial line [with $(M)=M 0$ communication option]

2.3.7. CT Inputs

Current transformer $50 \mathrm{~mA}, 10 \Omega, 50 / 0 \mathrm{~Hz}$ second current transformer for 2-phase /3-phase load

2.3.8. Auxiliary inputs

TC auxiliary input

with options $(\mathrm{H}-\mathrm{I})=01$$\quad$| Available thermocouples:: |
| :--- |
| J,K,R,S,T,C,D, B, E, L, L-GOST, U, G, |
| N, Pt20Rh-Pt40Rh |
| ITS90 or custom linearization |

PT100/JPT100 Auxiliary input - 2-wires connection
[with options $(\mathrm{H}-\mathrm{I})=01$]

PT100/JPT100 Auxiliary input - 2-wires connection [with option $(\mathrm{H}-\mathrm{I})=01]$

Attention:

with this type of connection the line resistance can introduce measurement error,we recommend that you use wires of adequate screen. The resistance of the three wires must be equal, the line resistance must be less than 20 ohm.

Auxiliary linear input (V, I) [with option $(\mathrm{H}-\mathrm{I})=02,03$]

Potentiometer VP or transmitter VT2 supply

2.3.9. Auxiliary outputs

2.4. 1650 connection diagrams

2.4.1. General diagram

2.4.2. Power supply

Power supply

Standard:
100... 240 VAC/VDC $\pm 10 \%$
$50 / 60 \mathrm{~Hz}$, max 10W

Optional:
20... 27 VAC/VDC $\pm 10 \%$
$50 / 60 \mathrm{~Hz}$, max 10W
${ }^{(*)}$ ground connection for option 20... 27 V AC/DC only

2.4.3. Main input (MAIN)

TC Input	
	Available thermocouple: J, K,R, S, T, C, D B, E, L, L-GOST, U, G, N, Pt20Rh-Pt40Rh ITS90 or custom linearization
	Respect polarity For extensions, use a compensated
	cable

Input PT100/JPT100-3-wires connection

Attention:

with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate screen.
The resistance of the three wires must be equal, the line resistance must be less than 20 ohm.

Linear input (V)

2.4.4. Outputs

Characteristics of outputs Out1, Out2, Out3, Out4 are defined when the controller is ordered.

Outputs Out 1 - relay 5 A

Relè 250 VAC, 5 A

Outputs Out 2 - relay 5 A

Relay 250 VAC, 5 A

Output Out 4 - relay 5 A

Output Out 4 -Triac

Triac 75... 240 VAC
max 1 A
Isolated 3 KV

2.4.5. Digital inputs

Digital inputs

Digital Inputs PNP
+12/24 V max 3,6 mA

2.4.6. Serial line

2.4.7. CT Inputs

2.4.8. Auxiliary inputs (AUX1)

Input TC [with option auxiliary input = 1]	
	Available thermocouples: J, K,R, S, T, C, D, B, E, L, L-GOST, U, G, N,
Pt20Rh-Pt40Rh	
ITS90 or custom linearization	

Input PT100/JPT100-2-wires connection
[with option auxiliary input $=1$]

Attention:
with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate screen.

Input PT100/JPT100-3-wires connection
[with option auxiliary input $=1$]

Attention:

with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate screen.
The resistance of the three wires must be equal, the line resistance must be less than 20 ohm.

Linear input (V) [with option auxiliary input = 1]

Linear input in direct voltage
$0 . .60 \mathrm{mV} \quad \mathrm{Ri}>100 \mathrm{M} \Omega$

Linear input (V, I) [with option auxiliary input = 2 o 3]

Potentiometer VP1 or transmitter VT2 supply

$\mathrm{VP} 1=1 \mathrm{VDC} \pm 1 \%$, $\max 30 \mathrm{~mA}$
[with option auxiliary input $=2$]

V 2 $=24 \mathrm{VDC} \pm 10 \%$, $\max 30 \mathrm{~mA}$
[with option auxiliary input $=3$]

Analog output A2

2.4.9. Third Analogue input (AUX2)

Linear input (V/I) [with third input option $(\mathrm{H})=3$]

2.4.10. Analog outputs

Analog output A1		

2.5. 1850 connection diagrams

2.5.1. General diagram

2.5.2. Power supply

Power supply		
	PWR	Standard: $100 . . .240 \mathrm{VAC} / \mathrm{VDC} \pm 10 \%$ $50 / 60 \mathrm{~Hz}$, max 12W Optional: 20... 27 VAC/VDC $\pm 10 \%$ $50 / 60 \mathrm{~Hz}$, max 12W $\left(^{*}\right)$ ground connection for option 20... 27 V AC/DC only

2.5.3. Main input (MAIN)

Attention:

with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate.

Linear input (V)

2.5.4. Output

Characteristics of outputs Out1, Out2, Out3, Out4 are defined when the controller is ordered.

2.5.5. Digital inputs

2.5.6. Serial line

2.5.7. CT Inputs

2.5.8. Auxiliary input (AUX1)

Input TC

[with option auxiliary input $=1$, available only if the main input is configured Type TC]

Available thermocouples:
J, K,R, S, T, C, D, B, E, L, L-GOST,

U, G, N,
Pt20Rh-Pt40Rh
ITS90 or custom linearization
Respect polarity
For extensions, use a compensated cable

Inputs PT100/JPT100-2-wires connection [with option auxiliary input $=1$]

Attention:
with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate screen.

Inputs PT100/JPT100-3-wires connection
[with option auxiliary input $=1$]

Attention:

with this type of connection the line resistance can introduce measurement error, we recommend that you use wires of adequate screen. The resistance of the three wires must be equal, the line resistance must be less than 20 ohm.

Linear Inputs (V, I)

[with option auxiliary input $=1$]
Linear input in direct voltage
$0 . . .1 \mathrm{~V} \quad \mathrm{Ri}>400 \mathrm{~K} \Omega$

Linear input in direct current $+\quad 0 / 4 \ldots 20 \mathrm{~mA}, \mathrm{Ri}=50 \Omega$.

Linear Inputs (V)
[with option auxiliary input =2 $\begin{aligned} & \text { o }\end{aligned}$ 3]

Potentiometer VP1 or transmitter VT2 supply

$\mathrm{VP} 1=1 \mathrm{VDC} \pm 1 \%, \max 30 \mathrm{~mA}$ [with option auxiliary input $=2$]
$\mathrm{VT} 2=24 \mathrm{VDC} \pm 10 \%$, max 30 mA [with option auxiliary input $=3$]

2.5.9. THIRD ANALOGUE INPUT (AUX2)

High impedance linear input (V)
[with third input option $(\mathrm{H})=3$]

Linear input (V/I) [with third input option $(H)=3$]

VP2 potentiometer power supply

[VP2 = 1 VDC +- 1%, max 30mA]

2.5.10. Analog outputs

Analog outputs A2
$+32$

2.5.11. Connections with option optional $\mathrm{I} / \mathrm{O}(\mathrm{N})=10,01,11$

Characteristics of optional inputs and outputs are defined when the controller is ordered.

8 Inputs / Digital outputs (PNP)
[with option I/O = 10, 11]

[^1]1\mathrm{ and 2 function is enabled in parameter PROGR on the EN.FUN menu:
(for details, see paragraph"5.13. Setpoint programmer" on page 214):
P.P12.1 = Select program for PROGR. 1 and for PROGR. 2 bit 1
P.P12.2 = Select program for PROGR. }1\mathrm{ and for PROGR. }2\mathrm{ bit }
P.P12.3 = Select program for PROGR. }1\mathrm{ and for PROGR. }2\mathrm{ bit }
P.SS12 = START/STOP PROGR. }1\mathrm{ and PROGR. }2\mathrm{ programmer time base
P.ST12 = START PROGR. }1\mathrm{ and PROGR. 2 programmer time base
P.SP12 = STOP and PROGR. }1\mathrm{ e PROGR. }2\mathrm{ programmer time base
P.RS12 = RESET and PROGR. }1\mathrm{ e PROGR. 2 programmer time base
P.SK12 = SKIP to end program (end cycle) PROGR. }1\mathrm{ and PROGR. }
ST.S12 = SKIP to end step PROGR. }1\mathrm{ and PROGR. }
ST.E12 = STEP ENABLE 1/2: input with consent function at start of PROGR. }1\mathrm{ and PROGR. }2\mathrm{ step
If valve model with auxiliary input present, function FUnC=VALV.P and custom linear type,
and with one output configured as V.OPEN and one configured as V.CLOS:
VALV.P = Auxiliary input configuration
if valve model:
V.END.O = Valve opening limit stopa
V.END.C = Valve closing limit stop

```

\subsection*{4.19.5. ST.EN.N - Setting assigned consent number}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline ST.EN.N & IN.DIG.1 (o IN.DIG.2 \(\ldots\) IN.DIG.5) ENABLE NUMBER & IN.DIG & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the consent number assigned to the digital input identified by I.DIG.N. \\
The parameter appears if the parameter F.in.x = ST.EN1, ST.EN2 or ST.E12. \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathbf{1 . . 4}\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
\end{tabular}

\subsection*{4.19.6. PRE.SW - Prescaler setting for number of input switchings}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline PRE.SW & IN.DIG.1 (o IN.DIG.2 ... IN.DIG.5) PRESCALER FOR SWITCHING CYCLES & IN.DIG & R W \\
\hline The parameter shows and sets the prescaler for the number of switchings of the digital input with CY.CNT function. \\
Unit of measurement: Number \\
Options: & \(1 . .9999\) & & \\
\hline
\end{tabular}

\subsection*{4.19.7. SWTCH - Number of input switching setting for signaling}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline SWTCH & IN.DIG. 1 (o IN.DIG.2 \(\ldots\) IN.DIG.5) NUMBER OF SWITCHING CYCLES & IN.DIG & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the number of switchings of the digital input with CY.CNT function, which if exceeded \\
generates the scrolling message DIGITAL INPUT SWITCH ALARM. \\
The function is disabled if the parameter equals "0". \\
CAUTION: the minimum counting unit is 1000 (display \(1=1000\) counts) \\
Unit of measurement: Number \\
Options:
\end{tabular}\(\quad 1 . .9999\) & \\
\hline
\end{tabular}

\subsection*{4.19.8. MSG.IN - Selecting the digital input message}
\begin{tabular}{|c|l|c|c|}
\hline Acronym & \multicolumn{1}{|c|}{ Scrolling message } & Submenu & Attributes \\
\hline MSG.IN & \begin{tabular}{l} 
IN.DIG.1 (o IN.DIG.2 \(\ldots\) IN.DIG.5) NUMBER OF SCROLLING MESSAGE AT \\
INPUT ACT
\end{tabular} & IN.DIG & R W \\
\hline
\end{tabular}

The parameter shows and sets the number of the message assigned to activation of the digital input, i.e., the scrolling message shown on the display.
For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
If the parameter is set to " 0 " no message will be displayed when the digital input is activated.
The same message number can be assigned to different inputs.
Unit of measurement: Number identificativo del messaggio
Options: \(\quad 0 . .25\) (with LAnG=LANG1 or LANG2 or LANG3)
\(0 . . .75\) (with LAnG=NONE)

\subsection*{4.20. Submenu OUTPU - Configuring outputs}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & Description \\
\hline OUTPU & OUTPUT CONFIG & Level 2 & Lets you configure the controller outputs. \\
\hline
\end{tabular}


\subsection*{4.20.1. Functional diagram}


\subsection*{4.20.2. OUT.N - Selecting the output}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline OUT.N & OUTPUT NUMBER & OUTPU & R W \\
\hline The parameter shows and sets the identifying number of the output to be configured. & & \\
Unit of measurement: Number & & \\
Options: & \(\mathbf{1 . . . 4}\) & & \\
\hline
\end{tabular}

\subsection*{4.20.3. STAT - Defining the output state}
\begin{tabular}{|c|c|c|c|}
\hline & & & \\
\hline StAt & & & \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
The parameter shows and sets the state of the output with identifying number "x". \\
The active direct output corresponds to the relay, logic, or trial output ON (conducting). \\
The active inverse output corresponds to the relay, logic, or trial output OFF. \\
If the output is continuous, direct corresponds to minimum \(=4 \mathrm{~mA}\) and maximum \(=20 \mathrm{~mA}\), while inverse corresponds to minimum \(=20 \mathrm{~mA}\) and maximum \(=4 \mathrm{~mA}\). \\
The outputs can be forced so that they are always on or off. \\
On models 1650-1850, if the VT1, option is present, the parameter is ON. \\
Unit of measurement: \\
Options: \\
DIREC = Direct output \\
INVRS = Inverse output \\
OFF = Output forced off \\
ON = Output forced on \\
DI.PWM = Direct output with partialisation of ON/OFF and cycle time CY.TIM (for Output 1 of CONT.A or CONT.C type only) \\
IN.PWM = Direct output with partialisation of ON/OFF and cycle time CY.TIM (for Output 1 of CONT.A or CONT.C type only)
\end{tabular}} \\
\hline
\end{tabular}

\subsection*{4.20.4. F.OUT - Selecting the function assigned to relay, logic or Triac output}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline F.out & OUTPU.1 (o OUTPU.2... OUTPU.4) OUTPUT FUNCTION & OUTPU & R W \\
\hline
\end{tabular}

The parameter shows and sets the function assigned to the output with identifying number " x ", if the output is relay, logic or Triac and is direct or inverse.

Unit of measurement:
Options:
```

NONE = No assigned function
HEAT1 = Heat control output of PID. }
COOL1 = Cool control output of PID. }
ALRM1 = Output for Alarm 1
ALRM2 = Output for Alarm 2
ALRM3 = Output for Alarm 3
ALRM4 = Output for Alarm 4
OR.12 = Alarm 1 OR Alarm 2
OR.123 = Alarm 1 OR Alarm 2 OR Alarm 3
0.1234 = Alarm 1 OR Alarm 2 OR Alarm 3 OR Alarm 4
AND.12 = Alarm 1 AND Alarm 2
AN.123 = Alarm 1 AND Alarm 2 AND Alarm 3
A.1234 = Alarm 1 AND Alarm 2 AND Alarm 3 AND Alarm 4
if model with CT1+CT2:
AL.HB = Output for HB alarm
LBA1 = Output for LBA alarm of PID. }
BUT.SR = Set/Reset from key
if the Timer function is enabled in MODE.1:
TIMR1 = Timer state (end of count)
if the Programmer }1\mathrm{ function is enabled in parameter PROGR on the EN.FUN menu:
P.HBB1 = HBB alarm of programmer of PROGR.1
P.RUN1 = RUN state of programmer of PROGR.1
P.HLD1 = STOP state of programmer of PROGR. }
P.RDY1 = READY state of programmer (after reset of time base) of PROGR. }
P.END1 = END state of programmer ofPROGR.1
P.EVE1 = EVENTO state of programmer of PROGR.1
if model with Logic Operations:
LFB.O = Output of Function Blocks
if model with valve control:
V.OPEN = Output for the opening of the valve
V.CLOS = Output for the closure of the valve
if model with digital inputs:
IN.DIG = Repetition of a digital input
POWR1 = Output for PID. 1 power alarm
if PID2.E function is enabled in EN.FUN:
HEAT2 = PID. }2\mathrm{ heat control output
COOL2 = PID. }2\mathrm{ cool control output
LBA2 = PID. 2 LBA alarm output
POWR2 = Output for PID. }2\mathrm{ power alarm
if the Timer function is enabled in MODE.2:
TIMR2 = TIMER. }2\mathrm{ timer state (end count)
if the Programmer 2 function is enabled in parameter PROGR on the EN.FUN menu:
P.HBB2 = HBB programmer PROGR. 2 alarm
P.RUN2 = RUN programmer PROGR. 2 state
P.HLD2 = STOP programmer PROGR. }2\mathrm{ state
P.RDY2 = READY programmer PROGR. }2\mathrm{ state (after reset of time base)
P.END2 = END programmer PROGR. 2 state
P.EVE2 = EVENTO programmer PROGR. }2\mathrm{ state
if model with Master Modbus serial (except output 1) and at least one Master parameter configured
as MASTER:
MASTER = Master value (for type provided to word only) (index no. to be specified in MAST.N)

```

\subsection*{4.20.5. TYPE - Defining the type of continuous output}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline TYPE & CONTINUE OUTPUT TYPE & OUTPU & R W \\
\hline \multicolumn{4}{|l|}{The parameter shows and sets the definition of continuous output.} \\
\hline \multicolumn{4}{|l|}{The parameter applies only to Output 1 of CONT.A} \\
\hline \multicolumn{4}{|l|}{Unit of measurement:} \\
\hline \multirow[t]{8}{*}{Options:} & 20MA \(=0 . . .20 \mathrm{~mA}\) output & & \\
\hline & \(4-20 \mathrm{M}=4 \ldots .20 \mathrm{~mA}\) output & & \\
\hline & \(10 \mathrm{~V}=0 . . .10 \mathrm{~V}\) output & & \\
\hline & 2-10V \(=2 . . .10 \mathrm{~V}\) output & & \\
\hline & C.20MA \(=0 . . .20 \mathrm{~mA}\) custom output & & \\
\hline & C.4-20 \(=4 . . .20 \mathrm{~mA}\) custom output & & \\
\hline & c. \(10 \mathrm{~V}=0 . .10 \mathrm{~V}\) custom output & & \\
\hline & C. \(2-10=2 \ldots . .10 \mathrm{~V}\) custom output & & \\
\hline
\end{tabular}

\subsection*{4.20.6. F.OU.C - Selecting the function assigned to continuous output}


\subsection*{4.20.7. EVNT.N - Setting the event number}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ EVNT.N } & OUTPU.1 (o OUTPU.2... OUTPU.4) EVENT NUMBER & OUTPU & R W \\
\hline The parameter shows and sets the event number. & & \\
The parameter appears if the parameter F.out = P.EVE1, P.EVE2. & & \\
Unit of measurement: Number \\
Options: & \(\mathbf{1 . . . 4}\) & & \\
\hline
\end{tabular}

\subsection*{4.20.8. FB.O.N - Setting the Function Block output number}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline FB.O.N & OUTPU.1 (o OUTPU.2 ... OUTPU.4) FUNCTION BLOCK OUTPUT NUMBER & OUTPU & R W \\
\hline The parameter shows and sets the number of the Function Block assigned to the output. & & \\
The parameter appears if the parameter F.out = LFB.O. & & \\
Unit of measurement: Number \\
Options: & \(\mathbf{1 . . . 3 2}\) & & \\
\hline
\end{tabular}

\subsection*{4.20.9. IN.DG.N - Setting the digital input number}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline IN.DG.N & OUTPU. 1 (o & ITPU. 2 ... OUTPU.4) DIGITAL INPUT NUMBER & OUTPU & R W \\
\hline \multicolumn{5}{|l|}{The parameter shows and sets the number of the digital input assigned to the output. The parameter appears if the parameter F.out \(=\) IN.DIG.} \\
\hline \multicolumn{5}{|l|}{Unit of measurement: Number} \\
\hline Options: & \[
\begin{aligned}
& 1 . . .3 \\
& 1 . . .5
\end{aligned}
\] & \begin{tabular}{l}
Model 850 with option 3 digital inputs \\
Model 1650 and 1850 with option 5 digital inputs
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.20.10. MAST.N - Setting the Master communication parameter number}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ MAST.N } & OUTPU.1 (o OUTPU.2... OUTPU.4) MASTER PARAMETER NUMBER & OUTPU & R W \\
\hline This parameter shows and sets the Master parameter number associated with the output. & & \\
This parameter only appears if the F.OUT parameter = MASTER & & \\
Unit of measurement: Number & & \\
Options: & \(\mathbf{1 . . . 2 0}\) & & \\
\hline
\end{tabular}

\subsection*{4.20.11. SWTCH - Setting the number of switchings for signal}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline SWTCH & OUTPU.1 (o OUTPU.2 ... OUTPU.4) NUMBER OF SWITCHING CYCLES & OUTPU & R W \\
\hline
\end{tabular}

The parameter shows and sets the number of switchings ( x 1000 ) of the relay, exceeding which the signal is generated OUTX.SWITCH ALARM where \(X\) is the number of output 1 or 2 or 3 or 4 if the output is relay, logic or triac.
The function is disabled if the parameter equals " 0 ".
CAUTION: The minimum counting unit is 1000 ON-OFF switching operations. The alarm is therefore triggered for values strictly greater than the set SWTCH parameter (e.g. if SWTCH is set to 1 , the alarm is not triggered at \(1000+1\) switches, but at \(1000+1000\) switches \(=2000\) ).
Unit of measurement: Number
Options:
0... 9999

\subsection*{4.20.12. FAULT - State of output with broken input}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline FAULT & OUTPU. 1 (o OUTPU. 2 ... OUTPU.4) FAULT OUTPUT STATE & OUTPU & R W \\
\hline \multicolumn{4}{|l|}{The parameter shows and sets the state (ON, OFF) that the output assumes in case of sensor fault (Err, Sbr, ...), on main input IN. 1 or auxiliary input IN.2, if the output is direct or inverse and automatic operation mode.} \\
\hline \multicolumn{4}{|l|}{Unit of measurement: -} \\
\hline Options: & \begin{tabular}{l}
OFF. 1 = Output OFF in case of fault on main input IN. 1 \\
On. 1 = Output ON in case of fault on main input IN. 1 \\
nOnE = Output continues to function normally \\
if the model with auxiliary input: \\
OFF. 2 = Output OFF in case of fault on auxiliary input IN. 2 \\
On. 2 = Output ON in case of fault on auxiliary input IN. 2 \\
OF. 12 = Output OFF in case of fault on input IN. 1 or IN. 2 \\
On. 12 = Output ON in case of fault on input IN. 1 or IN. 2
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.20.13. MSG.OU - Selecting the output message}
\begin{tabular}{|c|l|c|c|}
\hline Acronym & \multicolumn{1}{|c|}{ Scrolling message } & Submenu & Attributes \\
\hline MSG.OU & \begin{tabular}{l} 
OUTPU.1 (o OUTPU.2 ... OUTPU.4) NUMBER OF SCROLLING MESSAGE AT \\
OUTPUT ACT
\end{tabular} & OUTPU & R W \\
\hline
\end{tabular}

The parameter shows and sets the number of the message assigned to activation of the output, i.e., the scrolling message shown on the display.
For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
If the parameter is set to " 0 " no message will be displayed when the output is activated.
The same message number can be assigned to different outputs.
Unit of measurement: Message number
Options: \(\quad 0 . .25\) (with LAnG=LANG1 or LANG2 or LANG3)
\(0 . . .75\) (with LAnG=NONE)

\subsection*{4.20.14. LO.C - Low limit for continuous output / HI.C}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LO.C & LOW LIMIT CONTINUE OUTPUT & OUTPU & R W \\
\hline \begin{tabular}{l} 
This parameter shows and sets the low limits of the scale, corresponding to the minimum output voltage or current. \\
Every time the F.ou.C parameter of power control output is set, the value of this parameter is forced to 0. \\
This parameter only applies if Output 1 is of the CONT.A or CONT.C type. \\
Unit of measurement: Points on the scale of quantities associated with continuous output \\
Options: \\
\hline
\end{tabular}\(\quad \mathbf{- 1 9 9 9 . . . 9 9 9 9 ~}\) & \\
\hline
\end{tabular}

\subsection*{4.20.15. HI.C - Massimo di scala per uscita continua}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline HI.C & HIGH LIMIT CONTINUE OUTPUT & OUTPU & R W \\
\hline \begin{tabular}{l} 
This parameter shows and sets the high limits of the scale, corresponding to the maximum output voltage or current. \\
Every time the F.ou.C parameter of power control output is set, the value of this parameter is forced to 1000. \\
This parameter only applies if Output 1 is of the CONT.A or CONT.C type. \\
Unit of measurement: Points on the scale of quantities associated with continuous output \\
Options: \\
\hline
\end{tabular} \(\mathrm{-1999...9999}\) & \\
\hline
\end{tabular}

\subsection*{4.20.16. CY.TIM - Cycle time of output}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline CY.TIM & OUTPU.1 (o OUTPU.2 ... OUTPU.4) CYCLE TIME & OUTPU & R W \\
\hline
\end{tabular}

The parameter shows and sets the slicing period of the output.
The parameter appears if the parameter F.ou.x = HEAT1, HEAT2 or F.ou.x = COOL1, COOL2.
The slicing period is the cycle time, i.e., the sum of ON time and OFF time proportional to the value of Heat or Cool power.

\section*{Example}

Se la potenza di Heat è il \(25 \%\) e la durata del ciclo è di 10.0 secondi, l'uscita è attiva per 2,5 secondi e disattiva per 7,5 secondi.

Burst Firing (BF) mode has a variable cycle time, optimized to transfer power as quickly as possible.
The minimum interval for ON or OFF equals the electrical cycle ( 20 ms at 50 Hz ).
The ON and OFF times are multiples of the minimum time.

\section*{Example}

If Heat power is \(25 \%\) and the line frequency is 50 Hz , the cycle time is 80 ms . The output is active for 20 ms and inactive for 60 ms ( \(=3 \times 20 \mathrm{~ms}\), equal to the remaining \(75 \%\) of the cycle time).

Unit of measurement: Seconds
Options: \(\quad 0.0 . . .20 .0\) for digital and Triac outputs. There is Burst Firing (BF) with 0.0 1... 200 for relay output

\subsection*{4.21. Submenu OUT.AN - Configuring the analog retransmission output}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline OUT.AN & ANALOG & Level 2 & \begin{tabular}{l} 
Lets you configure the analog output used for retransmission \\
of analog values.
\end{tabular} \\
& OUTRASMISSION & & \begin{tabular}{l} 
The submenu appears if the analog retransmission output is \\
Oresent on the controller.
\end{tabular} \\
\hline
\end{tabular}


\subsection*{4.21.1. Functional diagram}


\subsection*{4.21.2. OU.AN.N - Selecting the output}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline OU.AN.N & ANALOG OUTPUT NUMBER & OUT.AN & R W \\
\hline
\end{tabular}

The parameter shows and sets the identifying number of the output to be configured.
Unit of measurement: Number
Options:
1... 2

\subsection*{4.21.3. STAT - Defining the state of the analog output}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline StAt & OUT.AN. 1 (o OUT.AN.2) ANALOG OUTPUT STATUS & OUT.AN & R W \\
\hline \multicolumn{4}{|l|}{The parameter shows and sets the state of analog retransmission output A1 or A2.} \\
\hline \multicolumn{4}{|l|}{The active direct output corresponds to minimum with the minimum output value in voltage or current.} \\
\hline \multicolumn{4}{|l|}{The active inverse output corresponds to minimum with the maximum output value in voltage or current.} \\
\hline \multicolumn{4}{|l|}{The outputs can be forced so that they are always on or off.} \\
\hline \multicolumn{4}{|l|}{Unit of measurement: -} \\
\hline \multirow[t]{6}{*}{Options:} & \multicolumn{3}{|l|}{DIREC = Direct output} \\
\hline & \multicolumn{3}{|l|}{INVRS = Inverse output} \\
\hline & \multicolumn{3}{|l|}{OFF = Forced output inactive (minimum voltage or current value)} \\
\hline & \multicolumn{3}{|l|}{ON = Forced output active (maximum voltage or current value)} \\
\hline & \multicolumn{3}{|l|}{DI.PWM = Direct output with partialisation of ON/OFF and cycle time CY.TIM} \\
\hline & \multicolumn{3}{|l|}{IN.PWM = Inverse output with partialisation of ON/OFF and cycle time CY.TIM} \\
\hline
\end{tabular}

\subsection*{4.21.4. TYPE - Defining the type of analog output}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline tYPE & OUT.AN. 1 (o OUT.AN.2) ANALOG OUTPUT TYPE & OUT.AN & R W \\
\hline \multicolumn{4}{|l|}{The parameter shows and sets the definition of analog output A1 or A2.} \\
\hline \multicolumn{4}{|l|}{Unit of measurement: -} \\
\hline \multirow[t]{8}{*}{Options:} & 20MA \(=0 . .20 \mathrm{~mA}\) Output & & \\
\hline & 4-20M \(=4 \ldots 20 \mathrm{~mA}\) Output & & \\
\hline & \(10 \mathrm{~V}=0 \ldots . .10 \mathrm{~V}\) Output & & \\
\hline & 2-10V \(=2 . .10 \mathrm{~V}\) Output & & \\
\hline & C. \(20 \mathrm{MA}=0 . . .20 \mathrm{~mA}\) Custom output & & \\
\hline & C.4-20 \(=4 \ldots . .20 \mathrm{~mA}\) Custom output & & \\
\hline & C.10V \(=0 . . .10 \mathrm{~V}\) Custom output & & \\
\hline & C.2-10 \(=2 . .10 \mathrm{~V}\) Custom output & & \\
\hline
\end{tabular}

\subsection*{4.21.5. FUNC - Selecting the function assigned to the analog output}


\subsection*{4.21.6. MAST.N - Setting the Master communication parameter number}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ MAST.N } & OUT.AN.1 (o OUT.AN.2) MASTER PARAMETER NUMBER & OUT.AN & R W \\
\hline This parameter shows and sets the Master parameter number associated with the output. & & \\
This parameter only appears if the F.ou.C parameter = MASTER. & & \\
Unit of measurement: Number & & \\
Options: & \(\mathbf{1 . . . 2 0}\) & & \\
\hline
\end{tabular}

\subsection*{4.21.7. CY.TIM - Output cycle time}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ CY.TIM } & OUT.AN. 1 (o OUT.AN.2) CYCLE TIME & OUT.AN & R W \\
\hline This parameter shows and sets the output partialisation period. \\
The parameter will appear if the StAt parameter = DI.PWM, IN.PWM. \\
Partialisation period is the cycle time, that is, the sum of ON time and OFF time proportional to the value to be retransmit- \\
ted. \\
Example \\
If the value to be retransmitted is \(25 \%\) and the duration of the cycle is 10.0 seconds, the output will be active for 2.5 \\
seconds and deactivated for 7.5 seconds. \\
Unit of measurement: Seconds \\
Options: & \(\mathbf{1 . . . 2 0 0}\) \\
\hline
\end{tabular}

\subsection*{4.21.8. LO.SCL - Scale minimum}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LO.SCL & OUT.AN.1 (o OUT.AN.2) LOW LIMIT ANALOG OUTPUT & OUT.AN & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the scale minimum, which corresponds to minimum output value in voltage or current. \\
Each time you set the power control output on parameter FuNC, the parameter value is forced to 0. \\
The scale limit is ignored if the output is assigned to an MFB output (or calculated directly by an MFB. \\
Unit of measurement: Scale points of quantity assigned to analog output. \\
Options: \\
\hline
\end{tabular} \(\mathrm{-1999...9999}\) & \\
\hline
\end{tabular}

\subsection*{4.21.9. HI.SCL - Scale maximum}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline HI.SCL & OUT.AN.1 (o OUT.AN.2) HIGH LIMIT ANALOG OUTPUT & OUT.AN & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the scale maximum, which corresponds to minimum output value in voltage or current. \\
Each time you set the power control output on parameter FuNC, the parameter value is forced to 1000. \\
The scale limit is ignored if the output is assigned to an MFB output (or calculated directly by an MFB). \\
Unit of measurement: Scale points of quantity assigned to analog output. \\
Options: \\
\hline
\end{tabular} \(\mathrm{-1999...9999}\) & \\
\hline
\end{tabular}

\subsection*{4.22. Submenu VALVE - Configuring valve parameters}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline VALVE & VALVE MANAGER & Level 2 & Lets you configure control parameters for motorized valves. \\
& & & The submenu appears if the controller is set for valve control
\end{tabular}


Parameter Pag.

Defining valve function 150

Enabling valve
operation with keys

Valve actuator travel
time

Minimum power change for valve drive150

Impulse mode 151 setpoint

Minimum valve impulse time or ON time in impulse mode

OFF time in impulse
mode

Deadzone symmetrical
to setpoint150150150
151151
151

151

\subsection*{4.22.1. FUNC - Defining valve function}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline FuNC & VALVE CONTROL FUNCTION & VALVE & R W \\
\hline The parame Unit of mea Options: & \begin{tabular}{l}
shows and sets the valve function, i.e., if it contr urement: \\
HEAT1 = PID. 1 heat control power \\
COOL1 = PID. 1 cool control power \\
if it is enabled PID2.E in EN.FUN function: \\
HEAT2 = PID. 2 heat control power \\
COOL2 = PID. 2 cool control power
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.22.2. KEY.MO - Enabling valve operation with keys}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline KEY.MO & VALVE OPEN/CLOSE FROM IN/DEC BUTT ENABLE & VALVE & R W \\
\hline The parameter shows and sets enabling of valve opening and closing with controller keys & \(\Delta\) and \(\bar{\nabla}\) in manual mode. \\
Unit of measurement: - \\
Options: & \begin{tabular}{ll} 
OFF \\
On
\end{tabular} & \begin{tabular}{l} 
= Keys do not act directly on valve opening and closing \\
= Keys enabled for manual valve opening and closing
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.22.3. TRAVL - Valve actuator travel time}
\begin{tabular}{|c|l|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline TRAVL & ACTUATOR TRAVEL TIME & VALVE & R W \\
\hline
\end{tabular}

The parameter shows and sets the time taken by the actuator to bring the valve from "full open" position to "full closed" position or vice versa.
The time is obtained by trial or deduced from the valves technical data.
Unit of measurement: Seconds
Options:
0... 2000

\subsection*{4.22.4. TIM.LO - Minimum power change for valve drive}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline TIM.LO & MINIMUM PULSE TIME & VALVE & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the minimum power change needed to drive the valve. \\
The parameter is calculated as a percentage of the TRAVL parameter and serves to prevent excess activity of the valve, \\
with consequent electromechanical stress. \\
The control function is explained in detail in paragraph "5.14. Managing motorized valves" on page 224. \\
Unit of measurement: \% di TRAVL \\
Options: \\
\(\mathbf{0 . 0 . . 2 5 . 0 ~}\)
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.22.5. TIM.HI - Impulse mode setpoint}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline TIM.HI & IMPULSIVE MODE INTERVENTION THRESHOLD & VALVE & R W \\
\hline The parameter shows and sets the impulse mode setpoint as a percentage of valve opening time TRAVL. & \\
The control function is explained in detail in paragraph "5.14. Managing motorized valves" on page 224. \\
Unit of measurement: \% di TRAVL \\
Options: & \(\mathbf{0 . 0 . . . 1 0 0 . 0 ~}\) & & \\
\hline
\end{tabular}

\subsection*{4.22.6. TIM.ON - Minimum valve impulse time or ON time in impulse mode}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline TIM.ON & ON TIME FOR IMPULSIVE MODE & VALVE & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the minimum valve impulse time or ON time in impulse mode as a percentage of valve \\
opening time TRAVL. \\
Unit of measurement: \(\%\) di TRAVL \\
Options: \\
\hline
\end{tabular}\(\quad \mathbf{0 . 0 . . . 1 0 0 . 0 ~}\) & \\
\hline
\end{tabular}

\subsection*{4.22.7. TIM.OF - OFF time in impulse mode}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline TIM.OF & OFF TIME FOR IMPULSIVE MODE & VALVE & R W \\
\hline The parameter shows and sets OFF time in impulse mode as a percentage of valve opening time TRAVL. & \\
A value below TIM.ON is forced to TIM.ON. \\
The TIM.On and TIM.OF functions are both excluded if the parameter equals " 0.0 ". & \\
Unit of measurement: \% di TRAVL & & \\
Options: & \(\mathbf{0 . 0 . . . 1 0 0 . 0 ~}\) & & \\
\hline
\end{tabular}

\subsection*{4.22.8. DEAD.B - Deadzone symmetrical to setpoint}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline DEAD.B & DEAD ZONE & VALVE & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets a band symmetrical to the setpoint. If PV is in this band, valve activity and the related \\
integral action is stopped. \\
It prevents frequent corrections of the valve position, with consequent electromechanical stress, following small changes \\
in the value of the PV. \\
Unit of measurement: \% of full scale of main or auxiliary input. \\
Options: \\
\hline
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.23. Submenu EN.FUN - Configuration of enablings}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Password & Description \\
\hline EN.FUN & ENABLE FUNCTIONS & Level 2 & Lets you configure other controller functions. \\
\hline
\end{tabular}


\subsection*{4.23.1. PID2.E - Enabling PID. 2}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline PID2.E & ENABLE OF PID 2 & EN.FUN & R W \\
\hline The parameter shows and sets enabling of second PID. \\
The parameter appears only if the optional auxiliary input is available and if option PV2 on the FUNC parameter of the \\
INPUT.2 menu has been selected. \\
\begin{tabular}{l} 
Unit of measurement: - \\
Options: \(\quad\)\begin{tabular}{ll} 
OFF \\
On
\end{tabular} \\
\end{tabular}\(\quad\)\begin{tabular}{l} 
= PID.2 disabled \\
= PID.2 enabled
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.23.2. APP.T - PID control application type}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline APP.t & PID APPLICATION CONTROL TYPE & EN.FUN & R W \\
\hline \multicolumn{4}{|l|}{The parameter shows and sets the PID control application type.} \\
\hline \multicolumn{4}{|l|}{The parameter appears only if the optional auxiliary input is available, if option PV2 on the FUNC parameter of the INPUT. 2 was selected, and if parameter PID2.E is On.} \\
\hline \multicolumn{4}{|l|}{Unit of measurement: -} \\
\hline Options: & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { 2.PID }=\text { For using the two PIDs }(1 \text { and } 2) \text { independently } \\
& \text { CAS. } \mathrm{HE}=\text { PID. } 1 \text { and PID. } 2 \text { in cascade. PID. } 1 \text { HEAT control output }=\text { setpoint for PID.2* } \\
& \text { CAS.CO }=\text { PID. } 1 \text { and PID. } 2 \text { in cascade. PID. } 1 \text { COOL control output }=\text { setpoint for PID.2* } \\
& \text { CAS.HC }=\text { PID. } 1 \text { and PID. } 2 \text { in cascade. PID. } 1 \text { HEAT }+ \text { COOL control output }=\text { setpoint for PID.2* }
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{(*) PID. 1 control tends to maintain PV1 = SSP1 automatically; PID. 2 control tends to maintain PV2 \(=\) OUT.P1 in remote setpoint mode. Remote setpoint mode is obtained with function keys/digital inputs/Logic Function Blocks /serial after having enabled remote setpoint SP.rEM=On.} \\
\hline
\end{tabular}

\subsection*{4.23.3. CAS.R - Cascade control reference}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline CAS.r & CASCADE CONTROL REFERENCE & EN.FUN & R W \\
\hline \multicolumn{4}{|l|}{This parameter shows and sets the reference for cascade control, required for scaling of PID. 1 power in the remote PID. 2 setpoint.} \\
\hline \multicolumn{4}{|l|}{This parameter is shown only if APP.t \(=\) CAS. HE or \(=\) CAS. CO or \(=\) CAS. HC.} \\
\hline \multicolumn{4}{|l|}{Unit of measurement: -} \\
\hline Options: & \[
\begin{aligned}
& \text { IN.SCL }=\text { PID. } 2 \text { input scale } \\
& \text { SP.SCL }=\text { PID. } 2 \text { setpoint scale }
\end{aligned}
\] & & \\
\hline
\end{tabular}

\subsection*{4.23.4. PROGR - Enabling the setpoint programmer}


\subsection*{4.23.5. RECP.N - Number of parameters recipes}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ RECP.N } & NUM OF PARAMETER RECIPES & EN.FUN & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the number of parameters recipes for which the template is defined via GF_eXpress. \\
If the parameter is " 0 " the parameters recipes are disabled. \\
Unit of measurement: Number \\
Options:
\end{tabular} \(\mathbf{0 . . . 5}\) & \\
\hline
\end{tabular}

\subsection*{4.23.6. ALRM. N - Number of alarms enabled}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline ALRM.N & NUM OF ENABLE ALARMS & EN.FUN & R W \\
\hline The parameter shows and sets the number of alarms enabled. & & \\
No alarm is enabled if the parameter equals " 0 ". & & \\
Unit of measurement: Number & & \\
Options: & \(\mathbf{0 . . . 4}\) & & \\
\hline
\end{tabular}

\subsection*{4.23.7. ON.OF - Enabling software shutdown from keys}
\begin{tabular}{|c|l|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline On.OF & SOFTWARE ON/OFF ENABLE & EN.FUN & R W \\
\hline
\end{tabular}

The parameter shows and determines whether controller software can be shut down using keys.
The software ON-OFF function is explained in detail in paragraph " 5.8 . Switching the software on/off" on page 207.
The function for starting up controller software with the F key always remains enabled.
In the case of the programmer, the software shutdown option at the end of the programme End=OFF is not affected by this parameter.
In the case of timers, the software shutdown option at the end of the count End=OFF is not affected by this parameter. In the case of the calendar, the timed software shutdown option is not affected by this parameter.

Unit of measurement:
Options: \(\quad\) ENABL = Controller software shutdown with keys is enabled
DISAB = Controller software shutdown with keys is disabled

\subsection*{4.23.8. DIG - Defining type of digital inputs}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline dIG & DIGITAL INPUT TYPE & EN.FUN & R W \\
\hline The parameter shows and sets the type of digital inputs. & & \\
Unit of measurement: - \\
Options: \(\quad\)\begin{tabular}{ll} 
NPN \(\quad=\) NPN digital inputs or voltage-free contact \\
PNP \\
& \(=\) PNP digital inputs
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.23.9. T.SAMP - Main and Auxiliary input sample time}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline T.SAMP & MAIN INPUT SAMPLE TIME & EN.FUN & R W \\
\hline The parameter shows and sets the main and auxiliary input sample time. & & \\
Unit of measurement: Milliseconds \\
Options: & \(\mathbf{6 0}\) \\
& \(\mathbf{1 2 0}\) & & \\
\hline
\end{tabular}

\subsection*{4.23.10. FREQZ - Defining power line frequency}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline FREQZ & LINE FREQUENCY & EN.FUN & R W \\
\hline The parameter shows and sets the power line frequency. & \\
Unit of measurement: Hz \\
Options: & 50 & & \\
& 60 & & \\
\hline
\end{tabular}

\subsection*{4.23.11. S.PROG - Enabling Simplified Programming mode}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline S.PROG & \multicolumn{2}{|l|}{SIMPLIFIED PROGRAMMER MODE} & EN.FUN & R W \\
\hline \multicolumn{5}{|l|}{This parameter shows and sets enabling of Simplified Programming mode.} \\
\hline \multicolumn{5}{|l|}{Unit of measurement: -} \\
\hline Options: & OFF On & \begin{tabular}{l}
= Simplified Programming Mode disabled \\
= Simplified Programming Mode enabled
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.23.12. EN.EDI - Enabling Editor configurator Menu}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline EN.EDI & ENABLE EDITOR CONFIGURATOR & EN.FUN & R W \\
\hline \begin{tabular}{l} 
This parameter shows and sets enabling in the set-up of the editor on the tools menu. \\
Unit of measurement: - \\
Options: \\
OFF \(\quad\)\begin{tabular}{l} 
On \\
On Menu Configurator disabled \\
\(=\)
\end{tabular} \\
\hline
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.23.13. WEB.E - Enabling webserver mode}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline WEB.E & WEBSERVER ENABLE & EN.FUN & R W \\
\hline \begin{tabular}{l} 
This parameter shows and sets enabling of webserver mode. \\
Unit of measurement: - \\
Options: \\
OFF \(\quad\) On Webserver mode disabled \\
On Webserver mode enabled
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.23.14. MAP.T - Map type}


\subsection*{4.24. Submenu MODE - Configuring functioning mode}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Password & Description \\
\hline MODE & \begin{tabular}{c} 
FUNCTION MODE \\
MANAGER
\end{tabular} & Level 2 & Lets you configure the controller's functioning mode. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Parameter & Pag. & & Parameter & Pag. \\
\hline  & Selecting function mode & 157 &  & Setting the programmer base time & 159 \\
\hline  & Number of groups of control parameters & 157 & ENERG & Enabling the energy counter function & 159 \\
\hline \[
\begin{aligned}
& \text { MA.AU } \\
& \hline \frac{1}{\mid} \\
& \hline
\end{aligned}
\] & Defining transition from Manual to Automatic & 157 & & & \\
\hline \[
\begin{gathered}
\text { AU.MA } \\
\hline 1 \\
\hline
\end{gathered}
\] & Defining transition from Automatic to Manual & 157 & & & \\
\hline \[
\frac{\text { Lo.rE }}{\frac{1}{F}}
\] & Defining transition from remote SP to local SP & 158 & & & \\
\hline \[
\frac{\text { MA.P.L }}{\frac{1}{\mid}}
\] & Enabling manual power latch & 158 & & & \\
\hline \[
\begin{gathered}
\text { MAn.P } \\
\stackrel{1}{\mid} \\
\hline
\end{gathered}
\] & Enabling change of manual power value & 158 & & & \\
\hline \[
\begin{gathered}
\text { tMEr } \\
\hdashline \frac{1}{f} \\
\hline
\end{gathered}
\] & Enabling Timer function & 158 & & & \\
\hline \[
\begin{gathered}
\text { MUL.SP } \\
\hline \text { F } \\
\hline
\end{gathered}
\] & Enabling Multiset function & 159 & & & \\
\hline \[
\begin{gathered}
\text { SP.REM } \\
\frac{1}{f} \\
\hline
\end{gathered}
\] & Enabling the remote setpoint & 159 & & & \\
\hline SPr.T & Defining absolute or deviation remote setpoint & 159 & & & \\
\hline
\end{tabular}

\subsection*{4.24.1. MODE.N - Selecting function mode}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline MODE.N & MODE NU & BER & MODE & R W \\
\hline \multicolumn{5}{|l|}{The parameter shows and sets the identifying number of the functions to be configured.} \\
\hline \multicolumn{2}{|l|}{Unit of measurement:} & \multicolumn{3}{|l|}{Number} \\
\hline Options: & \[
\begin{aligned}
& 1 \\
& 2
\end{aligned}
\] & \begin{tabular}{l}
= Select modes for PID. 1 \\
= Select modes for PID. 2 (only with \(\mathrm{E}=\mathrm{On}\) )
\end{tabular} & .2 enabled & PID2. \\
\hline
\end{tabular}

\subsection*{4.24.2. PID.G.N - Number of groups of control parameters}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline PID.G.N & MODE. 1 (o MODE.2) NUM OF CONTROL PARAMETERS GROUP & MODE & R W \\
\hline The parameter shows and sets the number of the groups of PID parameters. & & \\
The groups of control parameters are disabled if the parameter equals "0". & & \\
Unit of measurement: Number & & \\
Options: & \(\mathbf{0 . . . 4}\) & & \\
\hline
\end{tabular}

\subsection*{4.24.3. MA.AU - Defining transition from Manual to Automatic}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline MA.AU & MODE. 1 (o MODE.2) MANUAL TO AUTOMATIC TRANSITION TYPE & MODE & R W \\
\hline The parameter shows and sets controller behavior when switching from manual to automatic mode. \\
With STAND, the POWER output assumes the value calculated by the PID based on the local or remote SP (bumpless \\
PID with integral action based on actual PV-SP and power values). \\
With BUMPL, the local setpoint assumes the PV value (bumpless PID with integral action based on actual power value). \\
PV-SP = 0 . With PID. 1 enabled as controller of the MAN/AUTO switching ratio, RATIO = PV1 / IN2 is calculated. \\
Unit of measurement: - \\
Options: & STAND \\
BUMPL & \\
\hline
\end{tabular}

\subsection*{4.24.4. AU.MA - Defining transition from Automatic to Manual}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline AU.MA & MODE. 1 (o MODE.2) AUTOMATIC TO MANUAL TRANSITION TYPE & MODE & R W \\
\hline The parameter shows and sets controller behavior when switching from automatic to manual mode. \\
With STAND, the control output assumes the local or remote POWER value. \\
With BUMPL, the value of the control output does not change. In case of remote manual control, the control acts in raise/ \\
lower mode. \\
\begin{tabular}{l} 
Unit of measurement: - \\
Options: \\
\end{tabular}\(\quad\) STAND \\
\end{tabular}

\subsection*{4.24.5. LO.RE - Defining transition from remote SP to local SP}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LO.rE & MODE. 1 (o MODE.2) REMOTE TO LOCAL TRANSITION TYPE & MODE & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets controller behavior when switching from remote to local setpoint, and is significant only \\
with Func = SETP or RATIO. \\
With STAND, the setpoint switches to the value of the selected local SP or multiset, possibly with setpoint gradient (if set). \\
With BUMPL, the remote SP value is memorized in the selected local SP or multiset. \\
Unit of measurement: - \\
Options: \\
STAND \\
BUMPL
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.24.6. MA.P.L - Enabling manual power latch}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline MA.P.L & MODE. 1 (o MODE.2) MANUAL POWER LATCH ENABLE & MODE & R W \\
\hline The parameter shows and sets enabling of memorization (in non-volatile memory) of the manual power value. \\
Unit of measurement: - \\
Options: & LATCH = Latch enabled \\
& NO.LAT = Latch disabled. After Power-on, Manual power value is reset & \\
\hline
\end{tabular}

\subsection*{4.24.7. MAN.P - Enabling change of manual power value}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline MAn.P & MODE. 1 (o MODE.2) MANUAL POWER MODIFY ENABLE & MODE & R W \\
\hline The parameter shows and sets enabling of change of the manual power value. & & \\
\begin{tabular}{l} 
Unit of measurement: - \\
Options: \\
\end{tabular}\(\quad\) MODIF = Change allowed \\
NO.MOD = Change not allowed & & \\
\hline
\end{tabular}

\subsection*{4.24.8. TMER - Enabling Timer function}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline tMEr & MODE.1 (o MODE.2) TIMER ENABLE & MODE & R W \\
\hline The parameter shows and sets enabling of the Timer function. \\
The Timer function is explained in detail in paragraph "5.11. Timer" on page 212. \\
Unit of measurement: - \\
Options: \(\quad\)\begin{tabular}{l} 
OFF \(=\) Timer disabled \\
ON.SEC = Timer enabled with time base Seconds \\
ON.MIN = enabled with time base Minutes
\end{tabular} & & \\
& & & \\
\hline
\end{tabular}

\subsection*{4.24.9. MUL.SP - Enabling Multiset function}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline MUL.SP & MODE. 1 (o M & DE.2) MULTISET ENABLE & MODE & R W \\
\hline \multicolumn{5}{|l|}{The parameter shows and sets enabling of the Multiset function.} \\
\hline \multicolumn{5}{|l|}{The MULTISET function is explained in detail in paragraph "5.12. Multiset, setpoint gradient" on page 214.} \\
\hline \multicolumn{5}{|l|}{Unit of measurement: -} \\
\hline Options: & \begin{tabular}{l}
OFF \\
On
\end{tabular} & \[
\begin{aligned}
& =\text { Multiset disabled } \\
& =\text { Multiset enabled }
\end{aligned}
\] & & \\
\hline
\end{tabular}

\subsection*{4.24.10. SP.REM - Enabling the remote setpoint}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline SP.REM & \multicolumn{2}{|l|}{MODE. 1 (o MODE.2) REMOTE SP ENABLE} & MODE & R W \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
The parameter shows and sets enabling of the remote setpoint. \\
Unit of measurement:
\end{tabular}}} & & \\
\hline & & & & \\
\hline Options: & \[
\begin{aligned}
& \text { OFF } \\
& \text { On } \\
& \text { SEr }
\end{aligned}
\] & \begin{tabular}{l}
= Remote setpoint disabled \\
= Remote setpoint enabled from analog input \\
= Remote setpoint enabled from serial
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.24.11. SPR.T - Defining absolute or deviation remote setpoint}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ SPr.t } & MODE. 1 (o MODE.2) REMOTE SP TYPE & MODE & R W \\
\hline \begin{tabular}{l} 
The parameter shows and defines the setpoint as absolute or deviation. \\
The absolute remote setpoint replaces the local setpoint in the control. \\
The deviation remote setpoint is added algebraically to the local setpoint in the control. \\
The parameter appears only if the parameter SP.REM is different from OFF \\
Unit of measurement: \(\quad-\) \\
Options: \(\quad\) ABSLT \(=\) Absolute remote setpoint \\
RELAT \(=\) Deviation remote setpoint
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.24.12. T.PRO - Setting the programmer base time}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline t.Pro & MODE. 1 (o MODE.2) PROGRAMMER BASE TIME DEFINITION & MODE & R W \\
\hline \begin{tabular}{l} 
The parameter shows and sets the base time used by the programmer. \\
The parameter appears if the parameter PROGR = On. \\
Unit of measurement: - \\
Options: \\
\begin{tabular}{l} 
HH.MM = Base time calculated in hours:minutes \\
MM.SS = e time calculated in minutes:seconds
\end{tabular}
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.24.13. ENERG - Enabling the energy counter function}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline ENERG & MODE. 1 (o M & DE.2) ENERGY COUNTER ENABLE & MODE & R W \\
\hline \multicolumn{5}{|l|}{The parameter shows and sets enabling of the energy counter function.} \\
\hline \multicolumn{5}{|l|}{The Energy Counter function is explained in detail in paragraph "5.15. Energy counter" on page 228.} \\
\hline \multicolumn{5}{|l|}{Unit of measurement: -} \\
\hline Options: & \begin{tabular}{l}
OFF \\
On
\end{tabular} & \begin{tabular}{l}
= Energy counter disabled \\
= Energy counter enabled
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.25. Submenu TIMER - Configurazione parametri timer}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline TIMER & TIMER MANAGER & Level 2 & \begin{tabular}{l} 
Lets you configure the timer parameters. \\
The submenu appears only if the Timer function was enabled \\
on the MODE submenu.
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Parameter & Pag. \\
\hline TIME.N & \multirow[t]{2}{*}{Selecting timer} & \multirow[t]{2}{*}{162} \\
\hline \[
\frac{1}{F}
\] & & \\
\hline Func & \multirow[t]{2}{*}{Selecting timer function} & \multirow[t]{2}{*}{162} \\
\hline \(\stackrel{\text { F }}{\text { F }}\) & & \\
\hline St.St & \multirow[t]{2}{*}{\begin{tabular}{l}
Selecting the Start/ \\
Stop timer command
\end{tabular}} & \multirow[t]{2}{*}{162} \\
\hline  & & \\
\hline S.S.t & \multirow[t]{2}{*}{Defining the Start/Stop timer command logic} & \multirow[t]{2}{*}{162} \\
\hline \(\stackrel{F}{F}\) & & \\
\hline rESE & \multirow[t]{2}{*}{Selecting the Reset timer command} & \multirow[t]{2}{*}{163} \\
\hline \[
\frac{1}{F}
\] & & \\
\hline rES.t & \multirow[t]{2}{*}{Defining the Reset timer command logic} & \multirow[t]{2}{*}{163} \\
\hline \[
\frac{1}{F}
\] & & \\
\hline BAND & \multirow[t]{2}{*}{Timer count band} & \multirow[t]{2}{*}{163} \\
\hline \(\stackrel{\text { F }}{ }\) & & \\
\hline End & \multirow[t]{2}{*}{Selecting the function activated at end of count} & \multirow[t]{2}{*}{163} \\
\hline \[
\frac{1}{F}
\] & & \\
\hline TIMER & \multirow[t]{2}{*}{Timer value} & \multirow[t]{2}{*}{164} \\
\hline \[
\frac{1}{F}
\] & & \\
\hline MSG.TM & Selection of the message associated with the end of counting & 164 \\
\hline
\end{tabular}

\subsection*{4.25.1. Functional diagram}


\subsection*{4.25.2. TIME.N - Selecting timer}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline TIME.N & TIMER NUMBER & TIMER & R W \\
\hline The parameter shows and sets the identifying number of the timer to be configured. & \\
Unit of measurement: Number \\
Options: & \(\mathbf{1 . . 2}\) & & \\
\hline
\end{tabular}

\subsection*{4.25.3. FUNC - Selecting Timer function mode}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline FunC & TIMER.1 (o TIMER.2) TIMER FUNCTION & TIMER & R W \\
\hline The parameter shows and sets the timer function mode. \\
The Timer function is explained in detail in paragraph "5.11. Timer" on page 212. & & \\
Unit of measurement: - \\
Options: & \begin{tabular}{l} 
ST.STP \(=\) Start/Stop Timer \\
\\
STABL \(=\) Stabilization Timer \\
SWITC \(=\) Power-on Timer
\end{tabular} & & \\
&
\end{tabular}

\subsection*{4.25.4. ST.ST - Selecting the Start/Stop timer command}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline St.St & TIMER.1 (o TIMER.2) TIMER START STOP & TIMER & R W \\
\hline The parameter shows and sets the "object" that commands timer Start/Stop and stabilization. & & \\
\multicolumn{3}{l|}{ Unit of measurement: - } \\
Options: & IN.DIG \(=\) From digital input & & \\
& ALRM1 \(=\) From alarm 1 & & \\
& ALRM2 \(=\) From alarm 2 & & \\
& ALRM3 \(=\) From alarm 3 & & \\
& ALRM4 \(=\) From alarm 4 \\
AL.HB \(=\) From alarm HB & & \\
& SERIA \(=\) From serial & & \\
\hline
\end{tabular}

\subsection*{4.25.5. S.S.T - Defining the Start/Stop timer command logic}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ S.S.t } & TIMER.1 (o TIMER.2) LOGIC TYPE OF TIMER START/STOP & TIMER & R W \\
\hline The parameter shows and sets the type of logic used to command timer Start/Stop. & & \\
With positive logic, timer start corresponds to "object" active if IN.DIG input active. \\
With negative logic, timer start corresponds to "object" inactive if IN.DIG input inactive. & & \\
Unit of measurement: - \\
Options: \(\quad\) POSIT = Positive logic & & \\
& NEGAT = Negative logic & & \\
\hline
\end{tabular}

\subsection*{4.25.6. RESE - Selecting the Reset timer command}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline rESE & TIMER. 1 (o TIMER.2) TIMER RESET & TIMER & R W \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
The parameter shows and sets the "object" that commands Reset of the timer \\
Unit of measurement:
\end{tabular}} \\
\hline Options: & ```
AUT.RS = For autoreset with timer in Stop
IN.DIG = From digital input with T.RST function
ALRM1 = From alarm 1
ALRM2 = From alarm 2
ALRM3 = From alarm 3
ALRM4 = From alarm 4
AL.HB = From alarm HB
SERIA = From serial
``` & & \\
\hline
\end{tabular}

\subsection*{4.25.7. RES.T - Defining the timer reset command logic}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline rES.t & TIMER.1 (o TIMER.2) LOGIC TYPE OF TIMER RESET & TIMER & R W \\
\hline The parameter shows and sets the type of logic used to command the timer reset. \\
With positive logic, the timer is reset with "object" active. \\
With negative logic, the timer is reset with "object" inactive. & \\
Unit of measurement: - \\
Options: & POSIT = Positive logic \\
NEGAT = Negative logic & \\
\hline
\end{tabular}

\subsection*{4.25.8. BAND - Band for timer count}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline BAND & TIMER.1 (o TIMER.2) SYMM SP BAND WHERE TIMER IS ACTIVE & TIMER & R W \\
\hline The parameter shows and sets the symmetrical band around the setpoint within which the timer count is on. \\
The parameter appears if the parameter F.tiM = STABL \\
If the parameter equals "0.0" the count is immediate as soon as the setpoint is reached for the first time. \\
Unit of measurement: \% of full scale of main or auxiliary input \\
Options: & \(\mathbf{0 . 0 . . . 2 5 . 0}\) & \\
\hline
\end{tabular}

\subsection*{4.25.9. END - Selecting the function activated at end of count}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline End & TIMER. 1 (o TIMER.2) FUNCTION WHERE TIMER IS OVER & TIMER & R W \\
\hline The param The param Unit of meas Options: & \begin{tabular}{l}
r shows and sets the function that is activated when the timer r appears if the parameter F.tiM = ST.STP or STABL. \\
urement: \\
NONE = None: control continues with actual setpoint \\
OFF = Software off \\
if the Multiset function is enabled: \\
SP1-2 = Change setpoint SP1/SP2
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.25.10. TIMER - Timer value}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline TIMER & TIMER.1 (o TIMER.2) ACTUAL TIME & TIMER & R W \\
\hline The parameter shows and sets the timer value. \\
Unit of measurement: Minutes or Seconds according to the selection set in the MODE submenu, parameter tMEr \\
Options: & \(\mathbf{0 . . . 9 9 9 9}\) & \\
\hline
\end{tabular}

\subsection*{4.25.11. MSG.TM - Selecting message assigned to end of count}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline MSG.TM & TIMER. 1 (o TIMER.2) MSG NUMBER WHEN TIMER OVER & TIMER & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets the number of the message assigned to end of count condition of the timer, i.e. the scrol- \\
led message seen on the display. \\
For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44. \\
If the parameter is set to " 0 " no message will be displayed at the end of the timer count. \\
Unit of measurement: Message number \\
Options: \\
\(\mathbf{0 . . . 2 5}\) (with LAnG=LANG1 or LANG2 or LANG3) \\
\(\mathbf{0 . . 7 5}\) (with LAnG=NONE)
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.26. Submenu ENERG - Configuring energy counter parameters}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline ENERG & \begin{tabular}{c}
ENERGY COUNTER \\
MANAGER
\end{tabular} & Level 2 & Lets you configure the energy counter parameters. \\
The submenu appears if the energy counter function was \\
enabled on the MODE submenu.
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Pararmeter & Pag. \\
\hline ENRG.N & \multirow[t]{2}{*}{Selecting energy counter} & \multirow[t]{2}{*}{167} \\
\hline \(\stackrel{\text { F }}{\text { F }}\) & & \\
\hline ENERG & \multirow[t]{2}{*}{Selecting the output for energy calculation} & \multirow[t]{2}{*}{167} \\
\hline \(\stackrel{\text { F }}{\text { F }}\) & & \\
\hline V.LINE & \multirow[t]{2}{*}{Nominal line voltage} & \multirow[t]{2}{*}{167} \\
\hline \[
\frac{1}{F}
\] & & \\
\hline P. LOAD & \multirow[t]{2}{*}{Nominal power of load} & \multirow[t]{2}{*}{167} \\
\hline \[
\frac{1}{F}
\] & & \\
\hline E.COST & Nominal cost per kWh & 167 \\
\hline
\end{tabular}

\subsection*{4.26.1. Functional diagram}

\subsection*{4.26.2. ENRG.N - Selecting energy counter}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline ENRG.N & ENERGY COUNTER NUMBER & ENERG & R W \\
\hline The parameter shows and sets the identifying number of the energy counter to be configured. & & \\
Unit of measurement: Number \\
Options: & \(\mathbf{1 . . . 2}\) & & \\
\hline
\end{tabular}

\subsection*{4.26.3. ENERG - Selecting the output for energy calculation}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline ENERG & ENERG. 1 (o & NERG.2) ENERGY COUNTER ENABLE & ENERG & R W \\
\hline \multicolumn{5}{|l|}{The parameter shows and sets the output to be used for the energy calculation.} \\
\hline \multicolumn{5}{|l|}{Unit of measurement: -} \\
\hline Options: & \begin{tabular}{l}
OUt1 \\
OUt2 \\
OUt3 \\
OUt4
\end{tabular} & \begin{tabular}{l}
= Output 1 \\
= Output 2 \\
= Output 3 \\
= Output 4
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.26.4. V.LINE - Nominal line voltage}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline V.LINE & ENERG.1 (o ENERG.2) NOMINAL VOLTAGE & ENERG & R W \\
\hline The parameter shows and sets the nominal line voltage to be used for the energy calculation. & & \\
Unit of measurement: V \\
Options: & \(\mathbf{0 . . . 9 9 9}\) & & \\
\hline
\end{tabular}

\subsection*{4.26.5. P.LOAD - Nominal power of load}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ P.LOAD } & ENERG. 1 (o ENERG.2) LOAD NOMINAL POWER & ENERG & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets the nominal power of the load controlled by the output. \\
If the parameter is set to " 0.00 " the data used is the RMS current measured with the CT1 or CT1 + CT2 current transfor- \\
mer (optional). \\
Unit of measurement: kW \\
Options: \\
\hline
\end{tabular} \(\mathrm{0.00..99.99}\) & \\
\hline
\end{tabular}

\subsection*{4.26.6. E.COST - Nominal cost per kWh}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline E.COST & ENERG.1 (o ENERG.2) ENERGY COST / KWH & ENERG & R W \\
\hline The parameter shows and sets the nominal cost of energy per kWh. & & \\
Unit of measurement: Number & & \\
Options: & \(\mathbf{0 . 0 0 0 . . . 9 . 9 9 9 ~}\) & & \\
\hline
\end{tabular}

\subsection*{4.27. Submenu SERIA - Configuring serial communication}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline SERIA & \begin{tabular}{c}
SERIAL \\
COMMUNICATION \\
CONFIG
\end{tabular} & Level 2 & \begin{tabular}{l}
Lets you configure serial communication. \\
The submenu appears if the RS485 Modbus RTU option or \\
the Ethernet Modbus TCP option is present.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.27.1. CODE - Identification code}
\begin{tabular}{|c|l|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline CODE & INSTRUMENT ID CODE FOR SERIAL COMM & SERIA & R W \\
\hline
\end{tabular}

The parameter shows and sets the identifying code of the controller in a Modbus serial network.
The parameter only appears if the RS485 Modbus TCP option is available.
Unit of measurement: Number
Options: \(1 . .247\)

\subsection*{4.27.2. KBAUD - Selecting communication speed}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline KBAUD & COMMUNICATION SPEED & SERIA & R W \\
\hline The parameter shows and sets the communication speed for the serial port. & & \\
\multicolumn{3}{l|}{ Unit of measurement: \(\quad\) kbaud } \\
Options: & \(\mathbf{1 . 2} \quad=1200\) baud & & \\
& \(\mathbf{2 . 4} \quad=2400\) baud & & \\
& \(\mathbf{4 . 8} \quad=4800\) baud & & \\
& \(\mathbf{9 . 6}\) & \(=9600\) baud & \\
& \(\mathbf{1 9 . 2}\) & \(=19200\) baud & \\
& \(\mathbf{3 8 . 4}\) & \(=38400\) baud & \\
& \(\mathbf{5 7 . 6}\) & \(=57600\) baud & \\
& \(\mathbf{1 1 5 . 2}\) & \(=115200\) baud &
\end{tabular}

\subsection*{4.27.3. PAR - Selecting parity}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline PAr & PARITY & SERIA & R W \\
\hline The parameter shows and sets the parity used in serial communication. & & \\
Unit of measurement: - \\
Options: \begin{tabular}{ll}
NONE \(=\) No parity \\
ODD \\
EVEN Odd parity \\
= Even parity
\end{tabular} & & \\
& & & \\
\hline
\end{tabular}

\subsection*{4.27.4. SCANR - Setting delay between two consecutive Modbus master with Ethernet option}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline SCANR & SCAN RATE MODBUS MASTER & SERIA & R W \\
\hline
\end{tabular}

The parameter shows and sets the delay, in milliseconds, between two consecutive Modbus master communications to slave nodes connected via serial when other instrumentation is connected to the RS485 Modbus RTU via an Ethernet Modbus TCP card.
The parameter only appears if the Ethernet Modbus TCP e RS485 "bridge" option is available.
Unit of measurement: ms
Options:
0... 9999

\subsection*{4.28. ETHER Submenu - Ethernet parameter configuration}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Password & Description \\
\hline ETHER & ETHERNET & Level 2 & Permits configuration of Ethernet communication. \\
& COMMUNICATION CONFIG & & \\
\hline
\end{tabular}

\subsection*{4.28.1. TYP.E - Network parameter assignment method}
\begin{tabular}{|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ Acronym } & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ tyP.E } & ASSIGNMENT MODE OF NETWORK PARAMETERS & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows the assignment mode of the Ethernet network's IP address, subnet mask and gateway parame- \\
ters. \\
Unit of measurement: \\
Options:
\end{tabular} \begin{tabular}{rl}
\\
\hline
\end{tabular}\(\quad\)\begin{tabular}{l}
FIXED \\
DHCP
\end{tabular} & \begin{tabular}{l}
= Parameters entered manually are used \\
= Parameters received from the network's DHCP server are used
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.28.2. CODE.E - Ethernet identification code}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline CODE.E & INSTRUMENT ID CODE ETHERNET & ETHER & R \\
\hline This parameter shows the identification code identifying the controller in an Ethernet Modbus network. & \\
Unit of measurement: Number \\
Options: & \(\mathbf{1}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.3. IP.AD1 - Address IP 1}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline IP.AD1 & IP ADDRESS & ETHER & R W \\
\hline This parameter shows the IP 1 address identifying the controller in an Ethernet network. & & \\
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \(\quad \mathbf{0 . . . 2 5 5}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.4. IP.AD2 - Address IP 2}
\begin{tabular}{|c|l|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline IP.AD2 & IP ADDRESS & ETHER & R W \\
\hline
\end{tabular}

This parameter shows the IP 2 address identifying the controller in an Ethernet network.
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx).
Unit of measurement: Number
Options: 0... 255

\subsection*{4.28.5. IP.AD3 - Address IP 3}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline IP.AD3 & IP ADDRESS & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows the IP 3 address identifying the controller in an Ethernet network. \\
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathbf{l} 255\) & & \\
\hline
\end{tabular}

\subsection*{4.28.6. IP.AD4 - Address IP 4}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline IP.AD4 & IP ADDRESS & ETHER & R W \\
\hline This parameter shows the IP 4 address identifying the controller in an Ethernet network. & & \\
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number & & \\
Options: \(\quad 0 . . .255\) & & \\
\hline
\end{tabular}

\subsection*{4.28.7. SUB.M1 - Subnet mask 1}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ SUB.M1 } & SUBNET MASK & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows the Subnet mask 1 identifying the controller in an Ethernet network. \\
The parameter is the first field in the complete Subnet mask (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathrm{0...255}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.8. SUB.M2 - Subnet mask 2}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline SUB.M2 & SUBNET MASK & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows the Subnet mask 2 identifying the controller in an Ethernet network. \\
The parameter is the first field in the complete Subnet mask (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathrm{O} .. .255\) & & \\
\hline
\end{tabular}

\subsection*{4.28.9. SUB.M3 - Subnet mask 3}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline SUB.M3 & SUBNET MASK & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows the Subnet mask 3 identifying the controller in an Ethernet network. \\
The parameter is the first field in the complete Subnet mask (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathrm{0...255}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.10. SUB.M4 - Subnet mask 4}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ SUB.M4 } & SUBNET MASK & ETHER & R W \\
\hline This parameter shows the Subnet mask 4 identifying the controller in an Ethernet network. & & \\
The parameter is the first field in the complete Subnet mask (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: & \(\mathbf{0 . . . 2 5 5}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.11. GT.AD1 - Gateway Address 1}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ GT.AD1 } & GATEWAY ADDRESS & ETHER & R W \\
\hline This parameter shows the Gateway 1 address identifying the controller in an Ethernet network. & \\
The parameter is the first field in the complete Gateway address (xxx.xxx.xxx.xxx). & \\
Unit of measurement: Number \\
Options: & \(\mathbf{0 . . . 2 5 5}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.12. GT.AD2 - Gateway Address 2}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline GT.AD2 & GATEWAY ADDRESS & ETHER & R W \\
\hline \begin{tabular}{l}
IThis parameter shows the Gateway 2 address identifying the controller in an Ethernet network. \\
The parameter is the first field in the complete Gateway address(xxx.xxx.xxx.xxx). \\
\\
Unit of measurement: Number \\
Options: \\
\hline \(0 . . .255\)
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.28.13. GT.AD3 - Gateway Address 3}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ GT.AD3 } & GATEWAY ADDRESS & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows the Gateway 3 address identifying the controller in an Ethernet network. \\
The parameter is the first field in the complete Gateway address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathrm{0...255}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.14. GT.AD4 - Gateway Address 4}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline SUB.M4 & SUBNET MASK & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows the Gateway 4 address identifying the controller in an Ethernet network. \\
The parameter is the first field in the complete Gateway address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathrm{0...255}\) & & \\
\hline
\end{tabular}

\subsection*{4.28.15. TIM.NT - Network Time Protocol server update time}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ TIM.NT } & NETWORK TIME SERVER UPDATE TIME & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows and updates the server update time for time synchronisation of the controller (Network Time Pro- \\
tocol). \\
If the parameter is 0, the automatic updating function will be disabled. \\
Unit of measurement: hours \\
Options: \\
\hline
\end{tabular}\(\quad \mathbf{0 . . . 9 9 9 9}\) & \\
\hline
\end{tabular}

\subsection*{4.28.16. IP.NT1 - IP address 1 for Network Time Protocol server}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline IP.NT1 & NETWORK TIME SERVER IP ADDRESS & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows and updates the IP 1 address server update time for time synchronisation of the controller \\
(Network Time Protocol).. \\
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx). \\
Unit of measurement: \(\quad\) Number \\
Options: \\
\(\mathbf{0 . . . 2 5 5}\)
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.28.17. IP.NT2 - IP address \(\mathbf{2}\) for Network Time Protocol server}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ IP.NT2 } & NETWORK TIME SERVER IP ADDRESS & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows and updates the IP 2 address server time for time synchronisation of the controller (Network Time \\
Protocol). \\
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathbf{0 . . . 2 5 5}\) & \\
\hline
\end{tabular}

\subsection*{4.28.18. IP.NT3 - IP address 3 for Network Time Protocol server}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ IP.NT3 } & NETWORK TIME SERVER IP ADDRESS & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows and updates the IP 3 address server time for time synchronisation of the controller (Network Time \\
Protocol). \\
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options:
\end{tabular}\(\quad \mathbf{0 . . . 2 5 5}\) & \\
\hline
\end{tabular}

\subsection*{4.28.19. IP.NT4 - IP address 4 for Network Time Protocol server}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ IP.NT4 } & NETWORK TIME SERVER IP ADDRESS & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows and updates the IP 4 address server time for time synchronisation of the controller (Network Time \\
Protocol). \\
The parameter is the first field in the complete IP address (xxx.xxx.xxx.xxx). \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathrm{0...255}\) & \\
\hline
\end{tabular}

\subsection*{4.28.20. BRO.NT - Broadcast definition for Network Time Protocol server}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline BRO.NT & NETWORK TIME SERVER BROADCAST & ETHER & R W \\
\hline \begin{tabular}{l}
This parameter shows and updates the broadcast definition server for time synchronisation of the controller (Network \\
Time Protocol). \\
Unit of measurement: - \\
Options: \\
\end{tabular} \begin{tabular}{ll}
OFF \\
On
\end{tabular} & \begin{tabular}{l}
= The server is on a local network \\
= The server is on a public network
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.28.21. GMT.OF - Offset in relation to GMT (Greenwich Mean Time)}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ GMT.OF } & GREENWICH MEAN TIME OFFSET & ETHER & R W \\
\hline This parameter shows and updates the offset for time synchronisation of the GMT(Greenwich Mean Time). & \\
Unit of measurement: hh.mm \\
Options: & \(-\mathbf{1 2 . 0 0 . . . 1 2 . 0 0 ~}\) & & \\
\hline
\end{tabular}

\subsection*{4.29. Submenu HMI - Display configurationy}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Password & Description \\
\hline HMI & DISPLAY CONFIG & Level 2 & Lets you configure the controller's display. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Parameter & Pag. \\
\hline HoM.S & \begin{tabular}{l}
Selecting \\
Home page
\end{tabular} & 176 \\
\hline \[
\frac{1}{F}
\] & & \\
\hline bAr.E & Enable bargraph display on Home menus & 177 \\
\hline \[
\frac{1}{F}
\] & & \\
\hline LAnG & Selecting language for messages & 177 \\
\hline \[
\frac{1}{F}
\] & & \\
\hline SPEED & Message scrolling speed & 178 \\
\hline \[
\frac{1}{F}
\] & & \\
\hline BACKL & Backlighting level & 178 \\
\hline \[
\frac{1}{F}
\] & & \\
\hline QUICK & Quick configuration menu & 178 \\
\hline
\end{tabular}

\subsection*{4.29.1. HOM.S - Selecting Home page}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline HoM.S & HOME SELECT & HMI & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets the Home page at power-on. \\
The parameter appears only if the optional auxiliary input is available and PID2 is enabled. \\
Unit of measurement: - \\
Options: \\
\end{tabular} \begin{tabular}{l}
HOME1 = Display Home1 at power-on and Home2 enabled \\
\\
\\
HOME2 = Display Home2 at power-on and Home2 enabled \\
NO.HO2 = Display Home1 at power-on and Home2 disabled
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.29.2. BAR.E - Enable bargraph display on Home menus}

\subsection*{4.29.3. LANG - Selecting language for messages}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LAnG & MESSAGE LANGUAGE & HMI & R W \\
\hline The parameter shows and sets the language for the scrolling messages. & & \\
\begin{tabular}{lrl}
Unit of measurement: - \\
Options: & LANG1 \(=\) Language 1 (English) & \\
& LANG2 \(=\) Language 2 (ltalian) & \\
& LANG3 \(=\) Language 3 \\
NONE \(=\) No language
\end{tabular} & \\
&
\end{tabular}

\subsection*{4.29.4. SPEED - Message scrolling speed}

\subsection*{4.29.5. BACKL - Backlighting level}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline BACKL & BACKLIGHT LEVEL & HMI & R W \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
The parameter shows and sets the backlight level on the display (when the controller is on) 10 seconds after the last key has been pressed. \\
With " 0 ," the backlight does not switch off, but goes to the minimum useful level for reading the display. The backlight goes to maximum level when any key is pressed.
\end{tabular}} \\
\hline Unit of mea
Options: & urement:
\[
0 . . .10 \quad \text { (default = 8) }
\] & & \\
\hline
\end{tabular}

\subsection*{4.29.6. QUICK - Quick configuration menu}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline QUICK & QUICK CONFIG ENABLE & HMI & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets enabling of the quick configuration menu. \\
The parameter appears only if the optional auxiliary input is NOT available. \\
At first power-on, the fast configuration menu is displayed on the controller model but is disabled for programmer or \\
valve models. \\
Unit of measurement: - \\
Options: \\
OFF \\
On
\end{tabular}\(\quad\)\begin{tabular}{l}
= Quick configuration menu is not displayed \\
= Quick configuration menu is displayed
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.30. Submenu HOME - Configuration of display and keyboard in Home1 and Home2}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline HOME & HOME DISPLAY & Level 2 & \begin{tabular}{l}
Lets you configure the controller's display and keys in \\
Home1 and Home2.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.30.1. HOME - Selecting Home}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline HOME.N & HOME NUMBER & HOME & R W \\
\hline The parameter shows and sets the identifying number of Home to configure. & & \\
\begin{tabular}{l}
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathbf{1 . . 2}\) & & \\
\hline
\end{tabular}

\subsection*{4.30.2. BUT. 1 - Selecting function key 1}

\subsection*{4.30.3. BUT. 2 - Selecting function key 2}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline but. 2 & HOME. 1 (o HOME.2) KEY FUNCTION & HOME & R W \\
\hline The parameter shows and sets the function assigned to key 2 (\(\overline{\mathrm{L} / \mathrm{R}})\) of the 1850 controller. & & \\
Unit of measurement: - \\
Options: & As per but. 1 & & \\
\hline
\end{tabular}

\subsection*{4.30.4. BUT. 3 - Selecting function key 3}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline but. 3 & HOME. 1 (o HOME.2) KEY FUNCTION & HOME & R W \\
\hline The parameter shows and sets the function assigned to key 3 (\(*\)) of the 1850 controller. & & \\
Unit of measurement: - \\
Options: & As per but. 1 & & \\
\hline
\end{tabular}

\subsection*{4.30.5. DS.SP - Selecting the SV display}

MAS. 10 = Master value 10
MAS. 11 = Master value 11
MAS. 12 = Master value 12
MAS. 13 = Master value 13
MAS. 14 = Master value 14
MAS. 15 = Master value 15
MAS. 16 = Master value 16
MAS. 17 = Master value 17
MAS. 18 = Master value 18
MAS. 19 = Master value 19
MAS. 20 = Master value 20

\subsection*{4.30.6. DS.F - Selecting the F display}

if model with Modbus Master serial and Master parameter configured:
MAS. 01 = Master value 1
MAS. 02 = Master value 2
MAS. 03 = Master value 3
MAS. 04 = Master value 4
MAS. 05 = Master value 5
MAS. 06 = Master value 6
MAS. 07 = Master value 7
MAS. 08 = Master value 8
MAS. 09 = Master value 9
MAS. 10 = Master value 10
MAS. 11 = Master value 11
MAS. 12 = Master value 12
MAS. 13 = Master value 13
MAS. 14 = Master value 14
MAS. 15 = Master value 15
MAS. 16 = Master value 16
MAS. 17 = Master value 17
MAS. 18 = Master value 18
MAS. 19 = Master value 19
MAS. \(\mathbf{2 0}\) = Master value 20

\subsection*{4.30.7. BAR. 1 - Selecting bargraph 1 display}

> P.R.TIM = Program total theoretical residual time (only for model 850)
> IN1 = Main input
> if model with auxiliar input 2
> IN3 = Auxiliar input 2
> if model with Modbus Master serial and Master parameter configured:
> MAS. 01 = Master value 1
> MAS. 02 = Master value 2
> MAS. 03 = Master value 3
> MAS. 04 = Master value 4
> MAS. 05 = Master value 5
> MAS. 06 = Master value 6
> MAS. 07 = Master value 7
> MAS. 08 = Master value 8
> MAS. 09 = Master value 9
> MAS. 10 = Master value 10
> MAS. 11 = Master value 11
> MAS. 12 = Master value 12
> MAS. 13 = Master value 13
> MAS. 14 = Master value 14
> MAS. 15 = Master value 15
> MAS. 16 = Master value 16
> MAS. 17 = Master value 17
> MAS. 18 = Master value 18
> MAS. 19 = Master value 19
> MAS. 20 = Master value 20

\subsection*{4.30.8. BAR. 2 - Selecting bargraph 2 display}

```

if the Timer function is enabled:
TIM.RE = Remaining timer value
TIM.EL = Timer value elapsed
if controller model with valve control:
V.POSI = Valve position
if the Programmer function is enabled in parameter PROGR on the EN.FUN menu:
P.TIME = Current step time (ramp or hold)
P.T.TIM = Program total theoretical time
P.R.TIM = Program total theoretical residual time
IN1 = Main input
if model with auxiliar input 2
IN3 = Auxiliar input 2
if model with Modbus Master serial and Master parameter configured:
MAS.01 = Master value 1
MAS.02 = Master value 2
MAS.03 = Master value 3
MAS.04 = Master value 4
MAS.05 = Master value 5
MAS.06 = Master value 6
MAS.07 = Master value 7
MAS.08 = Master value 8
MAS. }09\mathrm{ = Master value }
MAS.10 = Master value 10
MAS.11 = Master value 11
MAS.12 = Master value 12
MAS.13 = Master value 13
MAS.14 = Master value 14
MAS.15 = Master value 15
MAS.16 = Master value 16
MAS.17 = Master value 17
MAS.18 = Master value 18
MAS.19 = Master value 19
MAS.20 = Master value 20

```

\subsection*{4.30.9. BAR. 3 - Selecting bargraph 3 display}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & & Scrolling message & Attributes \\
\hline bAr. 3 & HOME. 1 (o H & ME.2) BARGRAPH FUNCTION & R W \\
\hline \multicolumn{4}{|l|}{\begin{tabular}{l}
e parameter shows and sets the display assigned to the bargraph 3. \\
The parameter appears only if the controller is 1650 or 1850. \\
The parameter appears only if parameter bAr.E is at \\
- ON.ALL, NO.FRA and ON.3LY (on 1650) \\
- ON.ALL, ON.AL1, NO.FRA, NO.FR1, ON.3LY and ON.3L1 (on 1850)
\end{tabular}} \\
\hline \multicolumn{4}{|l|}{Unit of measurement: -} \\
\hline Options: & PV
SETP

SSP
if the
IN2
OUT.P
SP-PV
HEAT
COOL
HE+C
if the & \begin{tabular}{l}
= Process variable \\
= Local setpoint / manual power or setpoint gradient, remote setpoi \\
= Active setpoint (LED SP on) \\
del with auxiliary input \\
= Auxiliary input \\
= Power control output \\
= Deviation |SP-PV| \\
= Heating power output with \(0 . . .1\) \\
= Cooling power output with \(0 . . .1\) \\
= Power control output -100...100 \\
odel with CT1+CT2: \\
= Current input CT1 \\
= Current input CT2
\end{tabular} & function, \\
\hline
\end{tabular}
if ENERG function enabled and model with CT1+CT2:
CURR = Load current (on 1850 LED A on)
if the ENERG function is enabled:
OUT.KW = Power on load
if the Timer function is enabled:
TIM.RE = Remaining timer value
TIM.EL = Timer value elapsed
if controller model with valve control:
V.POSI = Valve position
if the Programmer function is enabled in parameter PROGR on the EN.FUN menu:
P.TIME = Current step time (ramp or hold)
P.T.TIM = Program total theoretical time
P.R.TIM = Program total theoretical residual time

IN1 = Main input
if model with auxiliar input 2
IN3 = Auxiliar input 2
if model with Modbus Master serial and Master parameter configured:
MAS. 01 = Master value 1
MAS. 02 = Master value 2
MAS. 03 = Master value 3
MAS. 04 = Master value 4
MAS. 05 = Master value 5
MAS. 06 = Master value 6
MAS. 07 = Master value 7
MAS. 08 = Master value 8
MAS. 09 = Master value 9
MAS. 10 = Master value 10
MAS. 11 = Master value 11
MAS. 12 = Master value 12
MAS. 13 = Master value 13
MAS. 14 = Master value 14
MAS. 15 = Master value 15
MAS. 16 = Master value 16
MAS. 17 = Master value 17
MAS. 18 = Master value 18
MAS. 19 = Master value 19
MAS. 20 = Master value 20

\subsection*{4.30.10. LED. 1 - Enable RUN led flashing}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LED. 1 & ENABLE OF RUN LED BLINKING & HOME & RW \\
\hline The parameter enables and disabled RUN led flashing & & \\
\begin{tabular}{lll}
Unit of measurement: - & & \\
Options: & \begin{tabular}{ll}
OFF \\
On
\end{tabular} & \begin{tabular}{l}
Disables RUN led flashing \\
= Enables RUN led flashing
\end{tabular} \\
\hline
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.30.11. LED. 2 - Enabling MANUAL led}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline LED. 2 & \multicolumn{2}{|l|}{ENABLE OF MANUAL LED} & HOME & R W \\
\hline \multicolumn{5}{|l|}{The parameter enables and disables the MANUAL led} \\
\hline \multicolumn{5}{|l|}{Unit of measurement: -} \\
\hline Options: & OFF On & \begin{tabular}{l}
= Disables the MANUAL led \\
= Enables the MANUAL led
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.30.12. LED. 3 - Enabling TUNE led}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LED. 3 & ENABLE OF TUNE LED & HOME & R W \\
\hline The parameter enables and disables the TUNE led \\
Unit of measurement: - \\
Options: \(\quad\)\begin{tabular}{ll}
OFF \\
On
\end{tabular}\(\quad\)\begin{tabular}{l}
Disables the TUNE led \\
= Enables the TUNE led
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.30.13. LED. 4 - Enabling RAMP led}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LED. 4 & ENABLE OF RAMP LED & HOME & R W \\
\hline The parameter enables and disables the RAMP led, only if Setpoint Gradient management is active. & \\
\begin{tabular}{lll}
Unit of measurement: - \\
Options: & \begin{tabular}{ll}
OFF \\
On
\end{tabular} & \(=\) Disables the RAMP ledw \\
= Enables the RAMP led
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.30.14. LED. 5 - Enabling REMOTE led}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LED. 5 & ENABLE OF REMOTE LED & HOME & R W \\
\hline The parameter enables and disables the REMOTE led \\
Unit of measurement: - \\
Options: & \begin{tabular}{ll}
OFF \\
On
\end{tabular}\(\quad\)\begin{tabular}{l}
Disables the REMOT led \\
= Enables the REMOT led
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.30.15. LED. 6 - Enabling SP1/2 led}
\begin{tabular}{|c|c|c|c|c|}
\hline Acronym & & Scrolling message & Submenu & Attributes \\
\hline LED. 6 & ENABLE OF & P12 LED & HOME & R W \\
\hline \multicolumn{5}{|l|}{The parameter enables and disables the SP1/2 led} \\
\hline \multicolumn{5}{|l|}{Unit of measurement: -} \\
\hline Options: & OFF
On & \begin{tabular}{l}
= Disables the SP1/2 led \\
= Enables the SP1/2 led
\end{tabular} & & \\
\hline
\end{tabular}

\subsection*{4.31. Submenu LNR.4.P - Permits configuration of custom linearisation 4 points}
\begin{tabular}{|c|c|c|l|}
\hline Acronimo & \begin{tabular}{c}
Messaggio \\
a scorrimento
\end{tabular} & \begin{tabular}{c}
Password \\
d'accesso
\end{tabular} & \multicolumn{1}{c|}{ Descrizione } \\
\hline LNR.4.P & CUSTOM 4 POINT & Level 2 & \begin{tabular}{l}
Permits configuration of custom linearisation parameters to \\
4 points.
\end{tabular} \\
& LINEARIZATION \\
NUMBER
\end{tabular}\(\quad\)\begin{tabular}{l}
The submenu is visible only if custom linearisation has been \\
enabled in the configuration of the main input, the auxiliary \\
input or the third input.
\end{tabular}

\subsection*{4.31.1. LNR.4.N - Selection of custom 4-point linearisation}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LNR.4.N & CUSTOM 4 POINT LINEARIZATION NUMBER & LIN.4.P & R W \\
\hline The parameter shows and sets the identify Number of custom linearisation to configure. & & \\
Unit of measurement: Number \\
Options: & \(\mathbf{1 . . . 3}\) & & \\
\hline
\end{tabular}

\subsection*{4.31.2. Md.4P - Selection of custom 4-point linearisation mode}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ Md.4P } & LIN.4.P.1 (0 LIN.4-P.2 o LIN.4-P.3) CUSTOM 4 POINT LINEARIZATION MODE & LIN.4.P & RW \\
\hline The parameter allows you to set the insertion mode of the linearization points. & \\
Unit of measurement: - \\
Options: & RD.ADJ = manual point entry mode (redirects to paragraph "5.4. 4-point input correction" on page 202 \\
page 202 & CALIB = point entry method via calibrator reading (redirects to paragraph "5.4. 4-point input correction" on \\
\hline
\end{tabular}

\subsection*{4.31.3. X1 - Selection of custom 4-point linearisation mode}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline X1 & LIN.4.P.1 (0 LIN.4.P.2 o LIN.4.P.3) CUSTOM 4 POINT LINEARIZATION STEP & LIN.4.P & RW \\
\hline \begin{tabular}{l}
This parameter permits setting of the abscissa of the first linearisation point in the four points. If the RD.ADJ option is \\
active (parameter Md.4P), an editable value will be displayed, while if the CALIB option is active, the value of the corre- \\
sponding input is displayed, which may be edited with a calibrator or related instrument. \\
Unit of measurement: Points on the scale \\
Options:
\end{tabular}\(\quad-1999 . .9999\) & \\
\hline
\end{tabular}

\subsection*{4.31.4. Y1-Ordinate of the first 4-point linearisation point}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline Y1 & LIN.4.P.1 (0 LIN.4.P.2 o LIN.4.P.3) CUSTOM 4 POINT LINEARIZATION STEP & LIN.4.P & RW \\
\hline This parameter may be used to set the ordinate of the first 4-point linearisation point. & \\
Unit of measurement: Points on the scale \\
Options: & \(-1999 . .9999\) & & \\
\hline
\end{tabular}

\subsection*{4.31.5. X2 - Abscissa of second linearisation point}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ X2 } & LIN.4.P.1 (0 LIN.4.P.2 o LIN.4.P.3) CUSTOM 4 POINT LINEARIZATION STEP & LIN.4.P & RW \\
\hline \begin{tabular}{l}
IThis parameter permits setting of the abscissa of the first of the four linearisation points. If the RD.ADJ option is active \\
(parameter Md.4P), an editable value will be displayed, while if the CALIB option is active, the value of the \\
corresponding input is displayed, which may be edited with a calibrator or related instrument.
\end{tabular} \\
\begin{tabular}{l}
Unit of measurement: Points on the scale \\
Options:
\end{tabular}\(\quad-1999 . .9999\)
\end{tabular}

\subsection*{4.31.6. Y2- Ordinate of the second 4-point linearisation point}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ Y2 } & LIN.4.P.1 (0 LIN.4.P.2 o LIN.4.P.3) CUSTOM 4 POINT LINEARIZATION STEP & LIN.4.P & RW \\
\hline This parameter may be used to set the ordinate of the second 4-point linearisation point. & & \\
\begin{tabular}{l}
Unit of measurement: Points on the scale \\
Options: \\
\hline
\end{tabular} \(\mathrm{-1999..9999}\) & & \\
\hline
\end{tabular}

\subsection*{4.32. Submenu LINRZ - Configuring custom linearization}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline LINRZ & CUSTOM & Level 2 & \begin{tabular}{l}
Lets you configure the parameters for custom linearization in \\
32 steps or 4 points.
\end{tabular} \\
LINEARIZATION CONFIG & \begin{tabular}{l}
The submenu is visible only if custom linearization was \\
enabled in the configuration of the main input or of the auxi- \\
liary input.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.32.1. LNRZ.N - Selecting custom linearization}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline LNRZ.N & CUSTOM LINEARIZATION NUMBER & LINRZ & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets the identifying number of the custom linearization to be configured. \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular} \(\mathrm{1...2}\) & \\
\hline
\end{tabular}

\subsection*{4.32.2. STP. \(x x\) - Value of step \(x x\)}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline STP.xx & LINRZ.1 (o LINRZ.2) CUSTOM LINEARIZATION STEP & LINRZ & R W \\
\hline The parameter shows and sets the value of the various steps, with \(x x\) from 0 to 32. & \\
The start scale value goes in STP.00 and the full-scale value in STP.32. \\
The value of the nth step corresponds to the input: mV start scale \(+\mathrm{n}^{*} \Delta \mathrm{mV}\) con \(\Delta \mathrm{mV}=(\mathrm{mV}\) full scale -mV start scale \() / 32\). \\
Unit of measurement: Scale points \\
Options: & \(-1999 . . .9999\) & \\
\hline
\end{tabular}

\subsection*{4.32.3. MV.STA - Setting mV at start of scale}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ MV.STA } & LINRZ.1 (o LINRZ.2) MV START SCALE & LINRZ & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets the value in millivolts at start of scale if the input is a thermocouple. \\
The parameter appears only if 32-step linearization has been selected (see paragraph "4.10.6. LIN - Selecting lineariza- \\
tion type" on page 91) \\
Unit of measurement: mV \\
Options: \\
\hline
\end{tabular} \(\mathrm{-19.99...99.99}\) & & \\
\hline
\end{tabular}

\subsection*{4.32.4. MV.FUL - Setting mV at full scale}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & \multicolumn{1}{|c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ MV.FUL } & LINRZ.1 (o LINRZ.2) MV FULL SCALE & LINRZ & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets the value in millivolts at full scale if the input is a thermocouple. \\
The parameter appears only if 32-step linearization has been selected (see paragraph "4.10.6. LIN - Selecting lineariza- \\
tion type" on page 91) \\
Unit of measurement: mV \\
Options: \\
\hline
\end{tabular} \(\mathrm{MV.STA} \mathrm{+1..99.99}\) & \\
\hline
\end{tabular}

\subsection*{4.32.5. MV. 50 c - Setting mV at temperature of \(50^{\circ} \mathrm{C}\)}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ MV.50C } & LINRZ.1 (o LINRZ.2) MV AT 50 ' C & LINRZ & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets the value in millivolts at \(50^{\circ} \mathrm{C}\) if the input is a thermocouple. \\
The parameter appears only if 32-step linearization has been selected (see paragraph "4.10.6. LIN - Selecting lineariza- \\
tion type" on page 91) \\
Unit of measurement: mV \\
Options: \\
\hline
\end{tabular}\(\quad-\mathbf{1 . 9 9 9 . . . 9 . 9 9 9 ~}\) & & \\
\hline
\end{tabular}

\subsection*{4.33. Submenu US.CAL - Calibrazioni utente}
\begin{tabular}{|c|c|c|l|}
\hline Acronym & Scrolling message & Password & \multicolumn{1}{c|}{ Description } \\
\hline US.CAL & \begin{tabular}{c}
USER CALIBRATION \\
MANAGER
\end{tabular} & Level 2 & \begin{tabular}{l}
Lets the user calibrate the controller with regard to Custom \\
main input, HB alarm setpoints, energy reset, and partial day \\
count.
\end{tabular} \\
\hline
\end{tabular}

\subsection*{4.33.1. U.CAL - Selecting the user calibration}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Acronym & & Scro & g message & Submenu & Attributes \\
\hline U.CAL & USER CALIB & ATION TYPE & & US.CAL & R W \\
\hline \multicolumn{6}{|l|}{\begin{tabular}{l}
The parameter shows and sets the parameter, input or output to which calibration will be applied. \\
Unit of measurement:
\end{tabular}} \\
\hline \multirow[t]{12}{*}{Options:} & \multicolumn{5}{|r|}{\begin{tabular}{l}
AL.HB \(=\mathrm{HB}\) alarm calibration. It is made up of 3 progressive phases: \\
Phase 1: OUTPUT SWITCH ON message, the output is \(100 \%\) on when button F is pressed (set in the OUT parameter in sub-menu AL.HB) and the transition to phase 2 takes place. \\
Phase 2: CALIBRATION RUNNING message, the percent current value (set in parameter THR.PE in sub-menu AL.HB) is calculated and saved in the LOW. ON parameter when button \(F\) is pressed (\(F\)), and the transition to phase 3 takes place. Phase 3: END CALIBRATION message, calibration ends when button \(F\) is pressed.
\end{tabular}} \\
\hline & & \[
\begin{aligned}
& =\text { Real Time Clock } \\
& \text { if the model has } r \\
& \text { HOUR }=0 \\
& \text { dAY }=\text { MONDA } \\
& \text { YEAR }=00
\end{aligned}
\] & tting buffer batter \(\mathrm{MIN}=0\) DATE \(=1\) & power-on & itialized to: \\
\hline & \multicolumn{5}{|c|}{if energy counting mode is enabled in MODE.1:
ENRG1 = Reset energy count 1 (totalizer EN.K} \\
\hline & \multicolumn{5}{|c|}{P.DAYS = Reset partial day count} \\
\hline & \multicolumn{5}{|r|}{if the main input is custom:} \\
\hline & \multicolumn{5}{|r|}{if the model with auxiliary input is custom:} \\
\hline & if mod
I.CT1
I.CT2 & with CT1+CT2:
\(=\) CT1 input custom
\(=\) CT2 input custom & calibration & & \\
\hline & \multicolumn{5}{|r|}{\begin{tabular}{l}
if the model with analogue output OUT.A1 is custom: \\
OUT.A1 = Calibration of custom retransmission output (selected with parameter t.o.A1 on OUT.AN menu)
\end{tabular}} \\
\hline & \multicolumn{5}{|r|}{\begin{tabular}{l}
if the model with analogue output OUT.A2 is custom: \\
OUT.A2 = Calibration of custom retransmission output (selected with parameter t.o.A2 on OUT.AN menu)
\end{tabular}} \\
\hline & \multicolumn{5}{|c|}{if the model with continuous output (OUT.A for 850 - OUT.C for 1650-1850) is custom: OUT.C = Calibration of custom continuous output} \\
\hline & \multicolumn{5}{|c|}{if energy counting mode is enabled in MODE.2:} \\
\hline & \multicolumn{5}{|c|}{CY.RES = Reset switching cycle count shown in INDG.S} \\
\hline
\end{tabular}
in the case of a valve model with auxiliary input, linear custom type FUnC=VALV.P function, and with one output set as V.OPEN and one output set as V.CLOS input configuration:
VALV.P = Auxiliary input calibration with valve position function.
It is made up of 6 progressive phases:
Phase 1: START CALIBRATION message, switch to phase 2 after approximately 4 sec. Phase 2: VALVE OPEN message and indication of increasing percent progress, output V.OPEN is on for the time set in parameter TRAVL in sub-menu VALVE increased by \(10 \%\) and switch to phase 3.
Phase 3: SAVE MAX message, the maximum auxiliary input calibration value is saved and switch to phase 4.
Phase 4: VALVE CLOSE message and indication of decreasing percent progress, output V.CLOS is on for the time set in parameter TRAVL in sub-menu

VALVE increased by \(10 \%\) and switch to phase 5 .
Phase 5: SAVE MIN message, the minimum auxiliary input calibration value is saved and switch to phase 6.
Phase 6: END CALIBRATION message, calibration ends after approximately 4 sec .
Calibration only occurs for the valve model with auxiliary input, linear custom type
FUnC=VALV.P function, and with an output set as V.OPEN and output set as V.CLOS.
Calibration can be aborted at any time by pressing the regulator key
if model has custom auxiliary input 2 :
I.AUX2 = Calibration of custom auxiliary input 2 (selected with TYPE parameter in INPUT. 3 menu).
* is the case of C.RTD, linearisation with 32 broken LIN=32STP must be enabled

\subsection*{4.33.2. FI.CAL - Resetting the factory calibration}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Submenu & Attributes \\
\hline FI.CAL & FACTORY CALIBRATION & US.CAL & R W \\
\hline \begin{tabular}{l}
The parameter shows and sets resetting of the factory calibration. \\
This operation can be done only for inputs and outputs, if U.CAL corresponds to I.MAIN, I.AUX, I.AUX2, I.CT1, I.CT2, \\
OUT.A1, \\
OUT.A2 or OUT.C. \\
\begin{tabular}{l}
Unit of measurement: - \\
Options:
\end{tabular}\(\quad\) no \(\quad=\) Keep user calibration \\
YES \\
Reset factory calibration
\end{tabular} & \\
\hline
\end{tabular}

\subsection*{4.33.3. C.LOW - Calibrating minimum current / voltage}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline C.LOW & US.CAL & R W \\
\hline The parameter appears if you are calibrating a main input or custom auxiliary input in current or voltage. & \\
To calibrate: \\
- apply the current or voltage value corresponding to minimum scale value to the selected input; \\
- press the \(\bar{F}\) key to acquire the calibration value. & \\
Unit of measurement: - & \\
Options: & - & \\
\hline
\end{tabular}

\subsection*{4.33.4. C.HIGH - Calibrating maximum current / voltage}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline C.HIGH & US.CAL & R W \\
\hline The parameter appears if you are calibrating a main input or custom auxiliary input in current or voltage. & \\
To calibrate: \\
• apply the current or voltage value corresponding to maximum scale value to the selected input; \\
- press the \(\overline{\mathrm{F}}\) key to acquire the calibration value. & \\
Unit of measurement: - \\
Options: & - & \\
\hline
\end{tabular}

\subsection*{4.33.5. RTD.LO - Calibrating minimum resistance value}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline RTD.LO & US.CAL & R W \\
\hline The parameter appears if you are calibrating a main input or custom RTD auxiliary input. & \\
To calibrate: \\
• apply a resistance corresponding to minimum scale value to the main input (for example, \(18.52 \Omega\) for Pt100) ; \\
- press the \(F\) key to acquire the calibration value. \\
Unit of measurement: - \\
Options: & - & \\
\hline
\end{tabular}

\subsection*{4.33.6. RTD.HI - Calibrating maximum resistance value}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline RTD.HI & US.CAL & R W \\
\hline The parameter appears if you are calibrating a main input or custom RTD auxiliary input. & \\
To calibrate: \\
• apply a resistance corresponding to maximum scale value to the main input (for example, \(390.48 \Omega\) for Pt100); \\
- press the \(F\) key to acquire the calibration value. \\
Unit of measurement: - \\
Options: & - & \\
\hline
\end{tabular}

\subsection*{4.33.7. HOUR - Setting hours}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline HOUR & US.CAL & R W \\
\hline The parameter shows and sets the hours on the Real Time Clock, if U.CAL = RTC. & & \\
Unit of measurement: Ore & & \\
Options: \(\quad 0 . .23\) & & \\
\hline
\end{tabular}

\subsection*{4.33.8. MIN - Setting minutes}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline MIN & US.CAL & R W \\
\hline The parameter shows and sets the minutes on the Real Time Clock, if U.CAL = RTC. & & \\
Unit of measurement: Minutes & & \\
Options: & \(0 . . .59\) & & \\
\hline
\end{tabular}

\subsection*{4.33.9. SEC - Setting seconds}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline SEC & US.CAL & R W \\
\hline The parameter shows and sets the seconds on the Real Time Clock, if U.CAL = RTC. & & \\
\begin{tabular}{l}
Unit of measurement: Seconds \\
Options: \\
\hline
\end{tabular} \(\mathrm{0...59}\) & & \\
\hline
\end{tabular}

\subsection*{4.33.10. DAY - Setting day of week}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline dAY & US.CAL & R W \\
\hline The parameter shows and sets the day of the week on the Real Time Clock, if U.CAL = RTC. & & \\
Unit of measurement: Day of week \\
Options: \(\quad\) MONDA...SUNDA & & \\
\hline
\end{tabular}

\subsection*{4.33.11. DATE - Setting day}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline DATE & & US.CAL & R W \\
\hline The parameter shows and sets the day on the Real Time Clock, if U.CAL = RTC & & \\
Unit of measurement: Number of day & & \\
Options: & \(1 . .31\) & & \\
\hline
\end{tabular}

\subsection*{4.33.12. MONT - Setting month}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ Mont } & US.CAL & R W \\
\hline The parameter shows and sets the month on the Real Time Clock, if U.CAL = RTC. & & \\
Unit of measurement: Mese & & \\
Options: \(\quad\) JANUA...DECEM & & \\
\hline
\end{tabular}

\subsection*{4.33.13. YEAR - Setting year}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline YEAR & US.CAL & R W \\
\hline The parameter shows and sets the year on the Real Time Clock, if U.CAL = RTC. & & \\
Unit of measurement: Anno & & \\
Options: & \(0 . . .99\) & & \\
\hline
\end{tabular}

\subsection*{4.33.14. C.LO - Setting analog output minimum}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline \multicolumn{1}{|c|}{ C.LO } & US.CAL & R W \\
\hline The parameter shows and sets the minimum analog output value. & \\
You can change the displayed value with the \(\Delta\) and \(\nabla\) keys. \\
To check the real voltage/current value on the output during calibration, measure it with a voltmeter/ammeter \\
Unit of measurement: Converter points & \\
Options: & \(\mathbf{0 . . . 6 5 5 3 5}\) & & \\
\hline
\end{tabular}

\subsection*{4.33.15. C.HIG - Setting analog output maximum}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Submenu & Attributes \\
\hline C.HIG & US.CAL & R W \\
\hline The parameter shows and sets the maximum analog output value. & \\
You can change the displayed value with the \(\Delta\) and \(\bar{\nabla}\) keys. & \\
To check the real voltage/current value on the output during calibration, measure it with a voltmeter/ammeter. \\
Unit of measurement: Converter points & \\
Options: & \(\mathbf{0 . . . 6 5 5 3 5}\) & & \\
\hline
\end{tabular}

\subsection*{4.34. PASCO - Setting level password 0}
\begin{tabular}{|l|c|c|c|}
\hline Acronym & Scrolling message & Password & Attributes \\
\hline PASC0 & SET PASS0 & Level 2 & R W \\
\hline This parameter may be used to set the password to access User Menu parameters. & & \\
Default code: 10. & & \\
Unit of measurement: Number & & \\
Options: \(\quad 0 . . .9999\) & & \\
\hline
\end{tabular}

\subsection*{4.35. PASC1 - Setting level 1 password}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Password & Attributes \\
\hline PASC1 & SET PASS1 & Level 2 & R W \\
\hline \begin{tabular}{l}
This parameter may be used to set the password to access the level 1 configuration submenu and User Menu \\
parameters. \\
Default code: 1. \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular}\(\quad 0 . .9999\) & & \\
\hline
\end{tabular}

\subsection*{4.36. PASC2 - Setting level 2 password}
\begin{tabular}{|c|c|c|c|}
\hline Acronym & Scrolling message & Password & Attributes \\
\hline PASC2 & SET PASS2 & Level 2 & R W \\
\hline The parameter lets you set the password for accessing level 2 configuration submenus. & & \\
Default code: 2. \\
Unit of measurement: Number & & \\
Options: & \(0 . . .9999\) & & \\
\hline
\end{tabular}

\subsection*{4.37. FI.CFG - Entering the reset code}
\begin{tabular}{|l|l|c|c|}
\hline Acronym & \multicolumn{1}{c|}{ Scrolling message } & Password & Attributes \\
\hline \multicolumn{1}{|c|}{ FI.CFG } & ENTER DEFAULT CONFIGURATION PASS & Level 2 & R W \\
\hline \begin{tabular}{l}
The parameter lets you set the code for resetting the controller to factory configuration, which will delete all changes \\
made. \\
Default code: 99. \\
ATTENTION! After you have set code 99, when you press the \(\bar{F}\) key the controller runs the Power-on procedure, as \\
described in paragraph "3.2. Sequence at power-on" on page 44. \\
Unit of measurement: Number \\
Options: \\
\hline
\end{tabular}\(\quad \mathbf{0 . . . 9 9 9 9}\) & \\
\hline
\end{tabular}

\section*{5. EXAMPLES AND APPLICATION NOTES}

\subsection*{5.1. Heat/cool control application}

A 850 controller (model 850-D-R00-00000-1) controls a heating element via a solid-state relay connected to a logic output.
A TC sensor measures the temforature.
Each branch of the circuit is protected by a fuse.
The cooling or alarm relay is protected by a snubber. The following diagram shows the various connections. One switch can control more than one controller.
- With Quick Configuration you set:
- sensor type (TC);
- unit of measurement of temforature \(\left({ }^{\circ} \mathrm{C}\right)\);
- the logic output function (HEAT);
- the relay output function (ALRM1);
- the full-scale value of the CT1 current transformer
- (HI.CT1)
- the setpoint, i.e. the temforature to be maintained (SETP);
- the temforature value that trips the alarm (ALRM1).

\subsection*{5.1.1. Connection diagram}

\subsection*{5.1.2. Quick configuration procedure for model 850-D-R00-00000-1}

\subsection*{5.2. Heating control and current (CT) application}

A 850 controller (model 850-D-R00-00100-1) controls a heating element via a solid-state relay connected to a logic output.
A TC sensor measures the temforature.
Each branch of the circuit is protected by a fuse.
The alarm relay is protected by a snubber.
A current transformer is connected to a dedicated input to indirectly measure electrical consumption.
The following diagram shows the various connections.
One switch can control more than one controller.

With Quick Configuration you set:
- sensor type (TC);
- unit of measurement of temforature \(\left({ }^{\circ} \mathrm{C}\right)\);
- the logic output function (HEAT);
- the relay output function (ALRM1);
- the full-scale value of the CT1 current transformer (HI.CT1)
- the setpoint, i.e. the temforature to be maintained (SETP);
- the temforature value that trips the alarm (ALRM1).

\subsection*{5.2.1. Connection diagram}

\subsection*{5.2.2. Quick configuration procedure for model 850-D-R00-00000-1}

\subsection*{5.3. Ingresso ausiliario}

The value of the auxiliary analog input is shown in parameter IN2.

The function can be:
- display only (with settable alarms if required);
- process variable for PID.2;
- reference for the PID. 1 ratio controller if in REMOTE mode;
- process variable (PV) setpoint for PID. 1 if the controller is in REMOTE mode;
- POWER setpoint for PID. 1 if the controller is in MANUAL and REMOTE mode;
- reset power for PID. 1
- valve position

The scale limit values of the input are settable on the configuration menu with parameters LO.SCL and HI.SCL (INPUT. 2 menu).

The parameter IN2 is shown in read-only on the user configuration menu.

\subsection*{5.4. 4-point input correction}

The 4-point input correction lets you correct the read of the main input and/or of the auxiliary input by setting four values: \(\mathrm{X} 1, \mathrm{X} 2, \mathrm{Y} 1\) e Y 2 .
To enable the function, set parameter Lin at 4.POIN (INPUT. 1 menu for main input or INPUT. 2 for auxiliary input or INPUT. 3 for auxiliary input 2).

The limitations are:
- X2 must always be larger than X1;
- X2-X1 must be \(10 \%\) larger than the full scale of the selected sensor.

The setting is limited within the defined scale LO.SCL... HI.SCL (INPUT. 1 menu for main input or INPUT. 2 for auxiliary input or INPUT. 3 for auxiliary input 2).

When using this function on linear scales (\(60 \mathrm{mV}, 1 \mathrm{~V}, 5 \mathrm{~V}, 10 \mathrm{~V}\), 20 mA), you may invert the scale.

The four values may be set in the LIN.4.P menu, as indicated by the Md.4P parameter:
- RD.ADJ: the user manually selects the parameters in order, \(\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2\), and Y 2 , and edits the value appearing on the display
- CALIB: for values X1 and X2, no value is shown that can be increased or decreased, but the input is directly shown (which can be modified with a calibrator)

If you set the second option (Md.4P="CALIB") and press F,
1) The calibrator reading will appear. Now press \(F\)
1.1) the calibrator reading will be assigned to the first of the four parameters X1 (=value of the abscissa of the first linearisation point)
1.2) display the second parameter X2 (=value of the ordinate of the first linearisation point)
2) When the second parameter Y2 (=value of the ordinate of the first linearisation point) appears on the screen, use the UP\DOWN buttons to determine the value to be assigned to this parameter. Once you have set the value, press \(F\) to assign a value to the second parameter Y2 (=value of the ordinate of the first linearisation point) and then go on to the next parameter
3) Enter the new parameter and display the calibrator reading. Now press F
3.1) to assign the calibrator reading to the third of the four
parameters X2 (=value of the abscissa of the second linearisation point)
3.2) it will pass (go on to) display the fourth parameter Y2(=value of the ordinate of the second linearisation point)
4) when the fourth parameter Y2 (=value of the ordinate of the second linearisation point) appears, use the UP\} DOWN buttons to determine the value to be assigned to this parameter. Once you have set the value, press F to assign a value to the fourth parameter Y2 (=value of the ordinate of the second linearisation point) and then exit the menu
In both modes, the effective input will appear on the instrument's display, net of the OFFSET parameter and of correction of the 4 points (in the LIN.4.P menu, you need not disable 4-point linearisation or reset the OF.SCLx parameter, if it has been entered).

\section*{Example of typical use}

A customer's weights and measures division foriodically checks linearisation, which has been set to represent a straight line passing through two points \((200,210),(600,700)\)
In this case, proceed as follows:
a) Set the calibrator to \(200^{\circ} \mathrm{C}\)
b) Go into the new LIN.4.P menu and set parameter Md.4P to "CALIB"
c) Read the Inx parameter at \(200^{\circ} \mathrm{C}\) and confirm the first parameter by pressing "F"
d) In the second parameter, set \(210^{\circ} \mathrm{C}\) and press " F "
e) Set the calibrator to \(600^{\circ} \mathrm{C}\)
f) Press " \(F\) " to confirm the reading of \(600^{\circ} \mathrm{C}\) on the INx parameter shown
g) Set the fourth parameter to \(700^{\circ} \mathrm{C}\) and press " F "
h) Exit the menu, and the PV will appear with 4-point correction set

Note1: you do NOT need to remember to disable linearisation during the procedure
Note2: you do NOT need to remember to reset the offset
WARNING: if the FILT.D parameter is not 0 , when you return to the home page, you may find a PV value different from the one set (as the INx parameter is displayed during the procedure, and not PVx). In the LINRZ menu, on the other
hand, the PV for compatibility with the old linearisation method appears.

\subsection*{5.4.1. Entering linearisation parameters with the LINRZ menu}

The four values may be entered directly in the LINRZ menu, as follows:
- \(\quad\) X1 = STP. 00
- \(\quad \mathrm{X} 2=\) STP. 01
- \(\quad \mathrm{Y} 1=\) STP. 02
- \(\quad \mathrm{Y} 2=\) STP. 03

In this case, however, you must obligatorily reset the OF.SCLx parameter if it is included in the INPUT menu, and disable 4-point linearisation so that the LINRZ menu displays the input value without the contribution of offset and linearisation.

\section*{Example}

Selection of Pt100 input with Lin = 4.POIN to obtain an RTD sensor with 4-point input correctio.

Pt100 input with:
- Lin = 4.POIN (Pt100 natural scale -200...850),
- DEC.P = 0
- LO.SCL = 0
- \(\mathrm{HI} . \mathrm{SCL}=400\)

Figure 20 - Diagram of 4-point input correction, for the example (Pt100 input)

The reference points on the real curve (input) are:
- X1 = STP. \(00=50\),
- \(\quad\) X2 \(=\) STP. \(01=350\),
\(\mathrm{X} 2-\mathrm{X} 1=300\), which is 85 more (\(10 \%\) of 850).
The corresponding points on the corrected curve (indication) are:
- \(\mathrm{Y} 1=\) STP. \(02=120\),
- \(\mathrm{Y} 2=\) STP. \(03=220\).

With the corrected curve, an input value of 200 is displayed as 170 .

\subsection*{5.5. Current inputs}

The values of current inputs CT1 and CT2 are shown in parameters CURR1 and CURR2.
These values are used in generic alarms AL1... AL4 and especially for the HB alarm

The maximum scale value of the input is shown by parameter HI.CT1 on submenu I.CT1 for CT1, and by parameter HI.CT2 on submenu I.CT2 for CT2

\subsection*{5.6. Alarms}

\subsection*{5.6.1. AL1...AL4 Generic alarms}

Generic alarms AL1...AL4 can be mainly 4 types, as described below:

\section*{Absolute alarm}

AL1 inverse and absolute, AL2 direct and absolute. Two alarm setpoints, AL1 (lower setpoint) and AL2 (upfor setpoint) are set, corresponding to two specific hysteresis values, Hyst1 (positive) and Hyst2 (negative).
The alarm trips when the measured value remains less than AL1 or greater than AL2 for the set delays.
The alarm condition ends when the measured value is greater than AL1 + Hyst 1, or less than AL2 - Hyst2.
This prevents repeated alarms caused by slight changes in the measured value.
Any alarm message at power-on, when the equipment is not at full speed, can be avoided by setting disable at power-on.

\section*{Symmetrical absolute alarm}

A single alarm setpoint AL1 and a single hysteresis value Hyst1 are set.
When a direct alarm is set, the alarm trips when the measured value is less than AL1 - Hyst1 or greater than AL1 + Hyst1 for the set delay.
When a inverse alarm is set, the alarm trips when the measured value is greater than AL1 - Hyst1 or less than AL1 + Hyst1 for the set delay.

\section*{Deviation alarm}

A single alarm setpoint AL1 and a single hysteresis value Hyst1 (negative) are set.
When a direct alarm is set, the alarm trips when the measured value is greater than SP + AL1 for the set delay. The alarm condition ends when the measured value is less than SP + AL1 - Hyst1.
When a inverse alarm is set, the alarm trips when the measured value is less than SP + AL1 - Hyst1 for the set delay. The alarm condition ends when the measured value exceeds SP + AL1.
The deviation alarm lets you implement dynamic setpoints that automatically follow the trend.

\section*{Symmetrical deviation alarm}

A single alarm setpoint AL1 and a single hysteresis value Hyst1 are set.
When a direct alarm is set, the alarm trips when the measured value is less than SP - AL1 or greater than SP + AL1.
When an inverse alarm is set, the alarm trips when the measured value is between SP - AL1 and SP + AL2

\subsection*{5.6.2. HB alarm}

This type of alarm calls for the use of the current transformer input (I.CT1 / I.CT2), which is assigned to a control output, from which the ON and OFF phases are considered.

The alarm signals changes in load draw, discriminating the value of currents for current inputs I.CT1 and I.CT2.

The alarm is active if the rms current value:
- is below set value LOW.ON in the ON time of the of the assigned control output,
- is above set value HIG.ON in the ON time of the of the assigned control output,
- is above set value HI.OFF in the OFF time of the of the assigned control output.

Single tests are disabled by setting a value of " 0.0 ".
The HB alarm trips if one of the above setpoints is exceeded for the set TIME.
Each of the three conditions may indicate a problem in the process managed by the assigned control output.

HB alarm tests are activated only with ON times of the assigned output longer than 0.4 seconds.

The alarm resets automatically if the condition that caused it is eliminated.

The load current is shown by parameters CURR1 and CURR2 on the user configuration menu..

Note: ON/OFF times refer to the cycle time set for the control output selected in OUT.

During configuration, you have to indicate load type with LoAd, specifying if it is a monophase load with only one current transformer CT1 (MONO), a 3-phase star load no neutre with CT1 and CT2 (STAR), or a 3-phase delta load with CT1 and CT2 (DELTA).

Figure 21 - HB alarm with monophase load

Figure 22 - AHB alarm with 3-phase star load without Neutral

Figure 23 - HB alarm with 3-phase delta load
A 3-phase load can be controlled by means of a logic output connected in series to two SSR modules.

\section*{HB alarm calibration}

\section*{Calibration is possible:}
- using U.CAL = AL.HB user calibration (with output selected in OUT 100\% on)
- as a function of the settable front key (but. 1 for model 850 or 1650 , but. 1 or but. 2 or but. 3 for model 850): to acquire the current value, the automatic or manual power must be \(>10 \%\); press the key to confirm the current forcent value (set in parameter THR.PE) that is saved in parameter LOW ON.

\subsection*{5.6.3. LBA alarm}

This alarm signals an interrupt in the control loop as a possible consequence of a sensor in short circuit, an inverted sensor, or a load break.

It trips an alarm if the variable does not increase its value in heating (or does not decrease it in cooling) when maximum power is supplied for settable time LBA.TM.
Setting the parameter LBA.TM \(=0\) disables the LBA function. The value of the variable is enabled only outside the proportional band.
When the alarm is active, power is limited to the value LBA. PW and the PV display flashes.
The alarm condition is reset if the temperature increases in heating mode (if it decreases in cooling mode), by setting AL.ACK = On in the user configuration menu, or by switching to Manual mode.

The LBA alarm is disabled in the presence of ON-OFF control (of heating, cooling, and heating/cooling).
In the presence of PID control with ON-OFF heating or cooling, LBA.PW can only be set for the PID part.

\subsection*{5.6.4. Power alarm}

The power alarm can be linked to each PID, PID1 and PID2 control LOOP. The alarm is inactive if the control is ON/OFF during Self-Tuning and in Manual.
The alarm signals possible power changes (OUT.P1 or OUT. P 2) after the process variable (PV) has stabilized on the setpoint (SSP active).
The process variable is considered stable after 300 seconds. The reference power is refreshed only at power-on or after a setpoint change.
If the process variable exits the stabilization band after an initial stabilization, this has no effect on the alarm.

In case of PV in SBR or Err error:
- if the PV has not yet stabilized, FAULT power is supplied;
- if the PV has stabilized, the average power for the last 5 minutes is supplied.
Set a power alarm as follows:
- If necessary, assign an output (OUTPU. 1 ...OUTPU.4) for the power alarm (POWR1 for PID1 or POWR2 for PID2).
- Set the band (PV.BND) within which the process variable is considered stable after 300 seconds have elapsed.
- \(\quad\) Set the band (PW.BND) outside of which the alarm is activated after TIME has elapsed.
The reference power is the active power after 300 seconds.

The alarm is reset and the reference power is refreshed only at power-on or after a change of the SSP setpoint.

\subsection*{5.7. Retransmission output}

The retransmission output is used mainly to retransmit the OUT.PW control power.

The forcentage of actuation value is shown by read-only parameter OUT. AN on the user configuration menu.

\subsection*{5.8. Switching the software on/off}

\subsection*{5.8.1. How to switch it off}

Keep the \(F\) and \(\Delta\) keys pressed for 5 seconds to deactivate the controller.
The device goes to an "OFF" state and assumes the behavior of a controller switched off.

The voltage is not switched off: the process variable (PV) display stays on, but the SV display is off.

All outputs (control and alarms) are OFF (logic level 0, relays de-energized) and all controller functions are inhibited except "POWER-UP", serial communication and the Math Function Blocks.
The programmers are suspended in their current condition.

\subsection*{5.8.2. How to switch it on}

Keep the \(\mathbf{F}\) key pressed for 5 seconds: the controller goes from "OFF" to "ON" state.

At exit from software off condition, the programmers resume execution at the point where they stopped when software was shut off.

If voltage is switched off during the "OFF" state, at the next Power-up the controller returns to "OFF" state (the controller latches the "ON/OFF").

Functioning is normally enabled. To disable it, set the parameter On.OF = disab. on the MODE configuration menu. This function can be assigned to a digital input (F.in.x, parameter ON-OF), excluding deactivation from the keypad.

\subsection*{5.9. Soft-Start}

If enabled (by setting SOFT.S = ON on the PID configuration menu), the Soft-Start function slices power based on the forcentage of time lapsed since controller power-on compared to the time set in the parameter SOFT.T

Soft-Start is an alternative to Self-Tuning and is activated after every controller power-on.
The Soft-Start action is reset in Automatic-Manual switching.

\subsection*{5.10. Tuning}

\subsection*{5.10.1. Tuning actions}

Tuning actions are divided into 3 categories:
- Proportional: action in which the contribution on the output is proportional to the deviation in input.
- Derivative: action in which the contribution on the output is proportional to the speed of change of the deviation in input.
- Integral: action in which the contribution on the output is proportional to the integral in time of the deviation in input.
The deviation is the offset between the measured value of the controlled variable and the setpoint.
Tuning actions let you achieve optimum tuning of the controlled process in every phase.

\subsection*{5.10.1.1. Influence of Proportional, Derivative and Integral actions on response of controlled process}

The response of the controlled process depends on the type of control action set. Specifically:
- Increasing the Proportional Band reduces oscillations but increases the deviation.
- Decreasing the Proportional Band reduces the deviation but causes oscillations of the controlled variable (excessively low Proportional Band values make the system unstable).
- Increasing the Derivative Action, corresponding to an increase in Derivative Time, reduces the deviation and prevents oscillations up to a critical value of Derivative Time, beyond which it increases the deviation and causes prolonged oscillations.
- Increasing the Integral Action, corresponding to a decrease in Integral Time, tends to cancel the deviation at full speed between the controlled variable and the setpoint.
- If the Integral Time value is too long (weak Integral action), there may be forsistence of the deviation between the controlled variable and the setpoint.

For more information on tuning actions, contact Gefran Customer Care.

\subsection*{5.10.2. Manual tuning}

Manual tuning is done as follows:
1. Set the setpoint to the working value.
2. Set the Proportional Band to \(0.1 \%\) (with ON-OFF control).
3. Switch to automatic and watch the behavior of the variable.
There will be behavior similar to that shown in the following figure.
4. Calculate the PID parameters:
- Proportional Band P.B. value
\[
\text { P.B. }=\frac{\text { Peak }}{V_{\max }-V_{\min }} \times 100
\]
where \(\mathrm{V}_{\text {max }}-\mathrm{V}_{\text {min }}\) is the scale interval.
- Integral Time value \(\mathrm{It}=1.5 \times \mathrm{T}\)
- Derivative Time value \(\mathrm{dt}=\mathrm{It} / 4\)

5. Switch the controller to manual.
6. Set the calculated parameters (re-enable PID control by setting a cycle time for relay output if necessary).
7. Switch to automatic.
8. To check optimization of the parameters, change the setpoint value if possible and check transitory behavior: if oscillation forsists, increase the Proportional Band value; on the other hand, if the response is too slow, decrease the value.

\subsection*{5.10.3. Self-Tuning}

Self-Tuning is a simplified and automatic tuning mode based on the process state.
The purpose of Self-Tuning is to calculate optimum control parameters at the start of the process.
The variable (for example, temforature) must be the one measurable at zero power (room temforature)

You can automatically start tuning at every power-on or start it by means of the appropriately configured () key.
The procedure runs automatically by optimizing the approach in relation to the real temforature value, in case of (relay, solid-state, Triac) control output, with automatic calculation of optimal cycle time CY.TIM.

At the end of the procedure, the following new PID parameters are saved:
- proportional band,
- integral and derivative times, calculated for the current action (heat or cool). In case of dual action (heat + cool) the parameters are calculated automatically separately for the two actions.

Active tuning condition is signaled on the display by an LED.

Attention! Self-Tuning is not applicable with an ON/OFF control.

\section*{Notes}
- For the programmer model, if Self-Tuning starts when the controller is powered-on, the program is in STOP.
- If SP-PV deviation is less than \(0.3 \%\) f.s., Self-Tuning switches to "one shot" Auto-Tuning; otherwise it calculates a point at \(75 \%\) of deviation around which to start "one shot" Auto-Tuning, considering a single Heat or Cool action or a dual Heat/Cool action based on the type of set control.

Example single action, PV less SP/4

Example dual heat/cool action, PV greater than SP/4

\subsection*{5.10.4. Auto-Tuning}

Enabling the Auto-Tuning function blocks the settings of the PID parameters.
There are two types: continuous and one-shot.
Continuous Auto-Tuning constantly measures system oscillations, immediately searching for PID parameter values that reduce the current oscillation.
It does not act if the oscillations drop to values below 1.0\% of the Proportional Band.
It is interrupted if the setpoint changes and automatically resumes with a constant setpoint.
The calculated parameters are not latched if the device switches off, if it goes into manual, or if the configuration code is disabled.

The controller resumes with the parameters programmed before enabling Auto-Tuning.
The calculated parameters are latched when the function, enabled from digital input or key 0 , is disabled.
One-shot" Auto-Tuning can be started manually or automatically.

It is useful for calculating PID parameters when the system is around the setpoint.
"One-shot" Auto-Tuning produces a change in the control output up to a maximum of \(\pm 100 \%\) of current control power (limited with H.P.HI...H.P.LO for heat and with C.P.HI...C.P.LO for cool) and evaluates the effects in time overshoot.

The calculated parameters are latched. It starts manually via digital input or via Tuning key after an undershoot/overshoot. It starts automatically (with error band of \(0.5 \%\)) when the PV-SP error goes beyond the set band (programmable at \(0.5 \%, 1 \%, 2 \%, 4 \%\) of full-scale).

Attention! At power-on or after a setpoint change, automatic start is inhibited for a time equal to five times the integral time (with minimum of 5 minutes). The same time has to pass after running "Oneshot" Auto-Tuning.

\subsection*{5.10.5. Examples of tuning}

The two diagrams below show the time change in the monitored value and the change in the controlled tuning output.
- \(\mathrm{PV}=\) Process variable
- \(\mathrm{SP}+\mathrm{cSPo}=\) cooling setpoint
- cSPo = C.SP (HI.SCL - LO.SCL) / 100
- C.PB = Proportional cooling band
- \(\mathrm{SP}=\) heating setpoint
- H.PB = Proportional heating band

Example with SP-PV deviation less than \(0.3 \%\) f.s. dual heat/cool action

Tuning output only with proportional action in case of proportional heating band separate from cooling band.

Tuning output only with proportional action in case of proportional heating band suforimposed on cooling band.

\subsection*{5.10.6. Heat/Cool tuning with relative gain}

For this tuning mode (enabled on the PID menu with parameter Cntr = PID.RG) you have to specify the cooling type (COOL parameter).
The PID cooling parameters are calculated starting from heating parameters in the specified ratios:
- Air relative gain H.PB / C.PB \(=1\)
- Water relative gain H.PB / C.PB \(=0.8\)
- Oil relative gain H.PB / C.PB \(=0.4\)

\section*{Example}

Starting with the following heat data:
- \(\mathrm{COOL}=\) oil
- H.PB = 10.0
- H.IT = 4.00
- \(\mathrm{H} . \mathrm{DT}=1.00\)
there will be the following cool data:
- \(\mathrm{C} . \mathrm{PB}=12.5\)
- \(\quad\) C.IT \(=4.00\)
- \(\quad\) C.DT \(=1.00\)

For slicing cycle times for outputs, the following values should be set:
- Air
CY.TIM Cycle T Cool \(=10\) seconds
- Water
CY.TIM Cycle T Cool \(=2\) seconds
- Oil
CY.TIM Cycle T Cool \(=4\) seconds

\(\triangle\)
Attention! Cool parameters cannot be changed in this mode.

\subsection*{5.10.7. Cascade controls}

Two controllers are arranged in cascade when the output signal from the first becomes the input signal to the second, which in turn sends a signal to the control unit.
The primary controller compares the controlled variable to the setpoint, while the secondary controller compares the value of the controlled variable to the signal from the primary controller.

Cascade control provides faster control of the primary variable value.
In addition, the primary variable is less subject to deviations. The secondary controller keeps the flow constant, changing it only when instructed by the primary controller.

The cascade controller is used especially in very slow processes. In these processes, the error is recovered over a long time, and when noise enters the process, you have to wait a long time before the error is revealed and before corrective action begins; therefore, the corrective action does not start immediately. After the action has started, you have to wait a long time for the result.

A cascade control is built by finding intermediate controlled variables that can forform rapid corrective actions in case of noise.
The primary and secondary controllers are arranged in cascade: each has its own process variable but only the secondary one has an output that commands the process.

The main advantages of cascade control are:
- noise in the secondary loop is corrected by the secondary controller before it can affect the primary variable;
- delays in the secondary part of the process are significantly reduced by the secondary loop, and this increases primary loop response speed;
- gain changes in the secondary part are compensated in its chain;
- the secondary loop lets the primary controller act precisely on the flow of material or energy.

Cascade control is very useful when you require highly efficient control in the event of noise or when the secondary part of the process involves a long delay.

Cascade control has two controllers (a primary and a secondary); normally, the choice of control actions, based on process speed, is made as follows:
- Generally fast processes: for precise control, integral action in the primary and only proportional in the secondary is sufficient (primary controller PI, secondary controller P).
- Generally, very slow processes: for best system readiness, precision, and stability, configure the primary controller PID and the secondary controller PI.

The simplest example of a cascade control is a controller on a valve positioner: in this application the positioner is used to overcome hystereses and to reduce valve time constants Cascade control is normally not required in fast control loops (flow rates, pressures, etc.) and is more useful in temforature controls.
On series 850, 1650, 1850 controllers, the PID. 1 control output is the setpoint for PID.2.
5.10.7.1. Tuning two PIDs configured for cascade control If you need to tune two PIDs configured for cascade control (parameter APP.t=CAS.HE\CAS.CO\CAS.HC on EN.FUN menu), do as follows:
1. Set the primary PID to Manual (for example with the Automatic\Manual button on home page Home.1), and keep the secondary PID in Automatic
2. Set the value of power delivered by the primary PID (secondary PID setpoint).
3. Start the Self-Tuning procedure for the secondary PID (see paragraph "5.10.3. Self-Tuning" on page 208)
4. When the Self-Tuning procedure for the secondary PID is done, return the primary PID to Automatic (for example with the Automatic\Manual button on home page Home.1)
5. Start the Self-Tuning procedure for the primary PID (see paragraph "5.10.3. Self-Tuning" on page"5.10.3. Sel-f-Tuning" on page 208"5.10.3. Self-Tuning" on page 208).

\subsection*{5.10.8. Ratio control}

In ratio control, the variable to be controlled is not a physical quantity but instead its ratio with another quantity, whose value must obviously be available.

This type of control is commonly used, for example, in processes where a reactor has to be fed with two reagents in a fixed ratio.

In practical applications, the primary variable is not controlled or externally controlled, as in the case of mixing two fluids (Fluid1/Fluid2).

The control is obtained by simply calculating the setpoint of substance A (Fluid1), which can be controlled, as a product of substance B (Fluid2) multiplied by an appropriate coefficient (RAT.CO), which expresses the ratio to be maintained between the two substances.

RATIO is the ratio required between IN1 (PV1) and IN2 (or IN3) (range from 0.01 to 99.99), i.e.
RATIO = IN1 / IN2 (or IN3)

This ratio is automatically calculated in the transition from manual -> automatic and can be changed on the User menu.

The PID control controls IN1 so that it is always:
IN1 = SETP1 = IN2 (or IN3) x RAT.CO.

\subsection*{5.10.8.1. Activating the ratio controller}

Activate ratio controller work mode as follows:
- Enable the remote setpoint (parameter SP.REM on MODE menu = On).
- Configure the auxiliary input function (FUNC in INPUT.2) or the auxiliary input 2 function (FUNC in INPUT.3) as the reference for the ratio controller for PID.1.

\subsection*{5.11. Timer}

The timer is enabled on the MODE configuration menu by selecting \(\mathrm{tMEr}=\mathrm{ON} . \mathrm{SEC}\) o \(\mathrm{tMEr}=\mathrm{ON} . \mathrm{MIN}\) according to the time base to be adopted.
To enable, select the function FunC on the TIMER submenu, choosing from among:
- ST.STP: Start/Stop timer
- STABL: stabilization timer
- SWITC: power-on timer

If you set both timers with function FunC=SWITC (= Start Timer after a POWER ON), the device will switch on (with SW start) after the time set on the shorter timer has lapsed.

When the count is on, you can see the timer value on the SV display, on the \(F\) display, or on the bargraph by setting the parameters dS.SP = TIM.EL, dS.F = TIM.EL or bArG = TIM. EL, respectively.

You can assign a message to be displayed at the end of the timer count.

When the set TIMER time is reached, you can:
- activate an OUT1...OUT4 output configured with F.out \(=\) TIMR1 or TIMR2,
- go to software off with End = OFF,
- select setpoint 2 with End = SP1-2.

\section*{Controlling timer from keyboard}

In the absence of enabled digital inputs, the timer is controlled when TIM.EL is displayed by using the \(\Delta\) and keys as follows:
- \(\triangle\) pressed with timer stopped = START
- \(\nabla\) pressed with timer on = STOP
- \(\Delta+\nabla\) pressed for 2 seconds = RESET

\subsection*{5.11.1. Start/Stop Timer}

By selecting the options, you can alternately assign the StSt start/ stop timer function to:
- a digital input IN.DIG;
- an active alarm ALRM1 or ALRM2 or ALRM3 or ALRM4 or AL.HB;
- a serial SERIA.

You can select the true POSIT state or false NEGAT state for the start/stop command.

With parameter rESE, you can alternately select the timer reset mode:
- autoreset with timer in stop AUT.RS;
- from digital input IN.DIG;
- from active alarm ALRM1 or ALRM2 or ALRM3 or ALRM4 or AL.HB;
- a serial SERIA.

You can select the true POSIT state or false NEGAT state for the reset command.
The timer setpoint is settable with a full-scale of 9999 seconds.
The reset function, always active on the state, resets the Timer value and keeps it blocked even if start is present. In the absence of enabling (stop), the autoreset condition can be active, which resets the timer at every stop.

\(\triangle\)The timer can also be controlled (start, stop and reset) with Function Blocks. In this case, the start and reset commands are in OR with the ones defined with the StSt and rESE parameters.

The following diagrams show timer behavior when enabling from digital input and from alarm are used.

Switching between SETP1 and SETP2 is based on the value of the up gradient GRAD.I (if SETP2 > SETP1) or down gradient GRAD.D (if SETP2 < SETP1).

Switching is immediate if the gradient is set to 0 (zero).
MSP1/MSP2 are managed only if the Multiset function is enabled, as indicated in the End parameter

\section*{Enabling from digital input}

\(\left(^{*}\right)\) if the auto reset function is enabled

\section*{Enabling from alarm}

\subsection*{5.11.2. Stabilization timer}

The stabilization timer is used to control a process at a certain temforature for a certain time.

The band defining stabilization of the temforature is settable in BAND (from \(0.0 \%\) to \(25.0 \%\) f.s.); the time is set in TIMER. With the band set to \(0.0 \%\) the count starts the first time the setpoint is reached.

When the function at end of count is End = SP1-2, the end count state activates when the setpoint reaches value SETP2 based on the value of the up gradient GRAD.I (if SETP2 > SETP1) or down gradient GRAD.D (if SETP2 < SETP1). Switching is immediate if the gradient is set to 0 (zero).

The following diagrams show how the stabilization timer works and the state of the end count output.

\subsection*{5.11.3. Start timer}

The start timer is used to start the control a certain time after the controller is powered-on.
The delay after start/power-on is settable in TIMER.
The following diagrams show how the start timer works and the state of the end count output.

\subsection*{5.11.4. Variables available for the user configuration menu}

The variables available for the timer are TIM.RE, which shows remaining time, and TIM.EL, which shows lapsed time.

\subsection*{5.12. Multiset, setpoint gradient}

The Multiset function is enabled on the MODE configuration submenu by selecting MUL.SP = On.

This function allows to set:
- 2 setpoints (M.SP1 and M.SP2) by using a digital input with function F.in. \(=\) SEL1.0 (for PID1) or SEL2.0 (for PID2) or SE12.0 (for PID1 and PID2) or a configurable faceplate key (but. 1 for model 850, but. 1 or but. 2 or but. 3 for models 1650 and 1850) setting the option but.x = SP.SEL on the HMI submenu.
- 4 setpoints (M.SP1, M.SP2, M.SP3 and M.SP4) by using two digital inputs, one with function Fin.x = SEL1.0 (for PID1) or SEL2.0 (for PID2) or SE12.0 (for PID1 and PID2) and the other with function F.in. \(x=\) SEL1.1 (for PID1) or SEL2.1 (for PID2) or SE12.1 (for PID1 and PID2).

The selection of M.SP1 and M.SP2 is shown on the display via LED.

The setpoint gradient function is enabled on the PID submenu by setting the GRAD.I (up gradient setpoint) and/ or GRAD.D (down gradient setpoint) parameters with a value other than 0 .

At start and at Automatic/Manual switching, the setpoint is assumed equal to PV. With set gradient it reaches the Local/ Remote setpoint or the setpoint selected in case of Multiset function.

Each change of setpoint is subject to a gradient: GRAD.I. for change from lower to higher setpoint, GRAD.D. for change from higher to lower setpoint.

The setpoint gradient is inhibited at start when Self-Tuning is enabled. The control setpoint reaches the set value with a speed defined by the gradient.

\(\left.{ }^{*}\right)\) in case it is set to the setpoint gradient

\subsection*{5.13. Setpoint programmer}

\subsection*{5.13.1. What is a program}

A program is a set of steps, each having a number of parameters, that let you control the value of a process or of a device based on lapsed time, on specific conditions, and on reference values saved in the controller or supplied to it from the outside.

In its simplest form, a step has two parts, represented on the graphs by two segments:
- a (possible) ramp, i.e., a variable change in the setpoint value time;
- a hold, i.e., a time in which the process value is held constant after it has reached the setpoint value.

\section*{Standard Programmer Mode}

A program can have a maximum of 192 steps and up to 16 programs can be saved in the controller.
Each program is defined by the number of its first and last step.

\section*{Simplified Programmer Mode}

In this mode a program consists of a fixed number of steps (maximum 16) and the instrument can store up to 12 programs of 16 steps each in memory.

A program can be selected from the keypad, digital input, Logic Function Block or serial line.
The program can be controlled from the keys, digital inputs (START/STOP, RESET, end program), serial line, or events (output of Function Block).

The program can be run by one of the two programmers (PROGRAMMER 1 or PROGRAMMER 2) (see paragraph "5.13.3. Programmer functions" on page 215).

\subsection*{5.13.2. Example of setting a program from digital inputs}

\section*{If there is a single programmer}
a) Using the digital input functions:
F.in for digital input \(1=\mathbf{P}\). PR1.0 \(=\) select program for PROGRAMMER bit 0 F.in for digital input \(2=\) P.PR1.1 \(=\) select program for PROGRAMMER bit 1 F.in for digital input 3 = P.PR1. 2 = select program for PROGRAMMER 1 bit 2
b) With state of digital inputs:
state of digital input \(1=\) active state of digital input 2 = inactive state of digital input \(3=\) active

binary value \(=5\)
select program 6

\section*{If double programmer is enabled}
a) Using the digital input functions:
F.in for digital input 1 = P.P12.1 \(=\) Select program for PROGRAMMER 1 and for PROGRAMMER 2 bit 1 Fin for digital input 2 = P.P12.2 \(=\) Select program for PROGRAMMER 1 and for PROGRAMMER 2 bit 2 F.in for digital input 3 = P.P12.3 \(=\) Select program for PROGRAMMER 1 and for PROGRAMMER 2 bit 3
b) With state of digital inputs:
state of digital input 1 = active state of digital input \(2=\) inactive state of digital input \(3=\) active

binary value \(=10\)
select program 11 for PROGRAMMER 1
select program 12 for PROGRAMMER 2
c) With state of digital inputs:
state of digital input \(1=\) active state of digital input \(2=\) inactive state of digital input \(3=\) active

binary value \(=12\)
select program 13 for PROGRAMMER 1
select program 14 for PROGRAMMER 2
d) With state of digital inputs:
state of digital input \(1=\) active state of digital input \(2=\) inactive state of digital input \(3=\) active

binary value \(=14\)
select program 15 for PROGRAMMER 1
select program 16 for PROGRAMMER 2

\section*{Changes possible in stop state}

When the programmer is stopped, you can set or change:
- program number;
- the active setpoint;
- the time assigned to the active phase of the step (ramp or hold).
- step number;
- phase or segment (ramp or hold);
- change the work mode of the programmers from ASYNCHRONOUS=>SYNCHRONOUS (if and only if both programmers are in STOP);
- change the work mode of the programmers from SYNCHRONOUS =>ASYNCHRONOUS.

You can:
- make a single change of the program number. This change will take effect only after a reset command.
- make a single change of the time assigned to the active phase of the step (parameter P.TIME_x).
- Behavior when the programmer restarts is linked to the phase of the step that the programmer is in :
o programmer ramp phase:
- if programmed time \(0<=\) P.TIME_x <= RAMP.T of step in execution: start from new time
- if programmed time P.TIME_x > RAMP.T of step in execution: start from hold phase
- programmer in hold phase:
- if programmed time 0 <= P.TIME_x <= HOLD.T of step in execution: start from new time
- if programmed time P.TIME_x > HOLD.T of step in execution: start from ramp phase, next step
- make a single change of the step number. At restart, the programmer goes to the step programmed at the beginning of the ramp. Program time will equal ramp phase start time. If the programmed step is greater than the last step of the program, it goes to the last step of the program.
- make a single change of the phase (ramp or hold) Programmer action at restart is linked to the type of switch forformed:
o going from ramp to hold, the programmer goes to the start of the hold phase of the active step in hold status. Program time will equal hold phase start time.
o going from hold to ramp, the programmer goes to the start of the ramp phase of the active step.
Program time will equal ramp phase start time.
- make a single change of work mode (from ASYNCHRONOUS to SYNCHRONOUS and vice versa).
Going from ASYNCHRONOUS to SYNCHRONOUS mode, the second programmer will take programmer 1 time as program time (at restart)
- make a combined change of step and phase in order to obtain the following:
o if you change the step number and phase equals ramp => you go to the start of the ramp of the set step, with time P.TIME_x (= duration of ramp \(\backslash\) hold phase) set to 0 .
o if you change the step number and phase equals hold => you go to the start of the hold phase of the set step, with time P.TIME_x (= duration of ramp\hold phase) set to 0 .
- if you change the step number and phase goes from ramp->hold => you go to the start of the hold phase of the set step, with time P.TIME_x (=duration of ramp\hold phase) set to 0.
o if you change the step number and phase goes from hold->ramp => you go to the start of the ramp phase of the set step, with time P.TIME_x (=duration of ramp\hold phase) set to 0 .
Changing programmer work mode from ASYNCHRONOUS to SYNCHRONOUS invalidates any simultaneous change of:
- the time assigned to the active phase of the step (ramp or hold).
- step number;
- the phase or segment (ramp or hold); run on programmer 2.

But if you make the same combined change on programmer 1 (change of modeltime assigned to active phase of step or change of modelnumber of step or change of modelphase), the two actions have an effect and also affect programmer 2 (following SYNCHRONOUS mode).

With asynchronous programmers (parameter PROGR = On2), if the programs assigned to the two programmers do not have steps in common, then:
- you can edit only the steps (submenu PR.STP) of the program that is not in RUN (those in RUN can only be displayed together with all the others). All of the steps will become "editable" again only when both programmers are not in RUN (analogous to the case with synchronous programmers);
- you cannot change the structure of the two programs assigned to the two programmers (or the structure of the other 14) until at least one of the two programmers is in RUN (\(=>\) the parameters of the PR.OPT submenu are in display-only). All of the programs will become "editable" again only when both programmers are not in RUN (analogous to the case with synchronous programmers);

On the other hand, if the two programs assigned to the two programmers have at least one step in common, the same control is maintained in case of synchronous programmers, i.e., during the RUN phase:
- all parameters of single steps (PR.STP submenu) and
- all parameters of single programs (PR.OPT submenu) are available in display-only.

\section*{Consents}

You can assign up to 4 consents to each step:
- a wait step, other than the one in question, run by the other programmer.
The beginning of the step can therefore be conditioned by:
- a special state of consents;
- the start of the step indicated by the other programmer If both of the above conditions are not satisfied, the time base stops. If the state agrees with the programmed state, execution proceeds with restart of the time base. Each digital input can be assigned to one consent.

\section*{Events}

You can assign up to 4 events to each step. At the start of the ramp and at the start of the hold of each step, the events are changed as programmed. Each digital output can be assigned to one event.

\section*{Other functions}
- End program signal, with or without forcing of control outputs.
- Setting of a tolerance band relative to the setpoint. If the variable is outside the band, the time base is stopped (HBB alarm, Hold Back Band).
- Setpoint slaved with the same time base to manage a slaved controller via analog retransmission output A1.
- Total modularity of functions and parameters, with easy exclusion of ones not required.

\subsection*{5.13.4. Programmer behavior}

The change in local setpoint, which occurs during a program stop phase, causes the restart of the step in execution, with conservation of the set ramp time.

If the controller is switched off and then on again, program execution can continue, or restart from the first step, or search for the step with the setpoint closest to process variable PV.

Behavior at restart is defined by the value of the parameter Strt on the PR.OPT submenu.
STOP/START switching at end of program resets the program and restarts the program.

The Autoreset function implies that programmer reset is active in the stop phase, with consequent acquisition of PV value as active setpoint and resetting of the time base. With the controller in manual, or with remote absolute setpoint, the programmer time base is stopped.

When switching from remote to local setpoint, the setpoint assumes the value of the remote setpoint at the time of switching if the parameter LO.rE = BUMPL.

When the programmer reaches the END state, the third bargraph, used for example on models 1650-1850 to display delivered power, lights up completely.

At exit from programmer END state, the third bargraph once again shows the value of the quantity set in parameter bAr. 3 (HOME. 1 menu or HOME. 2 menu).

\subsection*{5.13.5. Program examples}

\subsection*{5.13.5.1. ONE STEP program}

Project conditions:
- ramp time \(=0\);
- hold;
- HBB enabling;
- switch-off

\subsection*{5.13.5.2. ONE STEP program}

Project conditions:
- ramp time = 0;
- hold
- HBB enabling;
- hold at end of program.

\subsection*{5.13.5.3. Program with assigned events}

Project conditions:
- Evnt. 1 On during STEP1;
- Evnt. 2 On during hold of STEP1;
- Evnt. 3 On during ramp of STEP2;
- Evnt. 4 not used.

STEP1 - setting events at start of step:
- EVN.r. \(1=0 n\)
- EVN.r. \(2=\) OFF
- EVN.r. 3 = OFF
- EVN.r. \(4=\) nonE

STEP1 - setting events at start of hold:
- EVN.h. \(1=\) nonE
- EVN.h. \(2=0 n\)
- EVN.h. \(3=\) nonE

STEP2 - setting events at start of step:
- EVN.r. 1 = OFF
- EVN.r. \(2=\) OFF
- EVN.r. 3 = On
- EVN.r. 4 = nonE

STEP2 - setting events at start of hold:
- EVN.h. \(1=\) nonE
- EVN.h. 2 = nonE
- EVN.h. 3 = OFF
- EVN.h. \(4=\) nonE

Using GF_eXpress software for the configuration, the displayed pages would be:

Program diagram

Configuration of STEP1

Configuration of STEP2
5.13.5.4. Cyclical program with 3 setpoints and 3 steps

5.13.5.5. Program with HBB (hold back band) function

\subsection*{5.13.6. Fast simulation of program}

You can easily check a selected program by launching it in fast simulation mode. Enable it by setting the parameter LIMIT = On on the PR.OPT submenu.

The program will run with ramp time limited to 20 seconds and with hold time limited to 10 seconds. If the set values are smaller they are used. In this way the maximum duration of a step is 30 seconds.

During functioning in fast simulation, the HBB alarm is inhibited and the control output assumes the FAULT value on the PID submenu.

All other enabled functions (restart, start/stop, reset, manual/ automatic, end cycle or continuous cycle, event outputs, consent from digital inputs, second channel setpoint, etc.) are active.

\subsection*{5.13.7. Controlling the program from the keypad}

In the absence of enablings from digital inputs, the program is controlled when programmer state is displayed using the \(\Delta, \nabla\) keys, with the following modes:
- \(\Delta\) pressed with program stopped = START;
- \(\quad \nabla\) pressed with program running = STOP;
- \(\quad \nabla+\Delta\) pressed for 2 seconds = RESET (condition maintained with key pressed);

\subsection*{5.13.8. Programmer Reset mode}

By setting RST.SP = ON provides that with active reset command the setpoint assumes the value of process variable PV and power is forced to zero.
Setting RST.SP = OFF maintains the active setpoint (prior to reset) and power control.

This function is valid in case of reset from digital inputs or enabled keys, as well as in case of reset following a program change (possible only in STOP) or STOP/START switching at end of program.

\subsection*{5.13.9. Restart with step search}

If configured, in case of restart the programmer can try to restart nor from the first program step but from the point of the program that corresponds, or is closest to, the value of the active process variable PV.
This function mode is called "restart with step search."
At start, if Strt = RSCH was set on the PR.OPT submenu, the program searches for the setpoint with value equal to variable PV.
The search is conducted by shifting the current time forward or back and skipping phases or steps.

The following diagram shows a typical 5-step program profile and explains how restart with step search works.

If the variable has values lower than the ones requested during a setpoint raise phase (point \(A, t 1\)), restart is conducted by lowering the active time base until the setpoint profile (point A1) is intercepted.

If the variable has values lower than the ones requested during a setpoint lower phase (point B, t2), restart is conducted by raising the active time base until the setpoint profile (point B1) is intercepted.

If interception is impossible, as in the case of variable at value PV1, the program is restarted from the active setpoint and time.

If the HBB control is on, programmer base times remain in effect until the variable re-enters the set tolerance band, symmetrical to the setpoint value.

\subsection*{5.13.10. Managing a double programmer}

The second input and the second PID let you activate a second programmer identical to the one described above. The two programmers can work in:
- Asynchronous mode (parameter PROGR = On2), or
- Synchronous mode (parameter PROGR = On.S).

\subsection*{5.13.10.1. Programmers in asynchronous mode}

In this work mode the two programmers have independent time bases, therefore the Start-Stop, Skip step, Skip to end of program, and Reset commands are separate for each programmer.

With asynchronous programmers:
- Consents, i.e. step enable conditions (ENABLE), are the ones defined by the single programmer for the step it is executing, i.e., only the consents for the step that the first programmer (PROG1) is executing for the process managed by PROG1 and only the consents for the step that the second programmer (PROG2) is executing for the process managed by PROG2.
- You can subordinate execution of PROG2 steps to the execution of PROG1 steps. This is done by means of the PROG2 wait step, configurable with GF_eXpress.
The result obtained depends on the states of PROG1 and PROG2 programs when the set condition occurs.

\section*{Example}

You want to configure a wait so that PROG2 does not start executing STEP 3 until PROG1 has started executing STEP 2.

Set the Wait Step as follows with GF_eXpress:

The following cases are possible:
1. PROG. 1 is already executing STEP 2 when PROG2 is about to start executing STEP 3: PROG2 continues to run STEP2 without any wait.
2. PROG. 1 is already executing a step subsequent to STEP 2 when PROG2 is about to start executing STEP 3: PROG2 continues to run STEP2 without any wait.
3. PROG. 1 is in one of the following states:
- READY (programmer never started or has already ended the program and was configured to return to READY, parameter End=rESE);
- END (programmer has already run the program and was configured to stay in this condition, parameter End=NONE or End=Off); and so PROG2 is suspended until PROG1 arrives at STEP 2. When PROG1 starts STEP 2, PROG2 starts executing STEP 3

The start step and start hold events are the ones for the step in execution by its programmer.

The settings for SUBDUED SETPOINT and for HBB (ENABLE, BAND, HBB.R, HBB.H) are the ones for the step in execution by its programmer.

Since the programmers are asynchronous it follows that, in case of HBB, only the time base of the programmer affected by the alarm will stop when the alarm trips, while the other program keeps working normally.

Example of asynchronous PROG1 and PROG2 programmers

Example of asynchronous PROG1 and PROG2 programmers with step wait setting

\subsection*{5.13.10.2. Programmers in synchronous mode}

In this work mode the two programmers have the same time base, and the ramp and hold times of each step of the second programmer (PROG2) are therefore the same as those of the first programmer (PROG1).
Consequently, the Start-Stop, Skip step, Skip to end program, and Reset commands are common to both programmers. If PROG1 has to run a number of steps higher than those of PROG2, PROG2 will maintain the state of its last programmed setpoint.
If PROG1 has to run a number of steps lower than those of PROG2, PROG2 will interrupt its program in advance without ending it.
Consents, i.e. step enable conditions (ENABLE), are the ones defined by the programmers for the step they are executing,
i.e.:
- consents for the step that the first programmer (PROG1) is executing;
- consents for the step that the second programmer (PROG2) is executing.

It follows that the time base is suspended until all of the consents are checked (those for the step in execution in PROG1 and those for the step in execution in PROG2).

The start step and start hold events are the ones for the step in execution by its programmer.

The settings for SUBDUED SETPOINT are the ones for the step in execution by the respective programmer. There are no conflicts because it is decided a priori which of the two outputs each programmer will manage.

The settings for HBB (ENABLE, BAND, HBB.R, HBB.H) are the ones for the step in execution by its programmer.
Since the programmers are synchronous it follows that, in case of HBB, the time base stops when the alarm trips on one or both of the programmers, blocking both programs.

Example of synchronous PROG1 and PROG2 programmers

\subsection*{5.13.11. Program times}

For each programmer, the User menu and Home page can display the following time values:

\section*{- Programmer theoretical time}

Displayable with parameters P.t.t1 and P.t.t2, the time elapsed from the START command to END condition. This time resets after a programmer RESET.
This time stops in case of an HB alarm or lack of consent.
The time goes from 0 to TotalTheoreticalTime \(=\sum_{i}\) (ramp time + hold time) i, with which it varies from 1 to N (where \(\mathrm{N}=\) number of steps).
- Programmer Real time

Displayable with parameters P.E.t1 and P.E.t2, the time elapsed from the START command to END condition.

This time resets after a programmer RESET.
As opposed to Theoretical time, Real time continues to run even in case of an HB alarm or lack of consent.
- Programmer residual theoretical time

Displayable with parameters P.r.t1 and P.r.t2, the difference between TotalTheoreticalTime and Theoretical time elapsed in the programmer.

After the controller is powered off and then powered on, Theoretical time and Real time elapsed for each programmer resumes at the value derived from the step search (zero if the programmer is configured to start at the beginning).

\subsection*{5.13.12. SIMPLIFIED PROGRAMMER MODE}

In Simplified Programmer Mode you can only use the PR.STP menu to configure programs. To enable this mode, adjust the S.PROG parameter in the EN.FUN menu (after enabling programmer mode using the PROG parameter in the EN.FUN menu).
There may be a maximum of 12 programs each, with a maximum of 16 steps, numbered from 1 to 16.
The FI.STP and LA.STP parameters in the PR.OPT menu disappear, as the first step in the selected program will always be number 1. In the PR.STP menu you may indicate which of the 16 steps will be the last step in the program using the ST.END parameter.
The scrolling string reminds you which of the 12 programs you are editing.

WARNING: when switching the S.PROG parameter in the EN.FUN menu from ON to OFF, you must obligatorily reset the FI.STP and LA.STP parameters in all programs, as they are not compatible with non-simplified mode

In both simplified and non-simplified mode, the GF_eXpress tool may be used for easy program set-up.

In non-simplified mode, the FI.STP and LA.STP parameters appear and may be freely set:

\subsection*{5.14. Managing motorized valves}

In a control procedure, a motorized valve varies the flow rate of a fluid based on the signal from the controller.
In an industrial process, the fluid may be a fuel, often corresponding to the thermal energy introduced into the process.

To change the flow rate, the valve has an actuator that modifies the valve's opening value, overcoming the resistance produced by the fluid flowing in it.

Control valves vary the flow rate in a modulated manner, producing finite variations in the fluid flow section corresponding to finite changes in the input signal from the actuator.

A typical actuator consists of an electric motor connected to the valve gate by means of a gearbox and a mechanical drive system.

The actuator ca be integrated with various auxiliary components, such as mechanical and electrical safety limit switches, manual drive systems, and position readers.

If available, valve position is normally measured with a potentiometer (feedback valve) to obtain more accurate control.
The connection diagram with controller includes open/close relay commands.

Figure 24 - Connection diagram for floating valve
If available, the auxiliary input of the controller can be configured for the valve position function.

Figure 25 - Connection diagram for feedback valve

Based on process dynamics, the controller determines the output value that drives the valve actuator so that valve opening maintains the required process variable value.
It is possible to limit the valve stroke by means of two limit stop contacts connected to two digital inputs of the instrument set with function F.In=V.END.O (opening limit stop) and F.In=V.END.C (closing limit stop). Limit stop functions are also available as logical states to be set via Logical Function Blocks.

\subsection*{5.14.1. Valve control parameters}

The controller controls the valves with the following parameters of the VALVE submenu:
- TRAVL Actuator travel time: the time the valve takes to go from completely open to completely closed (or vice versa). Settable with resolution of one second, this is a mechanical characteristic of the valve + actuator group.
NOTE: if the actuator stroke is mechanically limited, reduce the TRAVL value proportionally.
- TIM.LO Minimum impulse: expressed as a forcentage (with resolution of \(0.1 \%\)) of actuator time, represents the minimum change in valve position corresponding to the minimum change in power supplied by the controller (power below which the actuator physically does not respond to the command).
Raising TIM.LO lowers wear on the actuator to the detriment of precise positioning. Minimum impulse duration is settable in TIM.ON as a forcentage of actuator time.
- TIM.HI Impulse setpoint: expressed as a forcentage (with resolution of \(0.1 \%\)) of actuator time, represents the deviation in position (requested position - real position) below which the maneuver request becomes impulsive. TIM.HI is only active with TIM.OF=0 Impulse approach allows fine tuning of the position valve, which is especially useful in case of high mechanical inertia.
Setting TIM.HI \(=0\) excludes positioning modulation.
- TIM.ON: it is the shortest time accepted for the valve command pulse, expressed as forcentage of the "actuator time"
- TIM.OF: it is the shortest time between two Valve ON pulse command, expressed as forcentage of the "actuator time".
- Setting TIM.OF=0 this function is excluded.
- Setting TIM.OFF \(\neq 0\) the Valve movement becomes pulsing; ON pulse time= TIM.ON and OFF pulse time= TIM.OF
If the value TIM.OF<TIM.ON the value is forced to TIM.ON.
- DEAD.B Deadband: this is a deviation band between the control setpoint and the process variable within which the controller does not supply any command to the valve (Open = OFF; Close = OFF).
It is expressed as a forcentage of full-scale and is symmetrical to the setpoint. Once the process is defined, the deadband is used to prevent stressing the actuator with repeated commands that would be irrelevant to the control.
By setting DEAD.B = 0 the deadband is excluded.

\subsection*{5.14.2. Valve control modes}

In valve control, every request for a maneuver greater than minimum impulse is sent to the actuator via the relays with function V.OPEN / V.CLOS.

In the case of floating valve each action updates the assumed position of the virtual potentiometer calculated on the basis of declared actuator travel time. This mode always provides an assumed valve position, which is compared with the controller's position request.
After reaching an assumed end position (fully open or fully closed determined by the virtual potentiometer), the controller supplies an additional command in the same direction, thereby ensuring that the real end position is reached.
With feedback valve, the actual position is acquired via the auxiliary analog input of the controller, which reparameterizes the value as a forcentage (0.0 - 100.0\%), compares it to the required position, then sends the appropriate command to the valve.
Calibration is required to store the minimum and maximum positions of the potentiometer.
The actuators are normally protected against an OPEN command in fully open position or a CLOSE command in fully closed position.
There are two setpoint approach modes:
- Non-impulsive behavior

Set TIM.HI = 0 and TIM.OF=0 for non-impulsive behavior: every request greater than TIM.LO is continually sent to the actuator via the V.OPEN / V.CLOS outputs.
The shortest pulse time is settable in TIM.ON as forcentage of the "actuator time", it is recommended to set TIM.ON=TIM.LO
With power equal to \(100.0 \%\) or to \(0.0 \%\), the corresponding output remains on.

\section*{- Impulsive behavior}

Set TIM.HI \(=0\) and TIM.OF=0 for impulsive behavior. every request greater than TIM.LO is sent to the actuator via the V.OPEN / V.CLOS outputs with impulses having a duration of TIM.ON.
TIM.HI defines the deviation within which the movement becomes pulsing.
With power equal to \(100.0 \%\) or to \(0.0 \%\), the corresponding output remains on.

With TIM.OF \(\neq 0\), every request greater than TIM.LO is sent to the actuator via the V.OPEN / V.CLOS outputs with impulses having a duration of TIM.ON and TIM.OF. In the case of floating valve, with power \(\leq 10.0 \%\), or \(\geq\) \(90.0 \%\), the impulses are independent of TIM.LO.
With power equal to \(100.0 \%\) or to \(0.0 \%\), the corresponding output remains in modulation.

With the controllers in manual, setting parameter KEY.MO = On allows direct control of the valve open and close commands with the \(\Delta\) and \(\nabla\) only when HOME is displayed. When the controller goes to automatic mode, with a floating valve, the assumed position is calculated starting from the set manual power.

Valve connection diagram
for models 850V (or 850PV)-X-RR-R..
default OUT2 (OPEN), OUT3 (CLOSE)

Valve connection diagram for models 850 V (or 850PV)-X-RR-0... / 850V (or 850PV)-X-RR-D...
default OUT2 (OPEN), OUT3 (CLOSE)

\subsection*{5.15. Energy counter}

The Energy Counter function lets you calculate the total energy transferred to the load and estimate its cost.
The Energy Counter function can be linked to two controller outputs. The count is run only if the chosen output has HEAT / COOL function.
You can display the following information on the user configuration menu:
- Load current (parameter CURR). This is measured directly if the CT1 or CT1+CT2 option is present. CURR is expressed in amfores and can have values from 0.0 to 99.9.
- Power on load, parameter OU.KW_1 (or OU.KW_2), calculated in kW. Power is calculated:
o if nominal power is not zero, based on nominal power P.LOAD_1 (identical for P.LO_AD_2), as \% of same
o if nominal power is zero, by using line voltage V.LINE_1 (or V.LINE_2) and current (here as well, considering PID power \%)
OU.KW_1 (identical for OU.KW_2) can have values from 0.00 to 99.99.
- Time taken to count energy (parameter E.TIM_1 or E.TIM_2) value from 0 to 999 hours
- Energy on load (parameter O.KWH_1 or O.KWH_2) value from 0.00 to 99.99 kWh
- Energy counter transferred to load (parameter E.KWH_1 or E.KWH_2), calculated in kWh.
E.KWH_1 (identical for E.KWH_2) can have values from 0 to 9999.
The energy count does not depend on the output type, and is also done for continuous outputs (A for 850 and C for \(1650 / 1850\)).
The energy count stops when it reaches the maximum of 9999 kWh or maximum time E.TIM_1 (or E.TIM_2) at 999 hours. The count is not linked to output type.
- Cost of energy transferred to load (parameter E.CST_1 or E.CST_2). Cost is calculated based on nominal cost of energy for kWh (parameter E.COST_1 or E.COST_2) by using the formula E.CST_1 = E.KWH_1 \(\times\) E.COST_1 (or E.CST_2 = E.KWH_2 \(\times\) E.COST_2). E.CST_1 (identical for E.CST_2) can have values from 0 to 9999 (with rounding-off to 0.5).

\subsection*{5.16. Logic Oforations}

\subsection*{5.16.1. Function logic blocks}

By means of Logic Function Blocks, the Logic Oforations function processes the values of input variables to obtain values for the output variables.
This lets you control the processes very precisely, because you can make a number of actions subject to a series of essential requisites.

The Function Blocks are run every 100 msec in sequence, from LFB1 to LFB32.
Function block execution is suspended in Software OFF conditions.
Typical maximum delay from activation of an input and corresponding output \(=100 \mathrm{msec}\).

The Function Blocks are programmed with GF_eXpress software.
There is a maximum of 32 Logic Function Blocks. Each Logic Block manages up to 4 input variables and 1 variable output. Four types of logic oforations on input variables \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) and d can be forformed on the Function Blocks
- (a AND b) OR (c AND d)
- (a OR c) AND (b OR d)
- a ORbORcORd
- a AND b AND c AND d
where the AND oforator means that the linked oforands must evaluate to "true" for the result to be "true," whereas with the OR oforator is it sufficient for only one linked oforand to evaluate to "true" for the result to be "true".

Parentheses change the order of evaluation of the expressions, i.e., expressions in parentheses are evaluated first, and the result is then used for expressions outside parentheses.

The input variables (\(\mathbf{a}, \mathbf{b}, \mathbf{c}, \mathbf{d}\)) to each Function Block can refer to:
- digital inputs (3 for model 850, 5 for models 1650 and 1850),
- auxiliary digital inputs (for model 1850),
- state of alarms,
- state of control output,
- state of controller,
- LFB_OUT_1...LFB_OUT_32,
- state of setpoint programmer,
- variables LFB_OUT_01...LFB_OUT_32 from other Function Blocks.
-
The result of the Logic Oforations function can act on:
- state of controller,
- state of setpoint programmer,
- state of alarms,
- outputs, by directly setting the state.

\subsection*{5.16.2. Groups of variables}

The controller provides a large number of variables that can be used in input for Logic Oforations.
The controller has the following groups of homogeneous variables:

State Keys
BUT1
BUT2

\section*{BUT3}

UP
DOWN

\section*{State of digital inputs}

DIGITAL INPUT 1
DIGITAL INPUT 2
DIGITAL INPUT 3
DIGITAL INPUT 4
DIGITAL INPUT 5
Status of auxiliary digital Inputs
AUX DIGITAL INPUT 1
AUX DIGITAL INPUT 2
AUX DIGITAL INPUT 3
AUX DIGITAL INPUT 4
AUX DIGITAL INPUT 5
AUX DIGITAL INPUT 6
AUX DIGITAL INPUT 7
AUX DIGITAL INPUT 8

\section*{State of digital outputs}

OUTPUT 1
OUTPUT 2
OUTPUT 3
OUTPUT 4

\section*{Status of auxiliary digital Outputs}

AUX OUTPUT 1
AUX OUTPUT 2
AUX OUTPUT 3
AUX OUTPUT 4
AUX OUTPUT 5
AUX OUTPUT 6
AUX OUTPUT 7
AUX OUTPUT 8

\section*{Status of auxiliary relay Outputs \\ AUX RELAY 1 \\ AUX RELAY 2 \\ AUX RELAY 3 \\ AUX RELAY 4 \\ AUX RELAY 5 \\ AUX RELAY 6 \\ AUX RELAY 7 \\ AUX RELAY 8}

\section*{Menu navigation status}

HOME1 MENU
HOME2 MENU

\section*{Function commands}

AU-MA1 (select Automatic / Manual for PID.1)
LO-RE1 (select Local / Remote for PID.1)
HOLD1 (variable hold of main input for PID.1)
A.TUNE1 (activate Auto-Tuning for PID.1)
S.TUNE1 (activate Self-Tuning for PID.1)

AU-MA2 (select Automatic/Manual for PID.2)
LO-RE2 (select Local/Remote for PID.2)
HOLD2 (variable hold of main input for PID.2)
A.TUNE2 (activate Auto-Tuning for PID.2)
S.TUNE2 (activate Self-Tuning for PID.2)

AL ACK (reset alarms latch)
ON-OF (ON-OFF software)
FKEY (block F key)
WRI.EN (enable write configuration parameter)
REC. 0 (Select parameter recipe bit 0)
(see chapter "Managing recipes")
REC. 1 (Select parameter recipe bit 1)
(see chapter "Managing recipes")
REC. 2 (Select parameter recipe bit 2)
(see chapter "Managing recipes")
SEL1.0 (Select setpoint M.SP1.1/M.SP2.1 or M.SP1.1...M.SP4.1 bit 0 for PID.1)

SEL2.0 (Select setpoint M.SP1.2/M.SP2.2 or M.SP1.2...M.SP4.2 bit 0 for PID.2)

SEL1.1 (Select setpoint M.SP1.1...M.SP4.1 bit 1 for PID.1)
SEL2.1 (Select setpoint M.SP1.2...M.SP4.2 bit 1 for PID.2)
SE12.0 (Select setpoint M.SP1.1/M.SP2.1 and M.SP1.2/M.SP2.2 r M.SP1.1...M.SP4.1 bit 0 and M.SP1.2/M.SP4.2 bit 0)
SE12.1 (Select setpoint M.SP1.1...M.SP4.1 bit 1
and M.SP1.2...M.SP4.2 bit 1)
T.STST1 (start/stop timer for TIMER1)
T.RST1 (reset timer for TIMER1)
T.STST2 (start/stop timer for TIMER2)
T.RST2 (reset timer for TIMER2)
P.PR1.0 (start/stop programmer for PROGR. 1 bit 0)
P.PR1.1 (start/stop programmer for PROGR. 1 bit 1)
P.PR1.2 (start/stop programmer for PROGR. 1 bit 2)
P.PR1.3 (start/stop programmer for PROGR. 1 bit 3)
P.STST1 (start/stop programmer for PROGR.1)
P.STRT1 (start programmer for PROGR.1)
P.STOP1 (stop programmer for PROGR.1)
P.RST1 (reset programmer for PROGR.1)
P.SKP1 (skip to end program for PROGR.1)

ST.SKP1 (skip to end step for PROGR.1)
ST.EN1.1 (consent 1 to start step for PROGR.1)
ST.EN1.2 (consent 2 to start step for PROGR.1)
ST.EN1.3 (consent 3 to start step for PROGR.1)
ST.EN1.4 (consent 4 to start step for PROGR.1)
P.PR2.0 (Select program for PROGR. 2 bit 0)
P.PR2.1 (Select program for PROGR. 2 bit 1)
P.PR2.2 (Select program for PROGR. 2 bit 2)
P.PR2.3 (Select program for PROGR. 2 bit 3)
P.STST2 (start/stop programmer for PROGR.2)
P.STRT2 (start programmer for PROGR.2)
P.STOP2 (stop programmer for PROGR.2)
P.RST2 (reset programmer for PROGR.2)
P.SKP2 (skip to end program for PROGR.2)

ST.SKP2 (skip to end step for PROGR.2)
ST.EN2.1 (consent 1 to start step for PROGR.2)
ST.EN2.2 (consent 2 to start step for PROGR.2)
ST.EN2.3 (consent 3 to start step for PROGR.2)
ST.EN2.4 (consent 4 to start step for PROGR.2)
LED.GREEN. 1
LED.GREEN. 2
LED.GREEN. 3
LED.GREEN. 4
LED.GREEN. 5
LED.GREEN. 6
LED.GREEN. 7
LED.GREEN. 8
LED.RED. 1
LED.RED. 2
LED.RED. 3
LED.RED. 4
LED.RED. 5
LED.RED. 6
LED.RED. 7
LED.RED. 8
LED.OUT. 1
LED.OUT. 2
LED.OUT. 3

LED.OUT. 4
LED.RUN
LED.MANUAL
LED.TUNE
LED.RAMP
LED.REMOTE
LED.SP1/2
CY.RES (Reset switching cycle count shown in INDG.S)
FORCED END OF ALL D.ON TIMERS
(forcing at the end of counting for all D.ON timers)
FORCED END OF ALL D.OF TIMERS
(forcing at the end of counting for all D.OF timers)
FORCED END OF ALL D.ONID.OF TIMERS
(forcing at the end of counting for all D.ON timers and D.OF)

\section*{Function state}

PID heating for PID. 1
PID cooling for PID. 1
PID zero for PID. 1
ON/OFF heating for PID. 1
ON/OFF cooling for PID. 1
ON/OFF zero for PID. 1
PID heating for PID. 2
PID cooling for PID. 2
PID zero for PID. 2
ON/OFF heating for PID. 2
ON/OFF cooling for PID. 2
ON/OFF zero for PID. 2
OR OF ALARMS (state active alarms OR)
AL1...AL4 (Alarm AL1... 4 state)
PW ALARM 1 (Power Alarm state for PID.1)
PW ALARM 2 (Power Alarm state for PID.2)
LBA ALARM 1 (LBA Alarm state for PID.1)
LBA ALARM 2 (LBA Alarm state for PID.2)
HB ALARM (HB Alarm state)
LO ALARM 1 (input in LOW state for main input)
LO ALARM 2 (input in LOW state for input)
LO ALARM MATH1 (input in LOW state for math function block 1)
LO ALARM MATH2 (input in LOW state for math function block 2)
LO ALARM MATH3 (input in LOW state for math function block 3)
LO ALARM MATH4 (input in LOW state for math function block 4)
LO ALARM MATH5 (input in LOW state for math function block 5)
LO ALARM MATH6 (input in LOW state for math function block 6)
LO ALARM MATH7 (input in LOW state for math function block 7)
LO ALARM MATH8 (input in LOW state for math function block 8)
HI ALARM 1 (input in HIGH state for main input)
HI ALARM 2 (input in HIGH state for auxiliary input)
HI ALARM MATH1 (input in HIGH state for math function block 1)
HI ALARM MATH2 (input in HIGH state for math function block 2)
HI ALARM MATH3 (input in HIGH state for math function block 3)
HI ALARM MATH4 (input in HIGH state for math function block 4)
HI ALARM MATH5 (input in HIGH state for math function block 5)

HI ALARM MATH6 (input in HIGH state for math function block 6)
HI ALARM MATH7 (input in HIGH state for math function block 7)
HI ALARM MATH8 (input in HIGH state for math function block 8)
ERR ALARM 1 (input in ERR state for main input)
ERR ALARM 2 (input in ERR state for auxiliary input)
ERR ALARM MATH1 (input in ERR state for math function block 1)
ERR ALARM MATH2 (input in ERR state for math function block 2)
ERR ALARM MATH3 (input in ERR state for math function block 3)
ERR ALARM MATH4 (input in ERR state for math function block 4)
ERR ALARM MATH5 (input in ERR state for math function block 5)
ERR ALARM MATH6 (input in ERR state for math function block 6)
ERR ALARM MATH7 (input in ERR state for math function block 7)
ERR ALARM MATH8 (input in ERR state for math function block 8)
SBR \(1 \quad\) (input in SBR state for main input)
SBR 2 (input in SBR state for auxiliary input)
SBR ALARM MATH1 (input in SBR state for math function block 1)
SBR ALARM MATH2 (input in SBR state for math function block 2)
SBR ALARM MATH3 (input in SBR state for math function block 3)
SBR ALARM MATH4 (input in SBR state for math function block 4)
SBR ALARM MATH5 (input in SBR state for math function block 5)
SBR ALARM MATH6 (input in SBR state for math function block 6)
SBR ALARM MATH7 (input in SBR state for math function block 7)
SBR ALARM MATH8 (input in SBR state for math function block 8)
O.LO ALARM MATH1 (output in LOW state for math function block 1)
O.LO ALARM MATH2 (output in LOW state for math function block 2)
O.LO ALARM MATH3 (output in LOW state for math function block 3)
O.LO ALARM MATH4 (output in LOW state for math function block 4)
O.LO ALARM MATH5 (output in LOW state for math function block 5)
O.LO ALARM MATH6 (output in LOW state for math function block 6)
O.LO ALARM MATH7 (output in LOW state for math function block 7)
O.LO ALARM MATH8 (output in LOW state for math function block 8)
O.HI ALARM MATH1 (output in HIGH state for math function block 1)
O.HI ALARM MATH2 (output in HIGH state for math function block 2)
O.HI ALARM MATH3 (output in HIGH state for math function block 3)
O.HI ALARM MATH4 (output in HIGH state for math function block 4)
O.HI ALARM MATH5
O.HI ALARM MATH6
O.HI ALARM MATH7
O.HI ALARM MATH8

CALC ALARM MATH1

CALC ALARM MATH2
CALC ALARM MATH3
CALC ALARM MATH4
CALC ALARM MATH5
CALC ALARM MATH6
CALC ALARM MATH7
CALC ALARM MATH8

STATUS AUTOMATIC for PID. 1
STATUS MANUAL for PID. 1
STATUS LOCAL for PID. 1
STATUS REMOTE for PID. 1
STATUS AUTOMATIC for PID. 2
STATUS MANUAL for PID. 2
STATUS LOCAL for PID. 2
STATUS REMOTE for PID. 2
OUT1 SWITCH ALARM (OUT1.S count exceeded with output 1 SWITCH threshold)
OUT2 SWITCH ALARM (OUT2.S count exceeded with output 2 SWITCH threshold)
OUT3 SWITCH ALARM (OUT3.S count exceeded with output 3 SWITCH threshold)
OUT4 SWITCH ALARM (OUT4.S count exceeded with output 4 SWITCH threshold)
DIGITAL INPUT SWITCH ALARM
(INDG.S count exceeded with SWITCH threshold)

MESSAGE 01 (show message at scroll 1)
MESSAGE 02 (show message at scroll 2) MESSAGE 03 (show message at scroll 3) MESSAGE 04 (show message at scroll 4) MESSAGE 05 (show message at scroll 5) MESSAGE 06 (show message at scroll 6) MESSAGE 07 (show message at scroll 7) MESSAGE 08 (show message at scroll 8) MESSAGE 09 (show message at scroll 9) MESSAGE 10 (show message at scroll 10) MESSAGE 11 (show message at scroll 11) MESSAGE 12 (show message at scroll 12) MESSAGE 13 (show message at scroll 13) MESSAGE 14 (show message at scroll 14) MESSAGE 15 (show message at scroll 15) MESSAGE 16 (show message at scroll 16) MESSAGE 17 (show message at scroll 17) MESSAGE 18 (show message at scroll 18) MESSAGE 19 (show message at scroll 19) MESSAGE 20 (show message at scroll 20)

MESSAGE 21 (show message at scroll 21)
MESSAGE 22 (show message at scroll 22)
MESSAGE 23 (show message at scroll 23)
MESSAGE 34 (show message at scroll 24)
MESSAGE 25 (show message at scroll 25)
MESSAGE 26 (show message at scroll 26)
MESSAGE 27 (show message at scroll 27)
MESSAGE 28 (show message at scroll 28)
MESSAGE 29 (show message at scroll 29)
MESSAGE 30 (show message at scroll 30)
MESSAGE 31 (show message at scroll 31)
MESSAGE 32 (show message at scroll 32)
HOME 1/2 MENU (set HOME1 or HOME2 if in HOME menu)
for regulator models with programmer there are also:
PROGRAMMER IN HBB ALARM for PROGR. 1
PROGRAMMER IN RUN for PROGR. 1
PROGRAMMER IN HOLD for PROGR. 1
PROGRAMMER IN READY for PROGR. 1
PROGRAMMER IN END for PROGR. 1
STEP EVENT 1 for PROGR. 1
STEP EVENT 2 for PROGR. 1
STEP EVENT 3 for PROGR. 1
STEP EVENT 4 for PROGR. 1
PROGRAMMER IN HBB ALARM for PROGR. 2
PROGRAMMER IN RUN for PROGR. 2
PROGRAMMER IN HOLD for PROGR. 2
PROGRAMMER IN READY for PROGR. 2
PROGRAMMER IN END for PROGR. 2
STEP EVENT 1 for PROGR. 2
STEP EVENT 2 for PROGR. 2
STEP EVENT 3 for PROGR. 2
STEP EVENT 4 for PROGR. 2
For models with Master serial you have:
MAS. 01 (Master 1 value, for bit type data only)
MAS. 02 (Master 2 value, for bit type data only) MAS. 03 (Master 3 value, for bit type data only) MAS. 04 (Master 4 value, for bit type data only) MAS. 05 (Master 5 value, for bit type data only) MAS. 06 (Master 6 value, for bit type data only) MAS. 07 (Master 7 value, for bit type data only) MAS. 08 (Master 8 value, for bit type data only) MAS. 09 (Master 9 value, for bit type data only) MAS. 10 (Master 10 value, for bit type data only) MAS. 10 (Master 10 value, for bit type data only) MAS. 11 (Master 11 value, for bit type data only) MAS. 12 (Master 12 value, for bit type data only) MAS. 13 (Master 13 value, for bit type data only) MAS. 14 (Master 14 value, for bit type data only) MAS. 15 (Master 15 value, for bit type data only) MAS. 16 (Master 16 value, for bit type data only) MAS. 17 (Master 17 value, for bit type data only) MAS. 18 (Master 18 value, for bit type data only) MAS. 19 (Master 19 value, for bit type data only) MAS. 20 (Master 20 value, for bit type data only)

Support coefficients (may be displayed and set in the User menu)
L.C1 (logical coefficient 1)
L.C2 (logical coefficient 2)
L.C3 (logical coefficient 3)
L.C4 (logical coefficient 4)
L.C5 (logical coefficient 5)
L.C6 (logical coefficient 6)
L.C7 (logical coefficient 7)
L.C8 (logical coefficient 8)
L.C9 (logical coefficient 9)
L.C10 (logical coefficient 10)
L.C11 (logical coefficient 11)
L.C12 (logical coefficient 12)
L.C13 (logical coefficient 13)
L.C14 (logical coefficient 14)
L.C15 (logical coefficient 15)
L.C16 (logical coefficient 16)
L.C17 (logical coefficient 17)
L.C18 (logical coefficient 18)
L.C19 (logical coefficient 19)
L.C20 (logical coefficient 20)
L.C21 (logical coefficient 21)
L.C22 (logical coefficient 22)
L.C23 (logical coefficient 23)
L.C24 (logical coefficient 24)
L.C25 (logical coefficient 25)
L.C26 (logical coefficient 26)
L.C27 (logical coefficient 27)
L.C28 (logical coefficient 28)
L.C29 (logical coefficient 29)
L.C30 (logical coefficient 30)
L.C31 (logical coefficient 31)
L.C32 (logical coefficient 32)

Status of digital outputs from Mathematical Function Blocks
MFB. 1 DIGITAL OUTPUT
MFB. 2 DIGITAL OUTPUT
MFB. 3 DIGITAL OUTPUT
MFB. 4 DIGITAL OUTPUT
MFB. 5 DIGITAL OUTPUT
MFB. 6 DIGITAL OUTPUT
MFB. 7 DIGITAL OUTPUT MFB. 8 DIGITAL OUTPUT

\subsection*{5.16.3. Programming logic Function Blocks}
5.16.3.1. Configuration page

The GF_eXpress program's Logic Function Blocks configuration page lets you configure and debug the blocks.

1. Button to return to previous function block.
2. Number of function block and type of logic oforations run.
3. Name of function block. You can insert an optional descriptive name of the function block.
4. Button to go to next function block.
5. Output value when result of function oforations is true.
6. Graph of DELAY TIMER.
7. Name of output. You can insert an optional descriptive name of the output.
8. Type or variable of activated output.
9. Duration of ON delay.
10. Duration of OFF delay.
11. Unità di misura dei tempi di ritardo (secondi o minuti).
12. Type or variable of input evaluated for input d. The Input d box is used to insert an optional descriptive name of input \(\mathbf{d}\).
13. Type or variable of input evaluated for input c. The Input d box is used to insert an optional descriptive name of input \(\mathbf{c}\).
14. Type or variable of input evaluated for input b. The Input d box is used to insert an optional descriptive name of input \(\mathbf{b}\).
15. Type or variable of input evaluated for input a. The Input a box is used to insert an optional descriptive name of input \(\mathbf{a}\).
16. Graph of logic oforation run. The input boxes also show the value that the input must assume in order to be considered "true".
17. Selection of logic function applied to function block.
18. Button to print Logic Function Block in use.
19. Button for initialising Logical Functional Blocks (as upon controller power-on).
20. Button for showing an overview of the function blocks enabled.
21. Button for showing the function block shown in the box.
22. Display current status of input a (only if controller is connected).
23. Display current status of input \(b\) (only if controller is connected).
24. Display current status of input c (only if controller is connected).
25. Display current status of input \(d\) (only if controller is connected).
26. Display current status of output (only if controller is connected).
27. Display current status of ON (only if controller is connected).
28. Display current status of OFF(only if controller is connected).

\subsection*{5.16.3.2. Enabling logic function block and selecting} the type of logic function

The logic function block page is enabled automatically as soon as you select a type of logic function.
If Disabled is selected, the page is not deleted. The configuration of inputs, outputs and delay times remains stored in the software program.
When you select the type of logic function assigned to the logic function block, its symbol changes as well, as shown in the figures below.

TYPE 1 - (a AND b) OR (c AND d)

TYPE 2 - (\(\mathbf{a}\) OR c) AND (b OR d)

TYPE 3 - \(\mathbf{a}\) OR \(\mathbf{b}\) OR \(\mathbf{c}\) OR \(\mathbf{d}\)

TYPE 4 - a AND b AND c AND d

TYPE 5 - SR flip-flop
The Logical Function Block output will be as shown in the table of truth of SR flip-flop appearing below.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|c|}{ Input } & Output & \multirow{2}{*}{ Action } \\
\cline { 1 - 3 } \(\mathbf{S}\) & \(\mathbf{R}\) & \(\mathbf{Q}_{\mathrm{n}+1}\) & \\
\hline 0 & 0 & \(\mathrm{Q}_{\mathrm{n}}\) & No Change \\
\hline 0 & 1 & 0 & Reset Output \\
\hline 1 & 0 & 1 & \\
\hline 1 & 1 & Undefined & Undefined \\
\hline
\end{tabular}

TYPE 6 - T flip-flop
The Logical Function Block output will be as shown in the table of truth of T flip-flop appearing below
\begin{tabular}{|c|c|}
\hline Input & Output \\
\hline \(\mathbf{T}\) & \(\mathbf{Q}_{\mathrm{n}+1}\) \\
\hline 0 & \(\mathrm{Q}_{\mathrm{n}}\) \\
\hline 1 & \(\operatorname{NOT}(\mathrm{Qn})\) \\
\hline
\end{tabular}

TYPE 7 - Edge detection
An impulse with a duration of one cycle of execution of logical functions (100 ms) will be generated on the Logical Function Block output every time a source of an increase in input IN is intercepted

You can name the logic function block so that it can be easily recognized for future use

The name will be saved as part of the "configuration recipe" only on the PC. If you copy the configuration to other controllers, the controller to which the configuration is copied will not contain these descriptive names.

\subsection*{5.16.3.3. Configuring input variables}

Configure the four input variables \(\mathbf{a}, \mathbf{b}, \mathbf{c}\) and \(\mathbf{d}\), one at a time. On the pull-down menu, select the variable to be assigned to the input.
The options are:
- ON, input always ON;
- OFF, input always OFF;
- one of the values in the groups of Digital input state, Digital output state, and Function state variables listed above in paragraph "5.16.2. Groups of variables" on page 229.

By clicking the input's icon you can reverse its reference state from normally open (NO) to normally closed (NC) and vice versa.
This cannot be done if you chose ON or OFF on the pulldown menu.

NO

NC

If digital inputs \(\operatorname{IN} 1, \operatorname{IN} 2, \operatorname{IN} 3, \operatorname{IN} 4, \operatorname{IN} 5\) are among inputs a, b, c and d, and you want them to be used only in Function Blocks, you have to configure the function Func = LFB.IN for them.

If you want to transmit the output state of a logic function block (LOGIC FUNCTION BLOCK OUTPUT 1...16) to an output OUT1...OUT4 of the controller, you have to configure the function F.out = LFB.O for these outputs and specify in FB.O.N the number of the function block output.

Complete the configuration by giving a descriptive name to each input so that it can be easily recognized for future use.

The name will be saved as part of the "configuration recipe" only on the PC and will not be transferred to the controller. Therefore, when the controllers are cloned, the controller to which the configuration was copied will not contain this descriptive name.

\subsection*{5.16.3.4. Configuring the output}

Configure the output by selecting on the pull-down menu one of the values listed in the Function Commands group shown above in paragraph "5.16.2. Groups of variables" on page 229.
This will be the output variable whose value will be changed by the result of the logic oforation processed with the input variables data.

If the function given the output of the function block is the same assigned to a digital input, the state of this input has priority.

By clicking the output's icon you can reverse, from normally open (NO) to normally closed (NC) and vice versa, the transmitted state if the result of the logic oforation is "true."

NO

NC

End the configuration by giving a descriptive name to the output so that it can be easily recognized for future use.

The name will be saved as part of the "configuration recipe" only on the PC and will not be transferred to the controller. Therefore, when the controllers are cloned, the controller to which the configuration was copied will not contain this descriptive name.

\subsection*{5.16.3.5. Configuring delays}

For logical function types 1, 2, 3 and 4 only ,you can insert a delay between the result of the logic oforation and the change in value of the output variable.
These delays, which can differ from the "true" result and the "false" result of the logic oforation, are set on the DELAY TIMER.
Delays can be counted in seconds or in minutes
Configure both delays:
- ON, which indicates how long after a "true" result of the logic oforation the value of the output variable is changed.
- OFF, which indicates how long after a "false" result of the logic oforation the value of the output variable is changed

When the time is set to 0 (zero), the change in value of the output variable is instantaneous.
If both delays for ON and OFF equal 0 , the DELAY TIMER is ignored.

The counter values that have passed and remain in the ON and OFF delay times are reported in the variables:
- E.ON.01...E.ON. 32 (time passed of ON)
- R.ON.01...R.ON. 32 (time left of ON)
- E.OF.01...E.OF. 32 (time passed of OFF)
- R.OF.01 ...R.OF. 32 (time passed of OFF)

The delay times for ON (D.ON.01...D.ON.32) and OFF (D.OF.01...D.OF.32) and the counter values that have passed and remain may be entered in the user menu.

\subsection*{5.16.3.6. Copy of a Logical Function Block}

A copy of a Logical Function Block may be made using the dedicated window, selecting the source Function Block (a single block only) and the destination Function Block(s) (multiple blocks formitted).
The window is opened using the 目 icon or the "Copy of Logic Function Blocks" command in the Service menu

\subsection*{5.17. Math oforations}

\subsection*{5.17.1. Math function blocks}

The math oforations function processes (with Math Function Blocks) the values of input variables to obtain values for output variables.
Math function blocks are programmed with GF_eXpress software.

Math function blocks are executed every 60 ms , in sequence from MFB1 to MFB8. Therefore, the maximum delay between the change of an input and the update of its output is 60 ms . Math function blocks continue to be executed even in Software OFF conditions.
There is a maximum of 8 function blocks, each of which can handle up to 2 analogue variables and 2 digital variables in input and 1 analogue variable and 1 digital variable as output.

Input variables (\(\mathbf{a}, \mathbf{b}\)) can refer to:
- analog inputs,
- setpoint,
- alarm thresholds,
- control powers,
- support coefficients settable from serial or user menu,
- variables MFB_OUT_01... MFB_OUT_08 from other function blocks,
- LFB_OUT_1...LFB_OUT_32.

The input variables (\(c, d\)) refer to variables LFB_OUT_01... LFB_OUT_32 from logic function blocks.

2 types of oforations on inputs variables \(\mathbf{a}, \mathbf{b}\) can be executed on math function blocks:
- Type 1: MATH FUNCTION (a, b);
- Type 2: MATH FUNCTION (a) + LOGIC RESET COMMAND (c).
- Type 3: UP/DOWN COUNTER with prescaler \(\mathrm{x} 1, \mathrm{x} 10\), x100, x1000 of the logical input (d) + reset logical input (c) with threshold (UP) or preset (DOWN) analogue (a) and digital output at end of count + analogue counter output (b);
- Type 4: COMPARISON of \((a, b)\) with digital output

The result of the Math Oforations function can act on:
- process variables,
- local setpoint,
- value of analog outputs
- Reference for alarms AL1...AL4

\subsection*{5.17.2. Groups of variables}

The controller offers many variables that can be used in input for math oforations.
These include the following groups of homogeneous variables:

\section*{Analog inputs}

IN1 Main input
IN2 Auxiliary input
CURR1 input from current transformer CT1
CURR2 input from current transformer CT2

\section*{Process variables}

PV. 1 Process variable for PID. 1
PV. 2 Process variable for PID. 2

\section*{Local setpoint}

NOTE: When the SETP.x is managed as a Math Function Block output, the parameter can no longer be changed from the display or by serial connection.
SETP1 local setpoint for PID. 1
SETP2 local setpoint for PID. 2

\section*{Multiset setpoint}
M.SET1. 1 multiset setpoint 1 for PID. 1
M.SET2.1 multiset setpoint 2 for PID. 1
M.SET3.1 multiset setpoint 3 for PID. 1
M.SET4.1 multiset setpoint 4 for PID. 1
M.SET1. 2 multiset setpoint 1 for PID. 2
M.SET2.2 multiset setpoint 2 for PID. 2
M.SET3. 2 multiset setpoint 3 for PID. 2
M.SET4.2 multiset setpoint 4 for PID. 2

\section*{Alarm thresholds}

ALRM1 alarm 1 threshold
ALRM2 alarm 2 threshold
ALRM3 alarm 3 threshold
ALRM4 alarm 4 threshold

\section*{Control powers}

OUT.P1 for PID. 1
OUT.P2 for PID. 2

\section*{Analog outputs}

OUT.C continuous output
OUT.A1 analog output 1
OUT.A2 analog output 2

\section*{Support coefficients (displayable and settable on User menu)}
M.C1 mathematical coefficient 1
(with setting of the decimal point position in M.DECP1)
M.C2 mathematical coefficient 2
(with setting of the decimal point position in
M.DECP2)
M.C3 mathematical coefficient 3
(with setting of the decimal point position in M.DECP3)
M.C4 mathematical coefficient 4
(with setting of the decimal point position in M.DECP4)
M.C5 mathematical coefficient 5
(with setting of the decimal point position in M.DECP5)
M.C6 mathematical coefficient 6
(with setting of the decimal point position in M.DECP6)
M.C7 mathematical coefficient 7
(with setting of the decimal point position in M.DECP7)
M.C8 mathematical coefficient 8
(with setting of the decimal point position in M.DECP1)

\subsection*{5.17.3. Programming Math Function Blocks}

\subsection*{5.17.3.1. Configuration page}

The GF_eXpress program's Math Function Blocks configuration pages let you configure and debug the blocks. There are two different pages, one for each type of oforation.

Type 1 oforations: MATH FUNCTION (\(a, b\))

ADD: reports as the output of the Math Function Block the value of the sum of the parameter connected with "Input a" and the parameter connected with "Input b"

SUBTRACT: reports as the output of the Math Function Block the value of the difference between the parameter connected with "Input a" and the parameter connected with "Input b"

MULTIPLY: reports as the output of the Math Function Block the value of multiplication of the parameter connected with "Input a" and the parameter connected with "Input b"

DIVIDE: reports as the output of the Math Function Block the value of division of the parameter connected with "Input a" by the parameter connected with "Input b"

AVERAGE: reports as the output of the Math Function Block the value of the average of the parameter connected with "Input a" and the parameter connected with "Input b"

MIN: reports as the output of the Math Function Block the value of the parameter connected with "Input a" if this parameter is less than the parameter connected with "Input b", or the value of the parameter connected with "Input b" if the parameter is less than the parameter connected with "Input a"

MAX: reports as the output of the Math Function Block the value of the parameter connected with "Input a" if this parameter is greater than the parameter connected with "Input b", or the value of the parameter connected with "Input b" if this parameter is greater than the parameter connected with "Input a"

SQR: reports as the output of the Math Function Block the value of the square root of the parameter connected with "Input a"

LOG10: reports as the output of the Math Function Block the value of the logarithm to base 10 of the parameter connected with "Input a"

LOGN: reports as the output of the Math Function Block the value of the logarithm to base N of the parameter connected with "Input a"

SENSOR BACKUP: reports as the output of the Math Function Block the value of the parameter connected with "Input a", if the first input is functioning proforly, or the value of the parameter connected with the first input, if the first input is functioning incorrectly (SBR, High, Low,...)
EXP: reports as the output of the Math Function Block the value of the exponential (ex) of the parameter connected with "Input a"

ABS: reports as the output of the Math Function Block the absolute value of the parameter connected with "Input a"

Type 2 oforations : MATH FUNCTION (a) + LOGICAL RESET COMMAND (c)

MIN LATCH: reports as the output of the Math Function Block the minimum value of the parameter connected with "Input a" starting from the last impulse that reached the block reset input via the digital parameter connected with "Input c". The reset remains active for as long as it stays at the high value.

MAX LATCH: reports as the output of the Math Function Block the maximum value of the parameter connected with "Input a" starting from the last impulse that reached the block reset input via the digital parameter connected with "Input c". The reset remains active for as long as it stays at the high value.

S\&H: reports as the output of the Math Function Block the value of the parameter connected with "Input a" for as long as the digital parameter connected with "Input c" keeps RESET input low. As soon as the digital parameter connected with "Input c" raises the RESET input, the Math Function Block output will remain steady at the value that the parameter connected to "Input a" had at the time of transition of the RESET input from LOW => HIGH.

Type 3 oforations: UP/DOWN COUNTER with prescaler \(\times 1\), x10, x100, x1000 of the logical input (d) + reset logical input
(c) with threshold (UP) or preset (DOWN) analogue (a) and digital output at end of count + analogue counter output (b)
UP COUNTER with prescaler \(\times 1\) : increases the value of the analogue output of the Math Function every time the parameter connected with digital input "Input d" switches from low logical value to high logical value (rising edge).

The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.
The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block reaches the value of the parameter connected with analogue input "Input a". Until then, the digital output of the Math Function Block will remain on LOW logical value.

UP COUNTER with prescaler x 10: : increases the value of the analogue output of the Math Function every time the parameter connected with digital input "Input d" switches from low logical value to high logical value (rising edge) ten times.

The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.

The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block reaches the value of the parameter connected with analogue input "Input a". Until then, the digital output of the Math Function Block will remain on LOW logical value.
UP COUNTER with prescaler \(\times\) 100: iincreases the value of the analogue output of the Math Function every time the parameter connected with digital input "Input d" switches from low logical value to high logical value (rising edge) one hundred times.

The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.

The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block reaches the value of the parameter connected with analogue input "Input
a". Until then, the digital output of the Math Function Block will remain on LOW logical value.
UP COUNTER with prescaler x 1000: increases the value of the analogue output of the Math Function every time the parameter connected with digital input "Input d" switches from low logical value to high logical value (rising edge) one thousand times.

The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.

The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block reaches the value of the parameter connected with analogue input "Input a". Until then, the digital output of the Math Function Block will remain on LOW logical value.

DOWN COUNTER with prescaler \(\mathbf{x}\) 1: decreases the value of the analogue output of the Math Function, starting with the value of the parameter connected with analogue "Input a", every time the parameter connected with digital input "Input d" switches from low logical value to high logical value (rising edge)
The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.

The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block is zero. Until then, the digital output of the Math Function Block will remain on LOW logical value.

DOWN COUNTER with prescaler \(\times\) 10: decreases the value of the analogue output of the Math Function, starting with the value of the parameter connected with analogue "Input a", every time the parameter connected with digital input "Input d" switches from low logical value to high logical value (rising edge) ten times
The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.
The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block is zero. Until then, the digital output of the Math Function Block will remain on LOW logical value.
DOWN COUNTER with prescaler \(\mathbf{x}\) 100: decreases the value of the analogue output of the Math Function by one, starting with the value of the parameter connected with analogue "Input a", every time the parameter connected with the digital input of the Math Function Block remains at LOW logical value.

The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.
The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block is zero. Until then, the digital output of the Math Function Block will remain on LOW
logical value.
DOWN COUNTER with prescaler x 1000: : decreases the value of the analogue output of the Math Function, starting with the value of the parameter connected with analogue "Input a", every time the parameter connected with digital input "Input d" switches from low logical value to high logical value (rising edge) one thousand times.
The value of the analogue output of the Math Function Block will remain at zero for as long as the value of the parameter connected with digital input "Input c" keeps RESET input high.

The digital output of the Math Function Block will take on the logical value HIGH when the value appearing on the analogue output of the Math Function Block is zero. Until then, the digital output of the Math Function Block will remain on LOW logical value. digital input "Input d" switches from low logical value to high logical value (rising edge) one hundred times.

Type 4 oforations : COMPARISON of \((a, b)\) with digital output GREATER keeps :

The digital output of the Math Function Block LOW if the value of the parameter connected with "Input a" is less than or equal to the value of the parameter connected with "Input b".
The digital output of the Math Function Block HIGH if the value of the parameter connected with "Input a" is greater than the value of the parameter connected with "Input b".

LESS keeps :
The digital output of the Math Function Block LOW if the value of the parameter connected with "Input a" is greater than or equal to the value of the parameter connected with "Input b".
The digital output of the Math Function Block HIGH if the value of the parameter connected with "Input a" is less than the value of the parameter connected with "Input b".

\section*{GREATER OR EQUAL keeps :}

The digital output of the Math Function Block LOW if the value of the parameter connected with "Input a" is less than the value of the parameter connected with "Input b".
The digital output of the Math Function Block HIGH if the value of the parameter connected with "Input a" is greater than or equal to the value of the parameter connected with "Input b".

LESS OR EQUAL keeps :
The digital output of the Math Function Block LOW if the value of the parameter connected with "Input a" is greater than the value of the parameter connected with "Input b".
The digital output of the Math Function Block HIGH if the value of the parameter connected with "Input a" is less than or equal to the value of the parameter connected with "Input b".

EQUAL keeps :
The digital output of the Math Function Block LOW if the value of the parameter connected with "Input a" is different from the value of the parameter connected with "Input b".

The digital output of the Math Function Block HIGH if the value of the parameter connected with "Input a" is the same as the value of the parameter connected with "Input b".

\section*{NOT EQUAL keeps :}

The digital output of the Math Function Block LOW if the value of the parameter connected with "Input a" is equal to the value of the parameter connected with "Input b".
The digital output of the Math Function Block HIGH if the value of the parameter connected with "Input a" is different from the value of the parameter connected with "Input b".

1. Button to return to previous Math Function Block.
2. Number of Math Function Block.
3. Name of Math Function Block. You can enter an optional descriptive name of the Math Function Block.
4. Button to go to next Math Function Block.
5. Button to print Math Function Block in use.
6. Name of output. You can enter an optional descriptive name of the output.
7. Output type or variable activated.
8. Setting limits control mode (Disabled \(=>\) Limits calculated automatically, Enabled => Limits set by user)
9. Type of oforation executed by Math Function Block in use.
10. Input type or variable evaluated for input \(b\). Input \(b\) box is used for entering an optional descriptive name of input \(b\).
11. Input type or variable evaluated for input a. Input a box is used for entering an optional descriptive name of input a.
12. Graphic representation of type of inputs (analog or digital) used by Math Function Block in use.
13. Selection of type of Math Function Block
14. Button for showing an overview of the Math Function Block enabled.
15. Button for showing the Math Function Block shown in the box.

By enabling manual mode for setting maximums and minimums, you see the following:
16. Minimum value that Math Function Block output can assume.
17. Maximum value that Math Function Block output can assume.
18. Value of decimal figures attributable to output.

When onLine mode is activated, the virtual values of the respective quantities, including the minimum and maximum
limits used (see yellow fields) will be shown for the analog input and output terminals.

Following a reboot of the controller after a Power ON, type 2 math function blocks always restart at their initial value. Specifically:
- 9999 for the block that memorizes the minimum,
- -1999 for the block that memorizes the maximum,
- 0 for Sample and Hold.
5.17.3.2. Enabling a function block and selecting the type of math function

The function block page is enabled automatically as soon as a type of math function is selected.
The page is not cancelled if you select Disabled. The input and output configuration stays memorized in the program software, ready to be reused without requiring a new configuration.

When you select the type of math function assigned to the function block, its symbol changes as well as shown in the figures below.

TYPE 1

TYPE 2

TYPE 3

TYPE 4

You can name the function block so that it can be easily recognized for future use.

The name will be memorized as part of the "configuration recipe" only on the PC. If you copy the configuration to another controller, the controller to which the configuration is copied will not contain the descriptive name.

\subsection*{5.17.3.3. Configuring input variables}

Configure the input variables (a, b) to TYPE 1 and TYPE 4 or (a, c) to TYPE 2 or (a, c, d) to TYPE 3, by selecting (on the pull-down menu) which variable will be assigned to the input.

In case of the logical inputs (c, d) y clicking the input's symbol you can invert its reference state between normally open (NO) and normally closed (NC).

NO

NC

ATTENTION: Following a reboot of the controller after a Power ON, type 2 math function blocks always restart at their initial value. Specifically:
- 9999 for the block that memorizes the minimum,
- -1999 for the block that memorizes the maximum,
- 0 for Sample and Hold.

If you want to transmit the output state of a math function block (MATH FUNCTION BLOCK OUTPUT 1...8) to an analog output of the controller, simply assign the selected analog output to the MFB output.

If you select support coefficients as input variables, you have to set their value in the field provided.

Complete the configuration by giving a descriptive name to each input so that it can be easily recognized for future use.

The name will be memorized as part of the "configuration recipe" only on the PC and will not be transferred to the controller.
Therefore, when the controllers are cloned, the controller to which the configuration is copied will not contain the descriptive name.

\subsection*{5.17.3.4. Configuring the output}

Configure the output by selecting (on the pull-down menu) one of the possible values listed in the Function Commands groups shown above in "5.17.2. Groups of variables" on page 201.
This will be the output variable whose value will be changed by the result of the logic oforation conducted with the input variables data.

End the configuration by giving a descriptive name to the output so that it can be easily recognized for future use.

The name will be memorized as part of the "configuration recipe" only on the PC and will not be transferred to the controller.

Therefore, when the controllers are cloned, the controller to which the configuration is copied will not contain the descriptive name.

In types 3 and 4, the status of the digital output shown may then be processed as input for the Logical Function Blocks.

\subsection*{5.17.3.5. Copy of Math Function Blocks}

A copy of a Math Function Block may be made using the dedicated window, selecting the source Function Block (a single block only) and the destination Function Blocks) (multiple blocks formitted).

The window may be opened using the icon
 "Copy of Math Function Blocks" command on the Service menu

\subsection*{5.18. Recipe management}

\subsection*{5.18.1. Defining parameters recipes}

Parameters recipes are defined so that the user can compile a list of \(N\) parameters (with \(N \leq 25\)), selected from all of the parameters provided by the controller, and assign each one up to 5 values.
When the user has to use one of the five groups of parameters, he/she can select the recipe and load it in memory.

The parameters recipe list is defined in GF_eXpress by:
- the GF_eXpress RECIPE EDITOR wizard, "Template" tab (recommended);
- the GF_eXpress "Recipe template" menu by assigning, in the "Name" " \(V\) Value" column, the IPA of the parameter to be added.

Parameters values in the nth recipe will be set:
- in the GF_eXpress RECIPE EDITOR wizard, Recipe_x tab (recommended);
- in the "RECIP_X" submenus of the GF_eXpress "RECIP" menu.

The RECIPE submenu on the configuration menu will show only the values contained in the recipes (Read Only parameters)

You can run a check of correct configuration of the Recipes template by clicking the 目 icon in GF_eXpress (or the "Check user recipes template coherence" command on the GF_eXpress Service menu).

\subsection*{5.18.2. Setting the active recipe}

The active recipe is set by:
- parameter REC.AC inserted in the User menu;
- digital input function;
- Logic Function Block function

The recipe is loaded after every change of parameter REC.
AC (directly by the parameter, by digital input or by Logic Function Block).
Congruity between parameters in execution on the controller and recipe parameters is checked during loading.
If a value is rejected, the fault is signaled with a clear scrolling message that cannot be changed by the user ("Error on recipe 1", "Error on recipe 2", "Error on recipe 3", "Error on recipe 4" and "Error on recipe 5").

\section*{Exampled of setting from digital input and LFB}
if the Parameters recipe function RECP.N \(>=2\) is enabled:
REC. \(0=\) Select parameters recipe bit 0
with RECP.N=2 select recipe 1 or recipe 2 with RECP. \(=3\) select recipe \(1 .\). recipe 3 bit 0 with RECP. \(\mathrm{N}=4\) select recipe \(1 .\). recipe 4 bit 0 with RECP. \(\mathrm{N}=5\) select recipe \(1 .\). recipe 5 bit 0
if the Parameters recipe function RECP.N \(>=3\) is enabled:
REC. 1 = Select parameters recipe bit 1
with RECP.N \(=3\) select recipe \(1 .\). recipe 3 bit 1
with RECP. \(\mathrm{N}=4\) select recipe 1 ...recipe 4 bit 1
if the Parameters recipe function RECP.N \(>=5\) is enabled:
REC. 2 = Select parameters recipe bit 2
with RECP. \(\mathrm{N}=5\) select recipe 1 ...recipe 5 bit 2

\subsection*{5.18.3. Saving parameters in active recipe}

You can save values assigned to recipe parameters in the active recipe (shown in parameter REC.AC) by using parameter REC.SV (settable on the User Menu and by GF_ eXpress)

\subsection*{5.18.4. Copying recipes}

With GF_eXpress, you can also copy the contents of one of the 5 recipes to the other 4 (from 1 to 4), by clicking:
- the icon 居
- the "Copy Recipes" command on the Service menu You will see a form on which you can select the source recipe (single) and the destination recipe(s).
nare la ricetta sorgente (unica) e lale ricettale destinatariale.

\subsection*{5.19. Master Modbus Communication}

\subsection*{5.19.1. Master communication blocks}

With option "G = Master Modbus RTU Communication", the device offers the Master Modbus RTU communication mode.
The Master Modbus RTU mode provides the user with up to 20 Modbus objects from devices connected to the controller as slave nodes or formits writing of the value of an internal controller value onto remote devices.

The features of these objects are defined in the Master communication blocks and can be intuitively set in the dedicated set-up page, "Master Communication" on GF_eXpress.

ACCESS=READ ONLY or AC-CESS=READ/WRITE objects may be used as:
- references for alarms (REFE)
- references for digital outputs (F.out) if the data is bit type
- references for analogue outputs (F.ou.C, Func) if the data is word type
- input for Math Functions if the data is of word type
- input for Logic Functions if the data is bit type
and may be:
- displayed in Home.x as numerical data (dS.SP, dS.F) or as a bar graph form (bAr.1, bAr.2, bAr.3)
- displayed and/or set in the "MASTE" submenu or the User Menu

ACCESS=WRITE ONLY objects may be used to write the value of a controller value on a remote device (e.g. power calculated by PID).

Objects may be grouped into two types of task (SPEED=LOW or SPEED=HIGH) on the basis of the reading and/or writing speed forformance desired.
Tasks are forformed alternately, and scanning times depend on the number of objects with the same value for the SPEED parameter.

Attention! Modbus data exchange may be managed to slave devices guaranteeing response times below the MASTER_TIM parameter (range \(60 . . .1000 \mathrm{~ms}\), default \(=60 \mathrm{~ms}\)). If no response is received, scanning of the master will continue, but the error will be recorded in the parameter ERR. \(x=\) tim. \(O\) with \(x\) from 1 to 20 in the MASTE submenu.

\subsection*{5.19.2. Programming Master communication blocks}
5.19.2.1. Set-up page

The set-up page for Master Communication Blocks in the

GF_ eXpress program formits set-up and debugging.

1. Button for showing an overview of the communication blocks enabled.
2. Button for showing the communication block shown in the box.
3. Button for going back to the previous function block.
4. Communication block number.
5. Button for going on to the next communication block.
6. Selection enabling/disabling the communication block.
7. Selection for configuring the type of task (SPEED=LOW, HIGH).
8. Selection of the Modbus slave node.
9. Selection of the maximum Modbus slave node (ACCESS=WRITE_ONLY in the case of multi-node writing NODE to consecutive NODE_MAX).
10. Selection of the variable's address in the Modbus slave.
11. Selection of the type of variable in the Modbus slave (TYPE=WORD, BIT, BIT(S) OF WORD).
12. Selection of the type of variable access in the Modbus slave (ACCESS=READ/WRITE, READ ONLY, WRITE ONLY).
13. Selection of the minimum value of the variable in the Modbus slave (for TYPE=WORD only).
14. Selection of the maximum value of the variable in the Modbus slave (for TYPE=WORD only).
15. Selection of the position of the decimal point in the variable in the Modbus slave (for TYPE=WORD only).
16. Selection of the mask for selection of the bits in the variable in the Modbus slave (for TYPE=BIT(S) OF WORD only).
17. Setting the description of the variable in the Modbus slave.
18. Selection of the internal variable to be retransmitted in the Modbus slave (for ACCESS=WRITE ONLY only).
19. Display acronym of the internal variable to be retransmitted in the Modbus slave.
20. Display description of the internal variable to be retransmitted in the Modbus slave.
21. Display current data read by the Modbus slave or written in the Modbus slave (only if the controller is connected).
22. Display current error of data (only if controller is connected).
23. Display current data update time (only if controller is connected).

\subsection*{5.19.2.2. Enabling communication block}

The communication block page is automatically enabled when you select "Enabled" block type.
If you select "Disable", the parameter configuration will be stored in memory by the software program, ready to be reused at a later time with no need for a new configuration.

\subsection*{5.19.2.3. Selecting scanning speed}

Communication blocks are executed by alternating two tasks, referred to as SPEED=LOW and SPEED=HIGH. Each communication block may be associated with one of the two tasks to obtain the desired parameter scanning speed. Master communication is managed every 20 ms ; effective scanning times depend on this time, the slave device's latency time and the communication speed set.

\section*{Example:}

with the following set-up:
MCB. 01 SPEED=HIGH
MCB. 02 SPEED=LOW
MCB. 03 SPEED=LOW
MCB. 04 SPEED=LOW
The communication sequence will be:
...MCB.01...МСВ.02...MCB.01...MCB.03...MCB.01... MCB.04...

In the case of ACCESS=WRITE ONLY objects, the same value of a controller variable may be sent to multiple slave noes with a node number between consecutive NODE and NODE_MAX values.
In this case, scanning time is lengthened proportionately.

\section*{Example:}

with the following set-up:
MCB. 01 SPEED=HIGH NODE=1 NODE_MAX=3
MCB. 02 SPEED=LOW
MCB. 03 SPEED=LOW
MCB. 04 SPEED=LOW
The communication sequence will be:
...MCB. 01 NODE=1...MCB.02...MCB. 01 NODE=2...
MCB.03...MCB. 01 NODE=3...MCB.04...

Scanning time also depends on the baud rate used (MASTER_ KBAU=19200, 38400, 57600, 115200) and the latency time of the slave's response.

\section*{Example:}

850/1650/1850 connection with Gefran 19200 baud devices:
- Power controllers: GTF
- Controllers and programmers: 400/401, 450, 600/1200/1300,

800/1600/1800, 2500, 650/1250/1350, 850/1650/1850
- Indicators and alarm units: 4/40 T/B, 40TB, 2400, 650L/1250L

With a latency time for Modbus communication in the slave of 0 to 20 ms , the total duration of a message will be a maximum of:
(TX message \(=4.2 \mathrm{~ms}\)) + (Response latency=20ms) + \((\mathrm{RX}\) message \(=4.2 \mathrm{~ms})=\)
28.4 ms (+ time of management of the RTS signal, if any) Therefore:
- With 1 object: update every 40 ms
- With 2 objects, one of which has SPEED=HIGH while the other has SPEED=LOW: update \(1=\) update \(2=\) every 80 ms
- With 3 objects, one of which has SPEED=HIGH while two have SPEED=LOW: update \(1=80 \mathrm{~ms}\), update \(2=\) update 3 = every 160 ms

\section*{Example:}

850/1650/1850 connection with Gefran 19200 baud devices:
- Power controllers: GFX4/GFXTERMO4/GFX4-IR/GFW

With a latency time for Modbus communication in the slave of 0 to 5 ms , the total duration of a message will be a maximum of:
(TX message=4.2ms) + (Response latency=5ms) + \((\mathrm{RX}\) message \(=4.2 \mathrm{~ms})=\)
13.4 ms (+ time of management of the RTS signal, if any)

Therefore:
- With 1 object: update every \(\mathbf{2 0 m s}\)
- With 2 objects, one of which has SPEED=HIGH while the other has SPEED=LOW: update \(1=\) update \(2=\) every 40 ms
- With 3 objects, one of which has SPEED=HIGH while two have SPEED=LOW: update \(1=40 \mathrm{~ms}\), update \(2=\) update 3 \(=\) every 80 ms

Only if the instrument is connected will the effective update time for each communication block in the variable UPD.x with \(x\) from 1 to 20 be reported in the set-up page.

\subsection*{5.19.2.4. Selecting remote device parameters}

The communication block parameters determining the objects in the remote device are:
\begin{tabular}{ll}
-NODE: & \begin{tabular}{l}
remote device node \\
-NODE_MAX: \\
maximum remote device node (for \\
ACCESS=WRITE_ONLY only in the case \\
of multi-node writing from NODE to \\
consecutive NODE_MAX)
\end{tabular} \\
-ADDRESS: & \begin{tabular}{l}
Modbus address of the object in the \\
remote device to be read and/or written \\
with the variable
\end{tabular} \\
-TYPE: & \begin{tabular}{l}
type of object in the remote device \\
type of object access in the remote \\
device
\end{tabular} \\
-ACCESS: & \begin{tabular}{l}
minimum value of the object in the remote \\
device
\end{tabular} \\
-MIN: & \begin{tabular}{l}
maximum value of the object in the \\
remote device
\end{tabular} \\
-MAX: & \begin{tabular}{l}
position of the decimal point value of the \\
object in the remote device
\end{tabular} \\
-DEC.P: & \begin{tabular}{l}
bit mask of the object in the remote \\
device
\end{tabular}
\end{tabular}
-DESCRIPTION: description value of the object in the remote device. The description will appear on the instrument as a scrolling message when the data appears in the "MASTE" menu or the User menu.

\section*{TYPE parameter}

The TYPE=WORD parameter is used to assess word data. This data is shown in the MAS.xx parameter in the MASTE menu or in the User Menu.
This data may be used in Math Function Blocks or retransmitted on an analogue output.
In the case of ACCESS=WRITE_ONLY write access or ACCESS=READ/WRITE access, the MIN...MAX limits apply and the value written in the MAS.xx parameter and in the slave are subject to these limits.
In the case of access in read-only mode, ACCESS=READ_ ONLY, the MIN...MAX limits still apply, and the value written in the parameter MAS.xx , starting with the value read on the slave, is subject to these limits.
The limits on the data appearing on the controller display are between -1999... 9999 .

The TYPE=BIT parameter is used to assess bit data. This data appears in the MAS.xx parameter in the MASTE menu or in the User Menu.
This data may be used in Logical Function Blocks or retransmitted on an analogue output.
The limits on the data are 0...1.
The TYPE=BIT(S) OF WORD parameter is used to assess word data in AND with the MASK mask.
The result of the oforation appears in the MAS.xx parameter MAS.xx nel menu MASTE oppure inserito nello User Menu. This data may be used in Math Function Blocks or retransmitted on an analogue output.
In the case of ACCESS=WRITE_ONLY write access or ACCESS=READ/WRITE access, the MIN...MAX limits apply and the value written in the MAS.xx parameter and in the
slave are subject to these limits. In the case of access in read-only mode, ACCESS=READ_ONLY, the MIN...MAX limits still apply, and the value written in the parameter MAS. \(x x\), starting with the value read on the slave, is subject to these limits.
The limits on the data appearing on the controller display are between -1999... 9999 .

\section*{Example:}

To assess bit3 in a word:
MASK=8 (\(0 \times 08\)) and MAS.xx may take on the values \(=8(b i t 3=1)\) or \(=0(b i t 3=0)\).

Volendo valutare il bit3 e il bit6 di una word:
MASK=72 (\(0 \times 48\)) e MAS.xx potrà assumere i valori \(=72\) (bit3=1 e bit6=1) oppure 64 (bit6=1) oppure 8 (bit3=1) oppure 0 (bit3=0 e bit6=0)

\section*{MIN and MAX parameters}

The MIN and MAX limits are significant when the TYPE=WORD parameter or the TYPE=BIT(S) OF WORD parameter and the parameter:
- ACCESS=WRITE_ONLY or ACCESS=READ_WRITE: to limit the value written on the slave.
- ACCESS=READ_ONLY: to set the limits on the scale if the value is used as input for a Math Function Block or retransmitted to an analogue output (if the MIN and MAX limits are not taken into account, the dynamic of the output is rescaled over a maximum range of [0...65535] points).

\section*{Example:}

When reading a word with an effective range of [0...1000] points, if it is to be retransmitted to an analogue output of \(0-10 \mathrm{~V}\) where 0 points \(=0 \mathrm{~V}\) and 1000 points \(=10 \mathrm{~V}\), set \(\mathrm{MIN}=0\) and \(M A X=1000\).

Warning! In order to be correctly displayed and set in the controller, data read and written in the
 slave must be within the range [-1999...9999]. In the case of TYPE=BIT(S) OF WORD, you may therefore read and write from bit0 to bit12 [0...8191].
5.19.2.5. Selecting an internal variable to be retransmitted In the case of a communication block with WRITE_ONLY access, the instrument will send the remote device the value of an internal variable selected through the OUT parameter.

\subsection*{5.19.3. Setting the Master Modbus serial port} GF_eXpress may be used to set the communication speed (MASTER_KBAU=19200, 38400, 57600, 115200 baud), parity type (MASTER_PAR=NO_PARITY, ODD, EVEN) and timeout (MASTER_TIM=60...1000ms) of the Master Modbus serial.

\subsection*{5.19.4. Modbus object summary page}

The "Overview" page in the Master Communication section of GF_eXpress may be used to obtain an overview of the Modbus parameters the device is exchanging with the connected nodes.

Information on Master device variables appears in the section on the left:
- "OUT" column: name of the parameter sent (ONLY in the case of a writing oforation).
- "MAS" column: value of the parameter written and or read.
- "ERR" column: status of communication with the slave device..
- "UPD" column: real parameter update time
- "ACCESS" column: type of oforation configured:

The parameters set for communication with the Slave node(s) appear on the right:
- "NODE" column:
number of the Slave node with which to conduct Modbus communication
- "ADDRESS" column: Modbus address of the parameter to be exchanged (in read andlor write mode)
- "DESCRIPTION" column: description of the object to be exchanged (in read andlor write mode)

\subsection*{5.20. Slave Communication in Modbus TCP}

The "EO = Ethernet Modbus TCP" option may be used to access the device using the Modbus TCP protocol.
Access may take place via any client (including the GF_eXpress set-up), implementing the following Modbus commands :
\(\bullet 01\) : Read Coils
- 02 : Read Discrete Inputs
- 03 : Read Holding Registers
- 04 : Read Input Registers
- 05 : Write Single Coil
- 06 : Write Single Register
-15 : Write Multiple Coils
- 16 : Write Multiple registers

In order to connect with the device using the Modbus TCP protocol via a client, you must assign network parameters, and specifically:
- IP address (default 192.168.1.50)
- Subnet Mask (default 255.255 .255 .0)
- Gateway (default 192.168.1.1)

Attribution of these parameters may take place in two ways:
- acting on the parameters in the instrument's ETHER submenu (enter reference to paragraph "4.24. ETHER
submenu - "Configuration of Ethernet parameters")
- using the "SetIP_850" Set-up Tool run on the PC As this is a case of a Slave device connected via the Modbus TCP protocol acting as a bridge, it will also be necessary to indicate the node number (NodeID) of the device you want to connect to. The NodeID of the controller with the optional card is 1 .

\subsection*{5.20.1. Setting network parameters using the tool on a PC}

As stated above, network parameters may be assigned using the set-up tool
"SetIP_850" running on a PC.
When you run this tool, the following dialogue box appears

1. list of devices in the Forformance family (850-16501850) with the network option,
2. button for searching for devices in the Forformance family (850-1650-1850) with the network option,
3. selector for the network interface card on the PC to which the search for devices in the Forformance family (850-1650-1850) with the network option will be conveyed,
4. network parameters of the device selected in the list appearing on the left (see point 1)
5. enabling\disabling assignment of device network parameters via DHCP server
6. button for sending the set network parameters (see point 4) to the device selected in the list appearing on the left (see point 1).
Once you have selected the network interface card of the PC to which you wish to convey the search for devices in the Forformance family (850-1650-1850) with the network option (see point 3), press the button identified in point 2 and the scan will begin). When the search has been completed, a list of the devices found will appear in the area on the left (see point 1 and illustration below).

Once you have obtained a list of devices in the Forformance family (850-1650-1850) with the network option, if you select one of the items in the list, the corresponding network parameters will appear in the top right (see illustration below).

There are only two ways of assigning values different from the default values, and they are mutually exclusive :
- Fixed network parameters: set the new network parameter values to be assigned to the device and press "Apply changes" (see illustration below)

- Network parameters automatically assigned by DHCP server: enable the corresponding item and press
"Apply changes" (see illustration below)

Whichever method is used, if the assignment of new network parameters is successful the following screen will appear.

If it is not, nothing will appear in the box in the lower left.

Warning! Once the network parameters have been changed by one of the two methods described above, the device must be turned off and on again to implement the change.

If no devices in the Forformance family (850-1650-1850) with the network option are found upon completing the initial search (begun using the "Refresh list" button), the area at the top left will remain empty.

\subsection*{5.20.2. Modbus TCP communication diagnostics}

If the Modbus TCP communication option is installed but there are errors exchanging data with the device where the network interface card is assembled :
- the MAC.E parameter in the INFO submenu (add reference to paragraph "4.4.6. MAC.E-Controller Ethernet address") will display the value 0x:00:00:00:00:00:00.
- The INFO.E submenu (add reference to paragraph "4.5. INFO.E Submenu - Displaying Ethernet information") and the ETHER submenu (add reference to paragraph "4.24. ETHER Submenu - Ethernet parameter set-up") will not appear

If there are no errors, you will be able to obtain network connection status by accessing the parameters in the INFO.E submenu (add reference to paragraph "4.5. INFO.E Submenu - Displaying Ethernet information").

\subsection*{5.20.3. Oforation as a device Bridge with other devices}

With the "ME = Ethernet Modbus TCP\RTU Bridge" option, the device can oforate as a Modbus TCP\RTU bridge, formitting connection of other devices using the serial number appearing on the terminals on the bottom of the
box (see enter reference to paragraphs "2.3. 850 wiring diagrams" , "2.4. 1650 wiring diagrams" and "2.5. 1850 wiring diagrams"), obtaining the following architecture:

As shown in the figure above, the maximum number of nodes that may be connected is 15 .
IThe value of the node number on the various devices connected may vary within the range of [2...247], in that the value 1 is reserved for the device with the Modbus TCP card mounted on it. The value of the serial parameters
- BadRate
- Parity
- Stopbit
(see "Add reference to paragraph 4.23. SERIA Submenu - Serial configuration"), must be the same for all Slaves. The SCANR parameter in the SERIA submenu may be used to introduce a delay between two consecutive Modbus requests in order to formit exchange of data with other devices with higher response times.
This delay will affect all communications, data scan time via Modbus.

\subsection*{5.20.4. Synchronising the internal clock via NTP server}

The "EO = Ethernet Modbus TCP" and "ME = Ethernet Modbus TCP\RTU Bridge" options may be used to permit use of the device's internal clock synchronisation service (RTC) with an NTP (Network Time Protocol) server in the same sub-network as the controller or in an external network. The service is activated by setting the value of the parameter TIM.NT to a value other than zero (see paragraph "4.24.15. TIM.NT - Update time from Network Time Protocol server"). Once started, the controller will periodically ask the server identified by the network address specified in the IP.NTX parameters (see paragraph "4.24.16. IP.NT1 - Indirizzo IP 1 for server Network Time Protocol" and subsequent points) for the new date and time value to be used and copy it into its internal clock.
This service ensures that events programmed with the Calendar (see paragraph "5.23. Calendario") on different devices, each of which is connected with the same NTP server, all refer to the same basic time.

\subsection*{5.20.5. Private networks and public networks}

The connection networks may be private or public.
A private network is a closed network with no connections to the outside world, which is intrinsically more secure.
The public network (Internet), in contrast, allows you to access devices connected to the network from anywhere in the world but, because of this, it is less secure.

Finally, there is the option of connecting a private network to a public network through a device called a firewall, which keeps it isolated except for duly authorised traffic.
In this type of configuration, a private network is often identified with the acronym LAN (Local Area Network), while the public network is referred to with the acronym WAN (Wide Area Network).
Other ways to identify them are intranet and extranet.
Note that the private network may consist of a single devic.

\subsection*{5.20.6. Firewall}

A firewall is a physical device or a software application that isolates a device or a section in a network from the rest of the connection network.
Several firewalls may need to be crossed to reach a device. For example, there might be a firewall
between the corporate LAN and the Internet, and another firewall that isolates the device from the corporate network. To access a multi-purpose controller behind a firewall you need to configure the access channels or firewall traffic rules and implement connections via VPN (Virtual Private Network) or directly through a modem.
Consult the corporate IT system administrator to properly configure firewalls or find out about the parameters required to implement a VPN or connect via modem.
In order to connect to an external multi-purpose controller and ensure the proper operations of all the services, the
following ports need to be open (provide this list to the IT administrator):
\begin{tabular}{|c|c|}
\hline Port & Service \\
\hline 502 & Modbus TCP \\
\hline 8080 & Webserver \\
\hline
\end{tabular}

\subsection*{5.20.7. Router}

In cases of particularly complex or extensive Ethernet networks, or networks subject to intense broadcast traffic, the connection to the 850,1650 and 1850 controllers must be isolated. This is achieved by structuring the network into subnets (corporate/machine), or by limiting TCP/IP traffic to the traffic strictly necessary for hubs or services.
This rule should normally also be observed when connecting 850, 1650 and 1850 controllers in small networks, or with remote access systems.
The recommended solution is to connect the 850, 1650 and 1850 controllers via a router.
A router is a layer 3 device that allows you to route the communication packets between different networks, that is, to determine which specific port to release the package in arrival from on the basis of the target IP address.
Use of a router ensures that Ethernet traffic to or from the 850, 1650 and 1850 controllers is filtered and remains isolated from the rest of the corporate network or from the external network

\subsection*{5.21. Webserver function}

The Modbus TCP option also formits use of the webserver function, which provides a series of web pages with a selection of device parameters, accessible using any internet browser.
To access these pages, simply open any internet browser and set the device's IP address. After a few seconds, the login window shown below will appear.

2 users are available:
- admin with webadmin password
- webuserD with webuserD password. This user is read-only, and so any writing options will be rejected.
if you cannot obtain access and select the Cancel command, the screen shown below will appear in the browser:

\(\triangle\)
Caution! User and Password are NOT encrypted.

You can change the default access passwords associated with the two users by editing them via GF_eXpress

To give the password parameter a different value from the default value, select the appropriate button in the grid

When you press this button, a dialogue box will appear with:
- a "Current Password" field displaying the current password plain text
- a "New Password" field in which you can set the new password in encrypted form.
- a "Confirm new password" field where you will be asked to confirm the new password in encrypted form
- a "Clear" button for resetting the default password
- OK\Cancel buttons to confirm and/or cancel the setting

The value assigned to the access passwords associated with the two webserver users are in no way visible on the instrument, but only via GF_eXpress.

Caution! Passwords are case-sensitive and must be at least four characters long.
The admissible characters are:
- 'A'... 'Z' e 'a'...'z'
- '0'...'9'
 ‘-'
Use of a character other than those listed above, or a sequence of permitted characters shorter than the minimum length, will make the password unacceptable and cause an error message to appear in the password setting dialogue box when you press "OK".

The main page appears, as shown below

Quantities are displayed (editable variables appear in blue)
- PV1,PV2 (process vale)
- SP1,SP2 (active setpoints)
- OUTP1, OUTP2 (output powers)
- Status of Relay/Logical outputs OUT1,2,3,4 . Text in red means it is active
- Active Alarms (Window containing mnemonic alarm messages)
- The page has a mechanism for refreshing every 2.5 seconds
- Serial Slave Number : formits selection of the serial code (node number) of a device in the 850 family connected via serial 485 and view its pages. Follow these steps to change the node number:
- Click on the Stop Refresh button and wait for the button caption to say "Refresh stopped"
- Enter a node number between 1 and 247
- Press "Submit" to change the setting

If a device connected to the serial sub-network does not respond, the pages will show the variables PV1,PV2,SP1,SP2,OUTP1,OUTP2 with the value Err! Click on the Sp_Profile link to go to the SP Profile Monitor page, where the status of the two available programs is displayed

The following information is displayed for programmers 1 and 2
- Programmer Status (Run,Ready,End,Hbb)
- Programmer actual program (Number of the program currently running)
- Programmer actual step (Number of the step currently running)
- Programmer actual segment (Ramp, Hold, end)
- Programmer actual time (time of the ramp/step currently running)
- Programmer actual set point (setpoint of the step currently running)

Click on the Maintenance link to go to the page

The page includes:
1. Counter switch \((1,2,3,4)\), thousands of switches
2. Total energy 1,2 used by pid 1,2

Go to the Info page to view the information listed below

There are two paragraphs on this page:
- MODELINFO WITH:
- SW version
- Serial code
- Input error1 and 2
- Sap code
- Serial Number
- Opt Hw and SW
- DIAGNOSTICS with:
- Working days ; total days of oforation
- Internal temp , internal temforature
- Min temp, minimum internal temforature
- Max temp, maximum internal temforature

Go to the WIZARD page and click on the link to access the corresponding page

The information appearing on the page is as follows:
- OFF/ON instrument power down command
- P.MAN1,2 Power 1,2 delivered manually by the corresponding PID
- MAN/AUTO 1 and 2, manual/automatic PID command
- REM/LOC 1 and 2, remote/local PID command
- The page is refreshed every 2.5 seconds. Proceed as follows to set the parameters:
1. Click on Stop Refresh
2. Set the desired values
3. Select Submit
-The WIZARD page then starts refreshing again
The page input attached below

Shows information on main inputs 1 and 2 :
- Type 1 and 2 formit selection of the type of sensor of the main inputs
- Dec.P1 and 2 identify the decimal point used for processing the main inputs
- FILT 1 and 2 , input time filter
- LO.SCL 1 and 2, low end of scale
- LO.AL1 and 2, low end of scale for absolute alarms
- LO.SP1 and 2, low end of scale for setpoints
- OFF.SCL 1 and 2 , offset input
- FILT.D 1 and 2, display filter for process variables
- HI.SCL 1 and 2, high end of scale
- HI.AL1 and 2, high end of scale for absolute alarms
- HI.SP1 and 2, high end of scale for setpoints
- FUNC function of input 2

Shows information on main inputs 1 and 2:

The ALARMS page contains the following information:
- ALARM.N number of alarms enabled
- ALRM 1,2,3,4 alarm set point value
- REFE 1,2,3,4 alarm setpoint reference
- DI.IN 1,2,3,4 definition for direct / inverse alarm
- AB.RE 1,2,3,4 definition for relative / absolute alarm
- NO.SY 1,2,3,4 definition for normal / symmetrical alarm
- LATCH 1,2,3,4 definition for alarm on/off memory. The page is refreshed every 2.5 seconds. Follow the steps listed on the previous page to edit these fields

The SETPOINT page contains the information listed below

- SETP 1,2 : Set point
- MUL.SP 1,2: Multiset enabling
- M.SET1 : Multiset point 1,2
- M.SET2 : Multiset point 1,2
- M.SET3 : Multiset point 1,2
- M.SET4 : Multiset point 1,2
- SP.REM : Remote setpoint enabling 1,2
- SERIAL_SPR : remote setpoint from seriale 1,2
- GRAD.UNIT : unit of measurement of gradient 1,2
- GRAD.I : Gradient increasing 1,2
- GRAD.D : Gradient decreasing 1,2
- M.SET : multiset selection 1,2
- The page is refreshed every 2.5 seconds. Follow the steps listed on the previous page to edit these fields
The CONTROLS page contains the information listed below

Parameters:
- CNTR : type of pid 1,2 controller
- H.PB : proportional heating band 1,2
- H.IT : integral heating time 1,2
- H.DT : derivative heating time 1,2
- C.PB : proportional cooling band 1,2
-C.IT : integral cooling time 1,2
-C.DT : derivative cooling time 1,2
- COOL : type of cooling fluid 1,2
-S.TUNE : self-tuning enabled 1,2
- A.TUNE : autotuning enabled 1,2
- ATU.T : type of autotuning 1,2
- SOFT.S : soft start enabled 1,2
- SOFT.T : soft start time 1,2
- SELFTUN : self-tuning status 1,2
- AUTOTUN : autotuning status 1,2
- SoftStart : softstart status 1,2
- PID.E : pid 2 enabled
- APP.T : PID control type
- The page is refreshed every 2.5 seconds. Follow the steps listed on the previous page to edit these fields

The OUTPUTS page may be used to display

the following information on outputs:
F.OUT : reference to output 1,2,3,4

CY.TIM: cycle time for outputs 1,2,3,4 (relay, triac, logical)
The HMI page

contains the following fields:
- BUT.1: M/A function key for home 1 and 2
- BUT. 2 : Key2 function key for home 1 and 2
- BUT. 3 : Key3 function key for home 1 and 2
- DS.SP : SV display function for home 1 and 2
- DS.F : F display function for home 1 and 2
- BARG. 1 : Bargraph 1 for home 1 and 2
- BARG. 2 : Bargraph 2 for home 1 and 2
- BARG. 3 : Bargraph 3 for home 1 and 2
- LED.1,2,3,4,5,6 : Led function for home 1 and 2
- The page is refreshed every 2.5 seconds. Follow the steps listed on the previous page to edit these fields.

\subsection*{5.22. Instrument menu set-up}

The instrument set-up menu may be customised, selecting the menus and parameters in each menu that must be visible or invisible while browsing. For selecting the menus and menu parameters to be displayed in the instrument's editor, there is a new button on the WIZARD di GF_ eXpress page (which may be activated using the "EN.EDI" parameter in the EN.FUN menu):

This button opens a new window containing all the menus that may be displayed on the instrument

Select one of the n menus and another window will open formitting selection of individual menu parameters:

You may select / deselect all parameters at the same time with the "SELECT ALL" and "UNSELECT ALL" buttons.
The "ROOT" and "NUMBER" checkboxes (the second only in the case of a menu with multiple instances, such as INPUT1, INPUT2, etc.) above these buttons cannot be selected by the user, but indicate the two editor views which are obligatory if there is at least one menu parameter selected. The corresponding variables may be viewed in the EXForT menu under the "Enable Menu" group.

\subsection*{5.23. Calendar}

The option "CK = RTC+Logical + Mathematical Options" may be used to configure the device to trigger a series of actions over time.
The calendar may be set in the EN.FUN menu using the CAL. EN parameter
As follows:
- Weekly: continuous calendar ("WEEKLY" option)
- Single week ("ONE.OF option"): the calendar triggers events for up to seven days, then switches OFF, while keeping all information on events and enabling of days set to ON stored in memory.

The actions that may be scheduled are:
- SW ON (starting up the software, or terminating software off condition - see paragraph 5.8)
- SW OFF (turning off the software - see paragraph 5.8)
- START PROGRAMMER 1
- STOP PROGRAMMER 1
- RESET PROGRAMMER 1 (the programmer goes into "READY" condition)
- START PROGRAMMER 2
- STOP PROGRAMMER 2
- RESET PROGRAMMER 2 (the programmer goes into "READY" condition)
- SW ON and START PROGRAMMER 1 (if software is of, software on will be forced, followed by start programmer)
- SW ON and START PROGRAMMER 2 (if software is of, software on will be forced, followed by start programmer)
- P.ST12: START programmer time base PROGR. 1 and PROGR. 2
- P.SP12: STOP programmer time base PROGR. 1 and PROGR. 2
- P.RS12: RESET programmer time base PROGR. 1 and PROGR. 2
- TRIGGERED TIME EVENT 1 (as in FB input)
- TRIGGERED TIME EVENT 2 (as in FB input)

The TRIGGERED TIME EVENT 1 action and the TRIGGERED TIME EVENT 2 action are set as input for the LFBs to define any internal status currently managed by the LFBs. The LFBs may be used to force statuses (see Function Commands)

Up to 4 events are available for each day of the week; a single day may be enabled or not, as required.

Warning: in a ONE WEEK calendar, at midnight, the previous day is considered completed

\(\triangle\)in terms of the associated events, which will therefore no longer take place, even if the day is still enabled. In the event of a power supply failure and return, events associated with the days during which the power supply was off will remain active.

The calendar can only be configured using the GF_eXpress tool:

Select everything you need to set scheduled events in the WEEKLY CALENDAR:
- Enable single week or weekly calendar
- Enable day of the week
- 4 events
- Hour, minute and second when the event will be triggered

In addition to the weekly calendar, two one-shot events may be set via the usermenu, either on the instrument or in \(\mathrm{GF}_{-}\) eXpress:
\begin{tabular}{|c|c|c|c|}
\hline User parameter & - & \(\square\) & \(\times\) \\
\hline \multicolumn{4}{|l|}{- Simple Parameter Oindexed Menu} \\
\hline \multicolumn{3}{|l|}{Filter:} & \\
\hline & & \(\wedge\) & \\
\hline No modifications permitted (Read-Only)
Return to HOME atter 15 s & Delete & & \\
\hline OK & Cancel & & \\
\hline
\end{tabular}

Warning: remember to enter all the parameters listed above, as a single event requires complete date and time information to be triggered (it is not a weekly trigger)

On the main menu, the Calendar may be set in the "Calendar Events Blocks" submenu, where the days of the week and the two one-shot events appear.

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{x) 850.gt [MONDAY] -GF_elpress} \\
\hline \multicolumn{4}{|l|}{File View Parameters Target Service Help} \\
\hline \multicolumn{4}{|l|}{} \\
\hline \multicolumn{4}{|l|}{} \\
\hline Menw \(\mathbf{x}\) & IPA & None & \\
\hline Menu selection & 22501 & HOUR_EVENT_1-1 & 0 \\
\hline \(\rightarrow\) a AL.pW & 22502 & HOUR_EVENT_2-1 & 0 \\
\hline \[
\because-7 \mathrm{PID}
\] & 22503 & HOUR_EVENT_3-1 & 0 \\
\hline \[
\text { © }-9 \text { PIDGR }
\] & 22504 & HOUR_EVENT_4_1 & 0 \\
\hline Ey IN.DG & 22551 & MINUTE_EVENT_1_1 & 0 \\
\hline - 23 OUTPU & 22552 & MINUTE_EVENT_2_1 & 0 \\
\hline - = OUTAN & 22553 & MINUTE_EVENT_3_1 & 0 \\
\hline - 9 valve & 22554 & minute_Event_4_1 & 0 \\
\hline \[
\because 9 \text { MODE }
\] & 22601 & SECOND_EVENT_1-1 & 0 \\
\hline \[
\div \text { OMER }
\] & 22602 & SECOND_EVENT_2_1 & 0 \\
\hline ©- -9 Energ & 22603 & SECOND_EVENT_3_1 & 0 \\
\hline 9) SERLA & 22604 & SECOND_EVENT_4_1 & 0 \\
\hline 9 ETHER & 22651 & ACTON_EVENT_1_1 & NONE \\
\hline \multirow[t]{2}{*}{-9) HM} & 22652 & ACTION_EVENT_2_1 & NONE \\
\hline & 22653 & ACTION_EVENT_3_1 & NONE \\
\hline \(\therefore\)-9 UNRZ & 22654 & ACTON_EVENT_4_1 & NONE \\
\hline -7) User menu & 23901 & CALENDAR_DAYS_ENABLE_1 & ON \\
\hline \multicolumn{4}{|l|}{(-) Aux Digital input} \\
\hline \multicolumn{4}{|l|}{4-9 Aux Reloy Output} \\
\hline \multicolumn{4}{|l|}{-9) Logic Function Blocks} \\
\hline \multicolumn{4}{|l|}{- 9 Math Function Blocks} \\
\hline \multicolumn{4}{|l|}{*- Messages} \\
\hline \multicolumn{4}{|l|}{© 9 Master Communication Blocks} \\
\hline \multicolumn{4}{|l|}{\[
\begin{aligned}
& \text { e-9 Calender fvents slocks } \\
& -7 \text { MoNDAY }
\end{aligned}
\]} \\
\hline \multicolumn{4}{|l|}{- 7 tuesoar} \\
\hline \multicolumn{4}{|l|}{-9. weonesoar} \\
\hline \multicolumn{4}{|l|}{-9 thursoar} \\
\hline \multicolumn{4}{|l|}{9 fridar} \\
\hline \multicolumn{4}{|l|}{a) Saturdar} \\
\hline \multicolumn{4}{|l|}{9) Sundar} \\
\hline 3 One Shotevent & & & \\
\hline
\end{tabular}

For each day of the week, you may set:
- HOUR_EVENT_X: time of events 1 to 4
- MINUTE_EVENT_X: minute of events 1 to 4
- SECOND_EVENT_X: second of events 1 to 4
- ACTION_EVENT_X: action to be forformed in events 1 to 4
- CALENDAR_DAYS_ENABLE_X: enable day of the week

For one-shot events, you may set:
- ONE_SHOT_HOUR_EVENT: time of the single event
- ONE_SHOT_MINUTE_EVENT: minute of the single event
- ONE_SHOT_SECOND_EVENT: second of the single event
- ONE_SHOT_DAY_EVENT: day of the month of the single event
- ONE_SHOT_MONTH_EVENT: month of the single event
- ONE_SHOT_YEAR_EVENT: year of the single event
- ONE_SHOT_TYPE_EVENT: type of action of the single event

The actions that may be scheduled in the weekly calendar are:
- ON SW (start software or exit the software off condition see section 5.8)
- SW OFF (shut down the software - see paragraph 5.8)
- START PROGRAMMER 1
- STOP PROGRAMMER 1
- RESET PROGRAMMER 1 (the programmer goes into "READY" condition)
- START PROGRAMMER 2
- STOP PROGRAMMER 2
- RESET PROGRAMMER 2 (the programmer goes into "READY" condition)
- SW ON and START PROGRAMMER 1 (if software is off, software on will be forced, followed by start programmer)
- SW ON and START PROGRAMMER 2 (if software is off, software on will be forced, followed by start programmer)
- P.ST12: START programmer time base PROGR. 1 and PROGR. 2
- P.SP12: STOP programmer time base PROGR. 1 and PROGR. 2
- P.RS12: RESET programmer time base PROGR. 1 and PROGR. 2
- TRIGGERED TIME EVENT 1 (as in FB input)
- TRIGGERED TIME EVENT 2 (as in FB input)

The possible time-manageable actions for ONE_SHOT events (ONE_SHOT_TYPE_EVENT parameter) are:
- \(\quad\) SW ON (start up the software, or exit the software off condition - see paragraph 5.8)
- SW OFF (shut down the software - see paragraph 5.8)
- START PROGRAMMER 1
- RESET PROGRAMMER 1 (the programmer goes into "READY" condition)
- START PROGRAMMER 2
- RESET PROGRAMMER 2 (the programmer goes into "READY" condition)
- P.ST12: START programmer time base PROGR. 1 and PROGR. 2
- P.RS12: RESET programmer time base PROGR. 1 and PROGR. 2
- TRIGGERED TIME EVENT 1 (as in FB input)
- TRIGGERED TIME EVENT 2 (as in FB input)

\subsection*{5.23.1. Calendar management via keyboard}

The calendar can also be managed via the instrument keyboard, using the CAL.EV and CALE.C sub-menus.
In CAL.EV it is possible to enable the single week or weekly calendar and the individual days of the week to be set.
Calendar event settings are in CALE.C.
Entering the CALE.C menu, you will be asked to select the day of the week to be set, followed by the event number that can be set (from 1 to 4). Selecting the event will then prompt the event time in HH, MM and SS (parameters in sequence) and the action to be taken for the selected event.

\subsection*{5.24. Customisable Modbus memory map}

The Modbus memory map of the instrument appears in the document 80288_MEMORY_MAP_850-1650-1850, but it can be modified via GF_eXpress:

\section*{- Custom map}
permits definition of a word memory area of 32 contiguous elements in order to make use of the Modbus mul-ti-word read and write commands and thus speed up data exchange with a Modbus Master SCADA

\section*{- User map}
allows you to replace the instrument's standard word and bit map with a user-definable one with the following properties:
- WORD map (16bit access) of 20 read/write elements that can be scaled up if necessary
- WORD map (16bit access) of 2 elements with read-only bit structure
- WORD map (16bit access) of 2 elements with read/write bit structure
- BIT map (bit access) of 20 read/write elements

Addresses outside the user map remain those of the standard map.
This management is activated via the MAP.t parameter in the EN.FUNC menu when the RS485 Modbus RTU or the Ethernet Modbus TCP option is present.
The complete standard map remains valid through the
service serial port (microUSB connector) always present in the device.

\section*{Example 1:}

The address 45400 is not present in the standard map in WORD and can be added to the user map by redirecting a parameter from the standard internal map. In this case, the entire standard map plus the user map remains active. Since GF_eXpress is based on the standard map, it can be used on the service serial port (microUSB connector), which is always present in the device, on the optional RS485 Modbus RTU serial port, and on the optional Ethernet Modbus TCP port.

\section*{Example 2:}

The address 5400 is present in the standard map at WORD (\(5400=\) SETP_1), but can be added to the user map by redirecting another parameter in the standard internal map. In this case, the user map has priority over the standard internal map. Since it is based on the standard map, GF_eXpress can only be used on the service serial (microUSB connector), which is always present in the device.

CAUTION! In the presence of the Ethernet Modbus TCP option:
Activating the user map MAP.t=USER automati-
cally deactivates the Webserver function (WEB. \(\mathrm{E}=\mathrm{OFF}\)).
- The following addresses cannot be used in the WORD user map: 6001 to 6013, 6640 to 6651, 22200 to 22213, 22300 to 22307, 22332 to 22339, 22424 to 22435, 22441 to 22444.

CAUTION!
Pln order to:
1.configure the user map on a target
2.transfer a recipe using the user map to a target 3.read a recipe using the user map from a target it is necessary to be connected to the service\} debug serial line described in Chapter "6. PROGRAMMING WITH PC" in the manual.

Once the recipe has been configured/written/read, either the RS-485 serial port or the Ethernet port may be used to access the User Map parameters.

\section*{CAUTION!}

When preparing the User Map using the GF_ eXpress tool, make sure:
1.that there are no unused addresses (\(65535=\) none) between one set address and another (in the case of multiple writes or multiple reads, addresses not on the user map will not be ignored but those on the standard map will be used);
2.to correctly use the Modbus commands relating to the WORD and BIT sections (if a BIT address is queried with WORD commands, the address on the standard map will be used, if not present in the WORD user map);
3.that the multiple Modbus commands used have a correspondence in terms of the number of parameters handled with the User map set (again, in the case of multiple address reads/writes, the addresses in the standard map will be written/ read if not defined in the User map);

\section*{CAUTION!}

If the division factor DIVISION BY 10 or DIVISION BY 100 is used, the value read by the internal instrument variable will be divided by 10 before being sent via Modbus; on the contrary, when writing, the parameter written will be multiplied by the same value.
PLEASE NOTE: Make sure that the write value given that is multiplied by a factor of 10 or 100 does not exceed the limits allowed for the variable itself; otherwise a Modbus error will be receive.

\section*{- Support variables}
allows free use of 4 non-volatile 16bit memory cells of the controller by accessing them via:
- the WORD map (16bit access) for the 4 word variables
- the BIT map (bit access) for the first 8 bits of the first word variable
These variables are not shown on the instrument display.

\subsection*{5.24.1. Custom map}

The parameters defining the 32 internal variables, to be read or written contiguously, are available in GF_eXpres\(s \rightarrow\) Expert \(\rightarrow\) Custom Map \(\rightarrow\) Address:
- CustAddr01... 32
while in GF_eXpress \(\rightarrow\) Expert \(\rightarrow\) Custom Map \(\rightarrow\) Data the corresponding data is shown (by way of example):
- CustData01... 32

In GF_eXpress the data is always reported with read-only access to ensure that the same data cannot take on two values in the .GFE recipe, while with a Modbus Master SCADA, access depends on the type of internal variable selected.

\section*{Example:}

With CustAddr01 \(=5294\), CustAddr02 \(=5296\) e
CustAddr03 \(=5298\)
it is possible to use the multi-word read command to access the data \(5294=\) PV_1 - Process Variable, \(5296=\) SSP_1 - Active Setpoint and 5298 = OUT.P_1 - Control outputs value in a single Modbus message starting from the first CustData01 address.

\subsection*{5.24.2. Rescalable user map in WORD (16bit access)}

The parameters defining the WORD-type user map (20 elements) are available in GF_eXpress \(\rightarrow\) Expert \(\rightarrow\)-User Map \(\rightarrow\) Word (16 bits access):
- ADDRESS_USER_WORD_1..._20: are the addresses of the user map in WORD, while
- INTERNAL_USER_WORD_1..._20: are the corresponding addresses of the standard internal map to WORD, and
- RESCALE_USER_WORD_1..._20: are the settings of any rescaling, i.e.
= NONE = No rescaling
\(=\) DIVISION BY 10 = division of the data by 10
= DIVISION BY 100 = divisione per 100 del dato

\section*{Example 1:}

With ADDRESS_USER_WORD_1 = 57, INTERNAL_USER_ WORD_1 = 5400 and RESCALE_USER_WORD_1 = NONE
you want to map the internal address 5400 of the standard map in WORD to address 57 of the user map (\(5400=\) SETP_1-Local Setpoint) without any rescaling.
With SETP_1=100 at address 57 the data is \(=100\).

\section*{Example 2:}

With ADDRESS_USER_WORD_2 \(=58\), INTERNAL_USER WORD_2 = 5302 e RESCALE_USER_WORD_2 = DIVISION BY 10
you want to map the internal address 5302 of the standard map in WORD (5302 = CURR1 - Current input CT1) to address 58 of the user map in WORD with the data divided by 10 .
With CURR1=10.3A (i.e. Modbus data without formatting \(=103\)) at address 58 the data is \(=10 \mathrm{~A}\).

The type of access (read-only or read/write) depends on the selected data type of the internal map. The value of user address \(=65535\) means not configured.

\subsection*{5.24.3. WORD user map (16bit access) with read-only bit structure}

Parameters defining the WORD-type user map with bit meaning read-only (2 elements) are available in GF_eXpres\(\mathrm{s} \rightarrow\) Expert \(\rightarrow\) User Map \(\rightarrow\) Word (16 bits access) with bit structure R/O:
-ADDRESS_USER_ WORDBIT_R_1..._2: are the addresses of the user map in WORD, while
-INTERNAL_USER_WORDBIT_R_1_BIT00..._2_BIT15: these are the corresponding addresses of the standard read-only internal BIT map, one for each of the 16 bits to be configured

\section*{Example:}

With ADDRESS_USER_WORDBIT_R_1 = 34, INTERNAL_ USER_WORDBIT_R_1_BIT00 = 60 and
INTERNAL_USER_WORDBIT_R_1_BIT01 = 61
the read-only variable made up of bit 0 that reports the internal address 60 of the standard BIT map (\(60=\) bit_AL_1 - Alarm 1 status) and bit 1 that reports the internal address 61 of the standard BIT map (61 = bit_AL_2 - Alarm 2 status) is to be mapped in WORD user map address 34.

The value of user address \(=65535\) means not configured.

\subsection*{5.24.4. WORD user map (16bit access) with read/write bit structure}

Parameters defining the WORD-type user map with bit meaning in read/write (2 elements) are available in GF_ eXpress \(\rightarrow\) Expert \(\rightarrow\) User Map \(\rightarrow\) Word (16 bits access) with bit structure R/W:
ADDRESS_USER_WORDBIT_RW_1..._2 are the addresses of the user map in WORD, while
- INTERNAL_USER_WORDBIT_RW_1_BIT00..._2_BIT15 are the corresponding addresses in the standard internal BIT map with read/write access, one for each of the 16 bits to be configured

\section*{Example:}

With ADDRESS_USER_WORDBIT_RW_1 = 13, INTERNAL_ USER_WORDBIT_RW_1_BIT04 = 2,
INTERNAL_USER_WORDBIT_RW_1_BIT11 = 0 and INTERNAL_USER_WORDBIT_RW_1_BIT14 = 3
you want to map at address 13 of the user map in WORD the read/write variable composed of bit 4 , which shows the internal address 2 of the standard BIT map (\(2=\) bit_ON_ OFF - software On/Off), bit 11, which shows the internal address 0 of the standard BIT map (\(0=\) bit_AUTO_MAN_1 Auto/Manual), and bit 14, which shows the internal address 3 of the standard BIT map (3 = bit_SELFT_STOP_START_1 - Selftuning Stop/Start).

The value of user address \(=65535\) means not configured.

\subsection*{5.24.5. User map with BIT access}

The parameters defining the BIT-type user map (20 elements) are available in GF_eXpress \(\rightarrow\) Expert \(\rightarrow\) User Map \(\rightarrow\) Bit access:
- ADDRESS_USER_BIT_1..._20: are the addresses of the user map in BIT, while
- INTERNAL_USER_BIT_1..._20: are the corresponding addresses of the standard internal BIT map

\section*{Example:}

With ADDRESS_USER_BIT_1 = 33 and INTERNAL_USER_ BIT_1 = 10
you want to map to address 33 of the BIT user map the internal address 10 of the BIT standard map (\(10=\) bit_ HOLD_1 - Main input hold).
The type of access (read-only or read/write) depends on the selected data type of the internal map. The value of user address \(=65535\) means not configured.

\subsection*{5.24.6. Support variables}

The parameters defining the support variables are available in GF_eXpress \(\rightarrow\) Expert \(\rightarrow\) Parameters \(\rightarrow\) Global:
- USER_VARIABLE_1..._4: these are the 4 variables with 16bit access
and in GF_eXpress \(\rightarrow\) Expert \(\rightarrow\) Bit access \(\rightarrow\) Global:
- Bit_USER_VARIABLE_1_bit0..._bit7: are the 8 variables with bit access corresponding to the first 8 bits of the first word variable USER_VARIABLE_1

\section*{Example:}

By setting USER_VARIABLE_1 = 15 this value is saved in the non-volatile memory of the instrument and can be read/ reset via bit commands:
Bit_USER_VARIABLE_1_bit0 = 1
Bit_USER_VARIABLE_1_bit1 = 1
Bit_USER_VARIABLE_1_bit2 = 1
Bit_USER_VARIABLE_1_bit3 = 1
Bit_USER_VARIABLE_1_bit4 = 0
Bit_USER_VARIABLE_1_bit5 = 0
Bit_USER_VARIABLE_1_bit6 = 0
Bit_USER_VARIABLE_1_bit7 = 0

\subsection*{5.25. Protection of controller configuration via GF_eXpress by password}

Starting with firmware version 3.00, it is possible to protect access via the GF_eXpress configurator to certain controller parameters by means of a password that can be set freely by the user.
This password can only be configured only via GF_eXpress (parameter "PASCW_GEFCONFIG" in the "Password" menu).

The default value of this parameter, equal to "GEFSPA12", renders the protection inactive, thus guaranteeing full operation of the GF_eXpress configurator.

Caution! The value assigned to the password that protects configuration of parameters on the controller is in no way visible on the instrument, but only via GF_eXpress.
The user must store the specific password set on the individual controller independently.
If the user forgets the password set on the target, it will not be possible to recover it, so the user must perform a factory reset of the controller to be able to access all configuration parameters again via GF_eXpress.

If the user sets a password on the controller that differs from the default password, it will be necessary to know this password in order to have full read and write access to all parameters and wizards via the GF_eXpress configurator. If the user who connects to the device via the GF_eXpress configurator does not know the password set on the controller (to a value other than the default), the user's access will be limited to a subset of parameters and he or she will be able to view/edit them only via the grid (all wizards will be disabled).

Functions whose configuration via GF_eXpress can be protected by a password are:
- Linearisation of inputs
- Auxiliary Digital Inputs and Outputs
- Internal recipes
- Programmers in Synchronous and Asynchronous Mode
- Logical Blocks
- Mathematical blocks
- Configurable Messages
- Master Communication
- User menu
- Events calendar
- Configuration of parameters displayed in the on-board configuration menu
Access to the controller's parameters via a generic Modbus client (either RTU or TCP) will not be affected in any way by setting a password other than the default.

\subsection*{5.25.1. Password Setting}

To give the password parameter a different value from the default value, select the appropriate button in the grid

When you press this button, a dialogue box will appear with:
- the "Current Password" field displaying the current value of the password as plain text
- the "New Password" field in which you can set the new password value in encrypted form.
- a "Confirm new password" field where you will be asked to confirm the new password in encrypted form
-a "Clear" button for resetting the password to the default value
- OK\Cancel buttons to confirm and/or cancel the setting

\section*{\(\triangle\)}

Caution! Passwords are case-sensitive and must be at least four characters long.
The admissible characters are:
- 'A'... 'Z' e 'a'...'z'
- '0’...,'9’
 ‘@’, ', ', '-'
Use of a character other than those listed above, or a sequence of permitted characters shorter than the minimum length, will make the password unacceptable and cause an error message to appear in the password setting dialogue box when you press "OK".

\subsection*{5.25.2. Access to a device with pas-sword-protected configuration via GF_ eXpress}

The first time you use the GF_eXpress configurator to access a device on which a password other than the default was previously set (see paragraph "5.25.1. Password Setup"), you will be prompted to enter the password,

whether you are opening a configuration file (.gfe file) or creating a new configuration file.
Once the correct value has been set, the GF_eXpress configurator will be fully operational.
If
- the password entered is different from the one set on the controller
- the user does not enter a password

The following warning window will appear

Informing the user that from now on the configurator will work in reduced mode.
To exit this mode it will be necessary to close the current session of the GF_eXpress configurator and start a new one.

Caution! All configuration parameters that are not accessible in GF_eXpress in protected mode will be forced to their default value in the configuration file (.gfe file).

\subsection*{5.25.3. Opening a password-protected configuration file with GF_eXpress}

If the user tries to open a password-protected configuration file in GF_eXpress and there is no way to establish communication with any target, it will be necessary to know the value of the password saved in the configuration file in order to obtain full access to the parameters.
If
- the password entered is different from the password saved in the configuration file
- the user does not enter a password

The following warning window will appear

informing the user that from now on the configurator will work in reduced mode.
This condition will persist even if the user connects to a controller at a later date.
To exit this mode it will be necessary to close the current session of the GF_eXpress configurator and start a new one

\section*{6. PROGRAMMING WITH PC}

\subsection*{6.1. Controller-PC connection}

The controller has a port to connect the device to a PC.
The following photos show where the port is located on the different controller models.
Models 1650 and 1850 differ only in the size of the case.
The connection requires a special accessory cable (code F060800), which acts as a USB-serial interface/converter and communicates as a Virtual COM Port with a USB port on the computer.

\(\triangle\)
Attention! To use this interface you have to install the VCP driver, downloadable from:
www.gefran.com/en/products/261-gf_express\#downloads.

When the controller is connected to the PC you can configure it rapidly even when it is not powered.
The instrument configuration memory is powered by the USB connection.
Connecting the controller to the primary power supply while the USB cable is still connected DOES NOT activate normal Power-on. You must first disconnect the controller from the PC and then apply primary power.

\subsection*{6.2. Programming Tool}

\subsection*{6.2.1. GF_eXpress}

The GF_eXpress software lets you:
- read and write the configuration of controller (set of parameters);
- save recipes on the PC (recipe archive);
- display as graph / set all parameters needed for the Programmer function;
- display/set Logic Oforations (Function Blocks);
- display/set math Oforations (function blocks);
- set structure of parameters recipes;
- set sequence and parameters of user configuration menu;
- set message strings (3 selectable languages);
- transfer any firmware updates

The software is available on CD-rom (code F043958). The program can be updated automatically from www.gefran.com.

\subsection*{6.2.1.1. System requirements}
\begin{tabular}{|l|l|l|}
\cline { 2 - 3 } \multicolumn{1}{c|}{} & \multicolumn{1}{c|}{ Minimum } & \multicolumn{1}{c|}{ Recommended } \\
\hline \begin{tabular}{l}
Oforating \\
system
\end{tabular} & \begin{tabular}{l}
Windows XP SP2 \\
or Windows Vista or \\
Windows 7 (32 bit)
\end{tabular} & Windows 7 (64 bit) \\
\hline Processor & \begin{tabular}{l}
Intel Pentium \\
1 GHz
\end{tabular} & \begin{tabular}{l}
Intel Core i5 2,5 \\
Ghz or higher
\end{tabular} \\
\hline RAM & 2 GB & 4 GB or higher \\
\hline \begin{tabular}{l}
Free space \\
on Hard Disk
\end{tabular} & 2 GB & 4 GB or higher \\
\hline Resolution & \begin{tabular}{l}
XGA \\
\((1024 \times 768\) pixel)
\end{tabular} & \begin{tabular}{l}
SXGA (1280 \(\times 1024\) \\
pixel) or higher
\end{tabular} \\
\hline Browser & \begin{tabular}{l}
Microsoft Internet \\
Explorer 8.0
\end{tabular} & \begin{tabular}{l}
Microsoft Internet \\
Explorer 9.0 or \\
higher
\end{tabular} \\
\hline Ethernet port & 1 RJ45 & 1 RJ45 \\
\hline DVD reader & Yes & Yes \\
\hline USB port & 1 USB 2.0 & 1 USB 2.0 \\
\hline
\end{tabular}

\section*{7. OPERATOR GUIDE}

\subsection*{7.1. Displays and keys}

The display and keys for each model are described in paragraphs "1.3.1. Display and keys" on page 13 for the 850, "1.4.1. Display and keys" on page 15 for the 1650, and "1.5.1. Display and keys" on page 17 for the 1850.

\subsection*{7.1.1. \(\quad\) Navigating the menus}

Keys are used for navigating menus and submenus, changing parameters, and confirming choices.
Their function depends on the context and on how long they are pressed. The LEDs above the keys not only give confirmation that each key has been pressed (by flashing), but also show which keys can be used in each situation.

The following navigation functions are assigned to the keys:

Scroll User Configuration menu (Setpoint, Alarm setpoints, Control output, etc.).
Each time the key is pressed, it confirms the value of the displayed parameter and goes to the next item on the menu.
Keep the key pressed for more than 2 seconds to enter the Programming/Configuration Menu.

Each time the key is pressed, you go back to the previous menu item or to the higher menu level, according to the context.
Keep the key pressed for more than 2 seconds to return to the Home page.

Press the key to enter a submenu or to lower the displayed parameter value, according to the context.
Keep the key pressed to progressively increase the speed of lowering the displayed parameter.

Press the key to raise the value of the displayed parameter.
Keep the key pressed to progressively increase the speed of raising the displayed parameter.

When the process variable is displayed, in standard configuration the \(\circlearrowleft\)) key switches the controller function mode (manual/automatic).

\subsection*{7.2. Power-on}

The controller runs a self-diagnostics test immediately after power-on.
During the test all segments of the display flash and a checksum is run.
The hardware resources present are also acquired.
If the self-diagnostics test detects no errors, the controller enters normal functioning state (display shows Home page).

If any system errors are detected, the controller displays the related information.
If the error is caused by a damaged program, update the firmware.
If the error is caused by incorrect configuration, reconfigure the controller with PC and GF_eXpress software.

Errors are saved in a register and can be displayed with the Error function on the INFO menu.

\subsection*{7.3. Operation as controller}

The device's normal operating mode is controller-only.
The display shows the following information:
- PV displays the process variable value;
- SV displays the setpoint value (if dS. \(\mathrm{Sp}=\) setp);
- models 1650 and 1850 also display the control output value (if dS.F = OUT.P);
- by pressing the \(F\) key the PV display shows, in sequence the significant values that condition controller function: setpoint, alarm setpoints, control output, etc., which can be changed if necessary (parameters in the user menu).

Keep the \(\mathbf{F}\) key pressed for more than 2 seconds to enter the Programming/Configuration menu.

Use the \(\Delta\) and \(\nabla\) keys to raise and lower the setpoint to the value required.

Press the \(F\) key to save the SP value; otherwise, the set value is saved about 15 seconds after the last change

\subsection*{7.4. Operation as programmer}

\subsection*{7.4.1. Activating the programmer}

To enable the Programmer function, set parameter PROGR = On1, On2, On.S. on the EN.FUNC menu.
The following parameters are entered as default on the user menu:
- PROG.STATUS_1 which lets you request the display/ check of PROGRAMMER 1
- PROG.STATUS_2, which lets you request the display/ check of PROGRAMMER 2

\subsection*{7.4.2. Display indication}

The different controller models display programmer status information in different ways.
The following examples show how the same information is displayed on the 850,1650 , and 1850 controllers.
Compared to the model 850, models 1650 and 1850 also show the process variable value (PV_1 PROG.STATUS_1 and PV_2 PROG.STATUS_2).
Compared to the other two models, the model 1850 also shows the setpoint value of the active step.
1. Indication of programmer status. When on, programmer is on.
2. Number of program running (number 2 in example).
3. Number of program step running (number 5 in example).
4. LED RUN: on indicates that program is running; flashing indicates that program is in STOP, END or HOLD, and that the time base is stopped.
5. LED RAMP: on indicates that program is running the ramp segment of the step; off means that it is in the hold segment of the step or at end of program (in example: running ramp of step 5).
6. Current time of segment (ramp or hold) of step. The time value depends on the set base times, hh:mm or mm:ss (in example: elapsed time is 20 minutes and 42 seconds).
7. Process variable PV_1 or PV_2 depending on whether you are in PROG.STATUS_1 or in PROG.STATUS_2 (in example: 118).
8. Setpoint of current step, i.e. the value to be reached (in example: 120).

\subsection*{7.5. Errors during operation}

If errors occur during normal operation, the HOME.x pages will show:
- the name of the error on the PV display
- the value of the setpoint or control output on the SV display (only on models 1650 and 1850).
- a scrolling message with errors detected, on display SV (model 850) or on display F (models 1650 and 1850).

The most common error messages are:
Lou Process variable is below minimum scale limit (parameter LO.SCL on I.MAIN).
High Process variable is above maximum scale limit (parameter HI.SCL on I.MAIN).
Err PT100 in short circuit or input values below minimum limits (for example, thermocouple with incorrect connection) or \(4 \ldots 20 \mathrm{~mA}\) transmitter broken or not powered.
Sbr Sensor broken or input values above maximum limit.

\subsection*{7.6. Configuration (User menu)}

Every operator has a freely accessible menu (no password required) on which he can configure some controller parameters.
The User Configuration menu can be built according to need with the GF_express software, grouping up to 100 parameters from those available for controller configuration (see chapter "4. Configuration" on page "4. CONFIGURATION" on page "4. CONFIGURATION" on page 52)
The parameters that may be selected to build the user set-up menu include PASS0 and PASS1; it may be useful to submit a password to the parameters of the user menu.

The controller leaves the factory with a preconfigured user configuration menu (shown below for models:
850-x-xxx-00000-x-xxx and 1650-x-xxx-00000-x-xxx).
This menu can subsequently be modified. The related parameters are shown for models with options; the complete list of parameters is shown on the GF_eXpress user menu page.
Press the \(\mathbf{F}\) key to access the User Configuration menu. GF_eXpress can be used to set the generic user menu parameter to set automatic back to PVHome when positioned on the parameter and no key is pressed within 15 seconds.
\begin{tabular}{|c|c|c|c|c|}
\hline & Description & Unit of misura & Valid values & Notes \\
\hline & Local setpoint 1 & scale points & LO.SP1...HI.SP1 & \\
\hline & Alarm 1 limit & scale points & \[
\begin{gathered}
\text { LO.AL1...HI.AL1 } \\
-999 . . .999
\end{gathered}
\] & \begin{tabular}{l}
If absolute alarm. \\
If deviation alarm.
\end{tabular} \\
\hline ALRM2 & Alarm 2 limit & scale points & \[
\begin{gathered}
\text { LO.AL1...HI.AL1 } \\
-999 . . .999
\end{gathered}
\] & \begin{tabular}{l}
If absolute alarm. \\
If deviation alarm.
\end{tabular} \\
\hline ALRM3 & Alarm 3 limit & scale points & \[
\begin{gathered}
\text { LO.AL1...HI.AL1 } \\
-999 . . .999
\end{gathered}
\] & \begin{tabular}{l}
If absolute alarm. \\
If deviation alarm.
\end{tabular} \\
\hline ALRM4 & Alarm 4 limit & scale points & \[
\begin{gathered}
\text { LO.AL1...HI.AL1 } \\
-999 . . .999
\end{gathered}
\] & If absolute alarm. If deviation alarm. \\
\hline & Reset alarms latch and LBA alarm & & Off
On & Appears if at least one alarm with latch was set or if LBA alarm was enabled. The reset command is temporary and is not saved. \\
\hline MS.ACK & Reset scrolling message & & \[
\begin{aligned}
& \text { Off } \\
& \text { On }
\end{aligned}
\] & Appears if a scrolling message is present. The reset command is temporary and is not saved. \\
\hline OUT.P1 & Control output value 1 & & \[
\begin{gathered}
-100.0 . . .100 .0 \\
\text { On / OFF }
\end{gathered}
\] & Value Read Only \\
\hline Visualizzazione Home & & & & \\
\hline
\end{tabular}

You can enter the following on the user menu:
- simple parameters (for example, software version SW.Ver or password 1 PASS1);
- single instances of indexed parameters (for example, configuration of main channel type tYPE. 1 and of auxiliary channel type tYPE.2) ;
- subsets of parameters pertaining to an indexed configuration menu (for example, some parameters of the step configuration menu of the PR.STP program, such as the Setpoint of the SETP programming step, the Ramp Time of the rAMP.T step, and the Hold Time of the HOLD.T step).

To enter subsets of parameters pertaining to an indexed configuration menu, the objects in the diagram at the right must be entered IN THE FOLLOWING ORDER:
1. the Modbus object for the indexed configuration menu (in the example, PR.STP);
2. the Modbus object for the index selector of the indexed configuration menu (in the example, PR.STP.N);
3. the Modbus object for the first instance of the first parameter to be managed on the User Menu, pertaining to the configuration menu specified at point 1 (in the example, SETP.1);
4. the Modbus object for the first instance of the second parameter to be managed on the User Menu, pertaining to the configuration menu specified at point 1 (in the example, rAMP.T.1);
5. the Modbus object for the first instance of the third parameter to be managed on the User Menu, pertaining to the configuration menu specified at point 1 (in the example, HOLD.T.1);
6. the Modbus object for the first instance of the nth parameter to be managed on the User Menu, pertaining to the configuration menu specified at point 1.

If you try to enter:
- a Modbus object that does not pertain to the configuration menu specified at point 1, or
- a Modbus object for an instance other than the first, even if pertaining to the specified configuration menu, you will exit the indexed configuration menu.

Failure to follow points 1 and 2 will block correct navigation of the indexed configuration menu.

You can run a check of correct configuration of the Recipes template by clicking the \(=1\) icon in GF_eXpress (or the "Check user recipes template coherence" command on the GF_eXpress Service menu).

If:
- the value 0 , or
- a wrong Modbus address
is entered in the Value column of the GF_eXpress User Menu, navigation on the User Menu interrupts and you return to the Home. 1 page.

During navigation on an indexed menu, when you return to the menu with index (parameter PR.STP.N in the following figure), the number of the indexed submenu is always 1.

If the user changes the User Menu configuration while the controller is working in this menu (i.e., the display is showing one of the User Menu parameters), the switch to Home. 1 is automatically forced.

\section*{8. MAINTENANCE}

\section*{Attention!}

The controller must be repaired only by technicians trained and authorized by Gefran. Any attempt by unauthorized personnel to repair or change the hardware characteristics of the controller will void the warranty.

\subsection*{8.1. Replacing the controller}

The instrument (display + electronic circuits) can be replaced without having to remove the entire controller from the panel and disconnect its cables.

First switch off the power supply to the controller and to the other devices connected to it.
Then release the top and bottom of the faceplate and remove the instrument (see figure).
Insert the new instrument and switch on the power supply.

\(\triangle\)
Attention! Replace the entire controller if the blade contacts inside the instrument or the protective case show traces of burns or are not in perfect condition.

\subsection*{8.2. Replacing the gasket}

The gasket may lose efficiency over time and due to environmental conditions.
To maintain IP65 faceplate protection, replace the gasket (between faceplate and case and between case and panel) at regular intervals.

To replace the gasket between the case and the panel you have to disassemble the controller from the panel and then reassemble it; to replace the gasket between the faceplate and the case, follow the instructions for replacing the controller).

\subsection*{8.3. Cloning the configuration}

The configuration of one controller can be cloned to another controller by means of a PC or the optional ZAPPER accessory.

With a PC (and GF_eXpress software):
1. With the appropriate cable, connect the controller (with the configuration to be cloned) to the PC.
2. Read all of the controller configuration parameters and save them in a file (recipe).
3. Disconnect the controller.
4. Connect the controller to be configured to the PC.
5. Download the saved configuration to the controller.
6. Disconnect the configured controller

With the ZAPPER accessory:
1. Connect the ZAPPER to the controller with the configuration to be cloned.
2. Press the read key on the ZAPPER: the green LED starts flashing. DO NOT disconnect the ZAPPER while the LED is flashing.
3. After a short time the green LED lights up steadily. A rapidly flashing red LED means that the read procedure failed. Disconnect the controller.
4. Connect the ZAPPER to the controller to be configured.
5. Press the write key on the ZAPPER: the green LED starts flashing. DO NOT disconnect the ZAPPER while the LED is flashing.
6. After a short time the green LED lights up steadily. A rapidly flashing red LED means that the write procedure failed.
7. Disconnect the configured controller.

\subsection*{8.4. Cleaning}

To clean the faceplate and the case, use only a soft cloth dampened with water or alcohol. DO NOT use hydrocarbon solvents (trichloroethylene, gasoline, etc.)

Do not use compressed air to remove dust from the electronic cards. If necessary, use a clean brush with soft bristles.

You can also clean the inside of the controller if necessary. To do this, first switch off the power supply to the controller and to the other devices connected to it.
Then slide out the controller as explained in paragraph "8.1. Replacing the controller" to access and clean the inside of the case (page"8.1. Replacing the controller" on page 273).

\subsection*{8.5. Troubleshooting}

The following table shows the most common controller faults and their remedies.
\begin{tabular}{|c|c|c|}
\hline Message or problem & Possible cause & Remedy \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}

\section*{9. TECHNICAL DATA}

\subsection*{9.1. Controller 850}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{OPERATOR INTERFACE} \\
\hline \multirow{8}{*}{DISPLAY} & Type & LCD black background \\
\hline & Screen area (\(\mathrm{L} \times \mathrm{H}\)) & \(35 \times 30 \mathrm{~mm}\) \\
\hline & Lighting & Backlit with LEDs, life \(>40.000\) hours @ \(25^{\circ} \mathrm{C}\) (with brightness level BACKL =8) \\
\hline & PV display & \begin{tabular}{l}
Number of digits: 4 to 7 segments, with decimal point Digit height: 17 mm \\
Color: white
\end{tabular} \\
\hline & SV display & Number of digits: 5 to 14 segments, with decimal point Digit height: 7.5 mm Color: green \\
\hline & Unit of measurement & Selectable, \({ }^{\circ} \mathrm{C}\), \({ }^{\circ} \mathrm{F}\) or custom \({ }^{1}\) Color: same as PV display \\
\hline & Controller state signals & Number: 6 (RUN, MAN, \(_\)/-, REM, SP1/2) Color: amber \\
\hline & Output state signals & Number: 4 (1, 2, 3, 4) Color: red \\
\hline KEYPAD & & Number of keys: 4 silicon (Man/Auto, INC, DEC, F) Type: mechanical \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{INPUTS} \\
\hline \multirow{10}{*}{MAIN AND AUXILIARY INPUT} & Sensor type & \begin{tabular}{l}
- Thermocouples, RTD (PT100, JPT100), IR Pyrometers with type K output, \(4 \ldots .20 \mathrm{~mA}, 0 \ldots 20 \mathrm{~mA}, 10 \mathrm{~V}, 5 \mathrm{~V}, 1 \mathrm{~V}, 60 \mathrm{mV}\), potentiometer \\
-Reading accuracy: \(\pm 0.1 \%\) of value read \\
This Gefran controller, when subjected to the necessary calibration operations in the field, is suitable for use in Nadcap applications for any class of oven, from 1 to 6 , according to specification AMS2750F, paragraph 3.3.1.
\end{tabular} \\
\hline & Thermocouple Input & \begin{tabular}{l}
- Types: J, K, R, S, T, C, D, B, E, L, L-GOST, U, G, N,Pt20RhPt40Rh Custom linearisation available \\
- Linearisation accuracy: according to standard ITS90 polynomes; refer to user manual for details \\
- Cold joint accuracy: \(< \pm 1^{\circ} \mathrm{C}\) at \(25^{\circ} \mathrm{C}\) ambient temperature \\
- Cold joint compensation: greater than 40:1, rejection at changes in room temperature exceeding \(25^{\circ} \mathrm{C}\) \\
- Diagnostics: Indication of faulty probe and out of scale
\end{tabular} \\
\hline & \begin{tabular}{l}
RTD input \\
(Pt100 and JPt100)
\end{tabular} & \begin{tabular}{l}
- Types: Pt100, JPt100. Custom linearisation available \\
- Calibration precision: \(< \pm 0.1 \%\) of the value read in \({ }^{\circ} \mathrm{C} \pm 0.4^{\circ} \mathrm{C}\) \\
- Linearisation accuracy: \(< \pm 0.062^{\circ} \mathrm{C}\) \\
- Thermal shift: \(<(\pm 0.002 \% \text { of read value })^{\circ} \mathrm{C}\), starting from \(25^{\circ} \mathrm{C}\) room temperature) \(\pm 0.1^{\circ} \mathrm{C}\) \\
- Diagnostics: Indication of faulty probe and out of scale
\end{tabular} \\
\hline & Linear DC input & \begin{tabular}{l}
- Tipes : \(0 \ldots 60 \mathrm{mV}, 0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}, 0 \ldots 1 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}\) \\
- Input impedance :
\[
\begin{aligned}
& 0 . . .60 \mathrm{mV}, 0 \ldots 1 \mathrm{~V}:>100 \mathrm{M} \Omega \\
& 0 \ldots 5 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}:>400 \mathrm{k} \Omega \\
& 0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}: 50 \Omega
\end{aligned}
\] \\
- Linearisation: linear or custom \\
- Calibration accuracy: \(<0.1 \%\) full scale \\
- Thermal shift: \(< \pm 0.003 \%\) full scale \(/{ }^{\circ} \mathrm{C}\), starting from \(25^{\circ} \mathrm{C}\) room temperature
\end{tabular} \\
\hline & Sampling time & 60 ms or 120 ms , selectionable \\
\hline & Digital filter & 0,0...20,0 s configurable \\
\hline & Rejection to network disturbance
\[
(48-62 \mathrm{~Hz})
\] & Rejection to differential mode: \(>80 \mathrm{~dB}\) Rejection to common mode: >150 dB \\
\hline & Temperature unit of measure & Grade C / F, selectable on the keypad \\
\hline & Reading interval & \begin{tabular}{l}
Tipe: linear \\
Scale: -1999...9999,settable decimal point
\end{tabular} \\
\hline & Insulation & Functional insulation between main and auxiliary inputs \\
\hline \multirow[b]{3}{*}{TA (ammeter) INPUT} & Isolation & Isolated via external transformer \\
\hline & Accuracy & \(\pm 2 \%\) f.s. \(\pm 1\) digit @ \(25^{\circ} \mathrm{C}\) \\
\hline & Type & \begin{tabular}{l}
Number: 2 max \\
Max. capacity: x/50 mA AC \\
Line frequency: \(50 / 60 \mathrm{~Hz}\) \\
Input impedance (Ri): \(10 \Omega\)
\end{tabular} \\
\hline \multirow[t]{3}{*}{DIGITAL INPUTS} & Type & \begin{tabular}{l}
voltage-free contact, or \\
NPN 24 V-4,5mA, o \\
PNP 12/24 V - max 3,6 mA \\
for detail see electrical connections
\end{tabular} \\
\hline & Isolation & 250 V \\
\hline & Number & 3 max \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{OUTPUTS} \\
\hline \multirow[t]{6}{*}{} & \begin{tabular}{l}
Relay \\
(R)
\end{tabular} & \begin{tabular}{l}
Number : 3 max (4 if 3 relè has a common wire) \\
Type of relè contact: :NO \\
Maximum current : 5A (2A for UL applications), 250Vac \\
Minimum load : \(5 \mathrm{~V}, 10 \mathrm{~mA}\) \\
Number of operations: > 600,000 @ 2A load current \\
Double insulation \\
Installation of an external R-C suppressor ("snubber") is recommended
\end{tabular} \\
\hline & \begin{tabular}{l}
Logic \\
(D)
\end{tabular} & \begin{tabular}{l}
Number: 4 max \\
Type: for solid-state relays \\
Voltage: \(24 \mathrm{~V} \pm 10 \%\) (min \(10 \mathrm{~V} @ 20 \mathrm{~mA})\) \\
Isolated from main input
\end{tabular} \\
\hline & Isolated logic (M) & \begin{tabular}{l}
Number: 2 max \\
Type: MOS optically isolated inputs for PLC and AC / DC \\
Voltage: 30 V AC/DC max \\
Current: 100 mA max \\
Resistance ON: \(0,8 \Omega\) max \\
Isolation: 1500 V
\end{tabular} \\
\hline & Triac (long life relay) (T) & \begin{tabular}{l}
Number: 1 max \\
Load: resistive \\
Voltage: 75... 240 VAC \\
Current max: 1 A \\
Isolation 3 kV \\
snubber circuit integrated zero crossing switching
\end{tabular} \\
\hline & \begin{tabular}{l}
Continue \\
(A)
\end{tabular} & \begin{tabular}{l}
Number: 1 max \\
\(0 . . .10 \mathrm{~V}\), max 20 mA , Rload: > \(500 \Omega\) \\
0... \(20 \mathrm{~mA}, 4 . . .20 \mathrm{~mA}\), Rload: < \(500 \Omega\) \\
Resolution: 12 bit \\
Insulation compared to main input
\end{tabular} \\
\hline & Analog retransmission (A1) & \begin{tabular}{l}
Number: 1 max \\
\(0 . . .10 \mathrm{~V}\), max 20 mA , Rload: > \(500 \Omega\) \\
0... \(20 \mathrm{~mA}, 4 . . .20 \mathrm{~mA}\), Rload: \(<500 \Omega\) \\
Resolution: 12 bit \\
Insulation compared to main input
\end{tabular} \\
\hline \multirow[b]{2}{*}{ALARMS} & Number of alarm functions & 4 max, assignable to an output \\
\hline & Possible configurations & Maximum, minimum, symmetric, absolute/relative, exclusion at power-on, memory, reset from keypad and/or contact, LBA, HB HBB Hold Back Band if enabled with Programmer function Power variation alarm \\
\hline \multirow[b]{2}{*}{POWER SUPPLY} & For sensor VT1, VT2 & Voltage: 24 VDC \(\pm 10 \%\) Current max: 30 mA \\
\hline & For potentiometer VP & Voltage: \(1 \mathrm{VDC} \pm 1 \%\) Current max: 30 mA \\
\hline
\end{tabular}

\section*{CONTROL FUNCTIONS}
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{CONTROL} & Type & Single loop, double loop \\
\hline & Control & PID, ON/OFF, single action heat or cool, double action heat/cool \\
\hline & Control output & \begin{tabular}{l}
Continuous or ON/OFF \\
Cycle time: constant or optimized (BF)
\end{tabular} \\
\hline & Control output for motorized valves & OPEN/CLOSE for floating motorized valve or with feedback with position control by potentiometer on Relay, Solid-state, Triac outputs. \\
\hline \multirow[t]{2}{*}{SETPOINT PROGRAMMER (double Programmer if double loop)} & Number of programs & \begin{tabular}{l}
Max 16 (if double loop \(8+8\)) (*) \\
Start / Stop / Reset / Skip via digital inputs and/or outputs from logic operations \\
Output state: Run /Hold / Ready / End
\end{tabular} \\
\hline & Number of steps & \begin{tabular}{l}
Max 128, each with own setpoint, ramp time and hold time(**) Times settable in HH:MM or MM:SS \\
Max 4 consents, configurable for ramp and for hold Max 4 events, configurable in ramp and in hold
\end{tabular} \\
\hline MULTIPLE SETPOINTS & Number of setpoints & Max 4, selectable from digital input Each setpoint change is subject to set ramp, different for up and down ramp \\
\hline LOGIC OPERATIONS \({ }^{1}\) & Digital function blocks & \begin{tabular}{l}
Max 32, with 4 input variables per block The result can act on the state of the controller, of the programmer on alarms and outputs. \\
Each function has an AND, OR with TIMER block.
\end{tabular} \\
\hline OPERATIONS MATHEMATICAL \({ }^{1}\) & Analog function blocks & \begin{tabular}{l}
Max 8, with 2 input variables per block, with operators such as,+- , \(\times\), , , average, square root, \\
The result may act on analog variables in input to PID loops (controlled variable, setpoint) or analog outputs
\end{tabular} \\
\hline \multirow[b]{2}{*}{TIMER FUNCTION} & Number timer & \begin{tabular}{l}
Standard: 1 \\
If double loop: 2 independent
\end{tabular} \\
\hline & Modes & \begin{tabular}{l}
START / STOP \\
STABILIZATION (timer is on when PV enters a band set around setpoint; at end of count you can activate an output, shut down SW or change SP1/SP2) \\
FIRING (timed activation of control after power on)
\end{tabular} \\
\hline ENERGY COUNTER & & Calculation done on nominal line voltage and nominal load power or on rms current measured on load via CT \\
\hline DIAGNOSTIC & & Short circuit or open circuit (LBA alarm) Interrupted or partially interrupted load (HB alarm) Short circuit of control output (SSR alarm) \\
\hline \multirow[b]{2}{*}{RETENTIVE MEMORY} & Type & FRAM \\
\hline & Writes & Max. number: \(>10^{10}\) cycles Retention: > 10 years \\
\hline
\end{tabular}
(*) if in standard mode; if in "Simplified programmer" mode, Max 12 programs
\({ }^{(* *)}\) freely selectable in any program, if in standard mode; if in "Simplified programmer" mode, MAX 16 steps per program, in a set order: Program 1 Step 1-16, Program 2 Step 17 - 32, and so on

GENERAL DATA
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{POWER SUPPLY} & Operating voltage & \begin{tabular}{l}
100... 240 VAC/VDC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\) \\
(20... 27 VAC/VDC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\))
\end{tabular} \\
\hline & Power dissipation & 10 W max \\
\hline & Protections & Overvoltage \(300 \mathrm{~V} / 35 \mathrm{~V}\) \\
\hline & Connection & Screw terminals and crimp connector, max. wire section \(1 \mathrm{~mm}^{2}\) \\
\hline \multirow{6}{*}{CONNECTIONS} & Serial configuration port & Connector: microUSB \\
\hline & RS485 (option) & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, 115.200 bit/s \\
Protocol: Modbus RTU slave Insulation respect to main input \\
Screw terminals and crimp connector, max. wire section \(2,5 \mathrm{~mm}^{2}\)
\end{tabular} \\
\hline & Master Modbus & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, 115.200 bit/s \\
Protocol: Modbus RTU Master \\
Screw terminals and crimp connector, max. wire section \(2,5 \mathrm{~mm}^{2}\)
\end{tabular} \\
\hline & RTU Bridge & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, 115.200 bit/s \\
Protocol: Modbus RTU Master \\
Screw terminals and crimp connector, max. wire section \(2,5 \mathrm{~mm}^{2}\)
\end{tabular} \\
\hline & Ethernet Modbus TCP and Webserver (optional) & \begin{tabular}{l}
Baudrate : 10/100BaseTX, 10/100Mbit/s \\
Protocol : Modbus TCP slave, Webserver integrato \\
Isolation from other peripherals \\
Standard RJ45 conector
\end{tabular} \\
\hline & Inputs and outputs & Screw terminals and crimp connector, max. wire section \(2,5 \mathrm{~mm}^{2}\) \\
\hline \multirow{5}{*}{AMBIENT CONDITIONS} & Use & Internal \\
\hline & Altitude & 2000 m max \\
\hline & Operating temperature & \(-10 \ldots+55^{\circ} \mathrm{C}\) (as per IEC 68-2-14) \\
\hline & Storage temperature & \(-20 \ldots+70^{\circ} \mathrm{C}\) (as per IEC 68-2-14) \\
\hline & Relative humidity & 20...85\% RH non-condensing (as per IEC 68-2-3) \\
\hline PROTECTION LEVEL & & IP 65 on front panel (as per IEC 68-2-3) \\
\hline \multirow[b]{2}{*}{ASSEMBLY} & Positioning & On panel, removable faceplate \\
\hline & Installation regulations & Installation category: II Pollution degree: 2 Isolation: double \\
\hline DIMENSIONS & & \(48 \times 48 \mathrm{~mm}\) (1/16 DIN), Depth: 100 mm \\
\hline WEIGHT & & \(0,16 \mathrm{~kg}\) \\
\hline \multirow[t]{2}{*}{NORME CE} & EMC conformity (electromagnetic compatibility) & Conforms to Directive 2014/30/EU norme EN 61326-1 Emissions in industrial environment classe A \\
\hline & LVD safety & Conforms to Directive 2014/35/EU norme EN 61010-1 \\
\hline \multirow{4}{*}{CERTIFICATIONS} & Generals & This Gefran controller, when subjected to the necessary calibration operations in the field, is suitable for use in Nadcap applications for any class of oven, from 1 to 6 , according to specification AMS2750F, paragraph 3.3.1. \\
\hline & Europe & CE, RoHS, REACH \\
\hline & USA, Canada & UL, cUL \\
\hline & Russia & EAC \\
\hline
\end{tabular}
1) Programming is done through the GF_eXpress configuration program

\subsection*{9.2. Controller 1650}

\section*{OPERATOR INTERFACE}
\begin{tabular}{|c|c|c|}
\hline \multirow{11}{*}{DISPLAY} & Type & LCD black background \\
\hline & Screen area (L x H) & \(37 \times 68 \mathrm{~mm}\) \\
\hline & Lighting & Backlit with LEDs, life \(>40.000\) hours @ \(25^{\circ} \mathrm{C}\) (with brightness level backl =8) \\
\hline & PV display & Number of digits: 4 to 7 segments, with decimal point Digit height: 17 mm Color: white \\
\hline & SV display & \begin{tabular}{l}
Number of digits: 4 to 7 segments, with decimal point Digit height: 14 mm \\
Color: green
\end{tabular} \\
\hline & F display & Number of digits: 5 to 14 segments, with decimal point Digit height: 9 mm Color: amber \\
\hline & Unit of measurement & Selectable, \({ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}\) or custom \({ }^{1}\) Color: same as PV display \\
\hline & Controller state signals & Number: 6 (RUN, MAN, _/-, REM, SP1/2) Color: amber \\
\hline & Output state signals & Number: 4 (1, 2, 3, 4) Color: red \\
\hline & Bargraph indicator, configurable & \begin{tabular}{l}
Type: graphic bargraph, 11 segments \\
Power indication: 0 ... 100\% o-100 ... 100\% \\
Current indication: 0 ... 100\% f.s. \\
Valve position indication: 0 ... 100\%
\end{tabular} \\
\hline & Bargraph indicator & Type: double bar, 11 segments Indication of process variable and setpoint: \(0 . . .100 \%\) f.s. \\
\hline KEYPAD & & \begin{tabular}{l}
Keys number: 4 , silicone (Man/Auto, INC,DEC,F) \\
Type: mechanical
\end{tabular} \\
\hline
\end{tabular}

\section*{INPUTS}
\begin{tabular}{|c|c|c|}
\hline \multirow{10}{*}{MAIN AND AUXILIARY INPUT (Main, Aux1, Aux2)} & Sensor type & \begin{tabular}{l}
- Thermocouples, RTD (PT100, JPT100), IR pyrometers with type K output, \(4 \ldots . .20 \mathrm{~mA}, 0 \ldots 20 \mathrm{~mA}, 10 \mathrm{~V}, 5 \mathrm{~V}, 1 \mathrm{~V}, 60 \mathrm{mV}\), potenziometer \\
- Reading accuracy : \(\pm 0,1 \%\) of value read \\
This Gefran controller, when subjected to the necessary calibration operations in the field, is suitable for use in Nadcap applications for any class of oven, from 1 to 6 , according to specification AMS2750F, paragraph 3.3.1.
\end{tabular} \\
\hline & Thermocouple (only Main and Aux1) & \begin{tabular}{l}
- Types : J, K, R, S, T, C, D, B, E, L, L-GOST, U, G, N,Pt20RhPt40Rh Custom linearisation available \\
- Linearisation accuracy: according to standard ITS90 polynomes; refer to user manual for details \\
- Cool junction accuracy: \(< \pm 1^{\circ} \mathrm{C}\) a \(25^{\circ} \mathrm{C}\) room temperature \\
- Cool junction compensation : greater than 40:1 rejection at changes in room temperature exceeding \(25^{\circ} \mathrm{C}\) \\
Diagnostics: Indication of faulty probe and out of scale
\end{tabular} \\
\hline & \begin{tabular}{l}
RTD input \\
(Pt100 and JPt100) \\
(only Main and Aux1)
\end{tabular} & \begin{tabular}{l}
- Types: Pt100, JPt100. Custom linearisation available \\
- Calibration accuracy: \(< \pm 0,1 \%\) of the value read in \({ }^{\circ} \mathrm{C} \pm 0,4^{\circ} \mathrm{C}\) \\
- Linearisation accuracy: \(< \pm 0,062^{\circ} \mathrm{C}\) \\
- Thermal shift: \(<\left(\pm 0.002 \%\right.\) of read value \(/{ }^{\circ} \mathrm{C}\), starting from \(25^{\circ} \mathrm{C}\) room temperature) \(\pm 0.1^{\circ} \mathrm{C}\) \\
- Diagnostics: Indication of faulty probe and out of scale
\end{tabular} \\
\hline & Linear DC input & \begin{tabular}{l}
- Types : \(0 \ldots . .60 \mathrm{mV}, 0 . .20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}, 0 . .1 \mathrm{~V}, 0 \ldots 5 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}\), \(0 . .2 .4 \mathrm{~V}\) high impedance, \(0 . . .1 .2 \mathrm{~V}\) high impedance \\
-Input impedance :
\[
\begin{aligned}
& 0 \ldots . .60 \mathrm{mV}, 0 \ldots 1 \mathrm{~V}, 0 \ldots 1.2 \mathrm{~V}, 0 \ldots 2.4 \mathrm{~V}:>100 \mathrm{M} \Omega \\
& 0 \ldots 5 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}:>400 \mathrm{k} \Omega \\
& 0 . . .20 \mathrm{~mA}, 4 \ldots .20 \mathrm{~mA}: 50 \Omega
\end{aligned}
\] \\
- Linearisation: linear or custom \\
- Calibration accuracy: < \(0.1 \%\) full scale \\
- Thermal shift: \(< \pm 0.003 \%\) full scale \(/{ }^{\circ} \mathrm{C}\), starting from \(25^{\circ} \mathrm{C}\) room temperature
\end{tabular} \\
\hline & Sampling time & 60 ms or 120 ms , selectable \\
\hline & Digital filter & 0,0...20,0 s configurable \\
\hline & Rejection at network disturbance
\[
(48-62 \mathrm{~Hz})
\] & Rejection at differential mode: \(>80 \mathrm{~dB}\) Rejection at common mode: >150 dB \\
\hline & Temperature unit of measure & Grado C / F, selectable on the keypad \\
\hline & Reading interval & \begin{tabular}{l}
Tipe: linear \\
Scale: -1999...9999, settable decimal point
\end{tabular} \\
\hline & Insulation & Functional insulation between main and auxiliary inputs \\
\hline \multirow[b]{3}{*}{TA (ammeter) INPUT} & Isolation & Isolated via external transformer \\
\hline & Accuracy & \(\pm 2 \%\) f.s. \(\pm 1\) digit @ \(25{ }^{\circ} \mathrm{C}\) \\
\hline & Type & \begin{tabular}{l}
Number: 2 max \\
Max. capacity: x/50 mA AC \\
Line frequency: \(50 / 60 \mathrm{~Hz}\) \\
Input impedance (Ri): \(10 \Omega\)
\end{tabular} \\
\hline \multirow{3}{*}{DIGITAL INPUTS} & Number & 5 max \\
\hline & Type & \begin{tabular}{l}
Voltage-free contact, or \\
NPN 24 V-4,5mA, o \\
PNP 12/24 V - max 3,6 mA \\
For detail see electrical connections
\end{tabular} \\
\hline & Isolation & 250 V \\
\hline
\end{tabular}

\section*{OUTPUTS}
\begin{tabular}{|c|c|c|}
\hline & \begin{tabular}{l}
Relay \\
(R)
\end{tabular} & \begin{tabular}{l}
Nuumber: 4 max \\
Type of relay contact: NO \\
Max. current: 5A (2A at ambient temperature up to \(45^{\circ} \mathrm{C}\) for certi- \\
fication UL), 250VAC \(/ 30 \mathrm{VDC}, \cos \varphi=1\) \\
Minimum load: \(5 \mathrm{~V}, 10 \mathrm{~mA}\) \\
Number of operations: > 600,000 @ 2A load current \\
Double isolation Installation of an external R-C suppressor ("snubber") is recommended
\end{tabular} \\
\hline & \begin{tabular}{l}
Logic \\
(D)
\end{tabular} & \begin{tabular}{l}
Number: 2 max \\
Type: for solid-state relays \\
Voltage: \(24 \mathrm{~V} \pm 10 \%\) (min 10 V @20 mA) \\
Isolated from main input
\end{tabular} \\
\hline & \begin{tabular}{l}
Isolated logic \\
(M)
\end{tabular} & \begin{tabular}{l}
Number: 2 max \\
Type: MOS optoisolated for PLC inputs and AC/DC load \\
Voltage: \(30 \mathrm{~V} \mathrm{AC/DC} \mathrm{max}\) \\
Current: 100 mA max \\
Resistance ON: \(0,8 \Omega\) max \\
Isolation: 1500 V
\end{tabular} \\
\hline & Triac (long life relè) (T) & \begin{tabular}{l}
Number: 1 max \\
Load: resistive \\
Voltage: 75... 240 VAC \\
Current max: 1 A \\
Isolation 3 kV \\
snubber circuit integrated zero crossing switching
\end{tabular} \\
\hline & \begin{tabular}{l}
Continuous \\
(C)
\end{tabular} & \begin{tabular}{l}
Number: 1 max \\
Current: \(4 . . .20 \mathrm{~mA}\)
\[
\mathrm{R}_{\text {out }}<500 \Omega
\] \\
Resolution: 12 bit Isolated from main input
\end{tabular} \\
\hline & Analog retransmission (A1) (A2) & \begin{tabular}{l}
Number: 2 max \\
\(0 . .10 \mathrm{~V}, \max 20 \mathrm{~mA}, \mathrm{R}_{\text {out }}:>500 \Omega\) \\
\(0 . . .20 \mathrm{~mA}, 4 . . .20 \mathrm{~mA}, \mathrm{R}_{\text {out }}:<500 \Omega\) \\
Resolution: 12 bit \\
Isolated from main input
\end{tabular} \\
\hline & Number of alarm functions & 4 max, assignable to an output \\
\hline ALARMS & Possible configurations & Maximum, minimum, symmetric, absolute/relative, exclusion at firing, memory, reset from keypad and/or contact, LBA, HB, HBB Hold Back Band if enabled with Programmer function, alarm after power variation at full power \\
\hline POWER SUPPLY & For sensor VT1, VT2 & Voltage: \(24 \mathrm{VDC} \pm 10 \%\) Current max: 30 mA VT1 option of Out3 \\
\hline & For potentiometer VP & Voltage: 1 VDC \(\pm 1 \%\) Current max: 30 mA \\
\hline
\end{tabular}

\section*{CONTROL FUNCTIONS}
\begin{tabular}{|c|c|c|}
\hline & Type & Single loop, double loop \\
\hline & Control & PID, ON/OFF, single action heat or cool, double action heat/ cool \\
\hline CONTROL & Control output & \begin{tabular}{l}
Continuous or ON/OFF \\
Cycle time: constant or optimized (BF)
\end{tabular} \\
\hline & Control output for motorized valves & OPEN/CLOSE for floating motorized valve or with feedback with position control by potentiometer on Relay, Solid-state, Triac outputs. \\
\hline SETPOINT PROGRAMMER & Number of programs & \begin{tabular}{l}
Max 16 (if double loop \(8+8\)) (*) \\
Start / Stop / Reset / Skip via digital inputs and/or outputs from logic operations \\
Output state: Run /Hold / Ready / End
\end{tabular} \\
\hline (Double programmer if double loop) & Number of steps & Max 192, each with own setpoint, ramp time and hold time (**) Times settable in HH:MM or MM:SS Max 4 consents, configurable for ramp and for hold Max 4 events, configurable in ramp and in hold \\
\hline MULTIPLE SETPOINTS & Number of setpoints & \begin{tabular}{l}
Max 4, selectable from digital input \\
Each setpoint change is subject to set ramp, different for up and down ramp
\end{tabular} \\
\hline LOGIC OPERATIONS \({ }^{1}\) & Digital function blocks & \begin{tabular}{l}
Max 32, with 4 input variables per block. \\
The result can act on the state of the controller, of the programmer on alarms and outputs. \\
Each function contains a block type AND, OR with TIMER
\end{tabular} \\
\hline OPERATIONS MATHEMATICAL \({ }^{1}\) & Analog function blocks & \begin{tabular}{l}
Max 8, with 2 input variables per block, with operators such as + , - , \(x,:\), average, square root, ... \\
The result may act on analog variables in input to PID loops (controlled variable, setpoint) or analog outputs .
\end{tabular} \\
\hline TIMER FUNCTION & Modes & \begin{tabular}{l}
START / STOP (2 timer if double loop) \\
STABILIZATION (timer is on when PV enters a band set around setpoint; at end of count you can activate an output, shut down SW or change SP1/SP2) \\
FIRING (timed activation of control after power on)
\end{tabular} \\
\hline ENERGY COUNTER & & Calculation done on nominal line voltage and nominal load power or on rms current measured on load via CT \\
\hline DIAGNOSTIC & & Short circuit or open circuit (LBA alarm) Interrupted or partially interrupted load (HB alarm) Short circuit of control output (SSR alarm) \\
\hline & Type & FRAM \\
\hline RETENTIVE MEMORY & Max. number of writes & \begin{tabular}{l}
Number max: > \(10^{10}\) cycles \\
Retention: > 10 anni
\end{tabular} \\
\hline
\end{tabular}
(*) if in standard mode; if in "Simplified programmer" mode, Max 12 programs
\({ }^{(* *)}\) freely selectable in any program, if in standard mode; if in "Simplified programmer" mode, MAX 16 steps per program, in a set order: Program 1 Step 1-16, Program 2 Step \(17-32\), and so on

GENERAL DATA
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{POWER SUPPLY} & Operating voltage & \begin{tabular}{l}
100... 240 VAC/VDC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\) \\
(20... 27 VAC/VDC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\))
\end{tabular} \\
\hline & Power dissipation & 10 W max \\
\hline & Protections & Overvoltage \(300 \mathrm{~V} / 35 \mathrm{~V}\) \\
\hline & Connection & Screw terminals and crimp connector, max. wire section 1 mm \({ }^{2}\) \\
\hline \multirow{6}{*}{CONNECTIONS} & Serial configuration port & Connector: microUSB \\
\hline & RS485 (option) & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, \(115.200 \mathrm{bit} / \mathrm{s}\) \\
Protocol: Modbus RTU \\
Insulation compared to main entrance \\
Screw terminals and crimp connector, max. wire section \(2.5 \mathrm{~mm}^{2}\)
\end{tabular} \\
\hline & Master Modbus & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, \(115.200 \mathrm{bit} / \mathrm{s}\) \\
Protocol: Modbus RTU Master \\
Connector: RJ10
\end{tabular} \\
\hline & RTU Bridge & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, \(115.200 \mathrm{bit} / \mathrm{s}\) \\
Protocol: Modbus RTU Master \\
Screw terminals and crimp connector, max. wire section \(2.5 \mathrm{~mm}^{2}\)
\end{tabular} \\
\hline & Ethernet Modbus TCP e Webserver (opzione) & \begin{tabular}{l}
Baudrate : 10/100BaseTX, 10/100Mbit/s \\
Protocol : Modbus TCP slave, integrated Webserver Isolamento compared to other peripherals RJ45 Standard connector
\end{tabular} \\
\hline & Inputs and outputs & Screw terminals and crimp connector, max. wire section \(2.5 \mathrm{~mm}^{2}\) \\
\hline \multirow{5}{*}{AMBIENT CONDITIONS} & Use & Indoor \\
\hline & Altitude & 2000 m max \\
\hline & Operating temperature & \(-10 \ldots+55^{\circ} \mathrm{C}\) (as per IEC 68-2-14) \\
\hline & Storage temperature & \(-20 \ldots+70^{\circ} \mathrm{C}\) (as per IEC 68-2-14) \\
\hline & Relative humidity & 20...85\% RH non-condensing (as per IEC 68-2-3) \\
\hline PROTECTION LEVEL & & IP 65 on front panel (as per IEC 68-2-3) \\
\hline \multirow[b]{2}{*}{ASSEMBLY} & Positioning & On panel, removable faceplate \\
\hline & Installation regulations & Installation category: II Pollution degree: 2 Isolation: double \\
\hline DIMENSIONS & & \(48 \times 96 \mathrm{~mm}\) (1/8 DIN) Depth: 80 mm \\
\hline WEIGHT & & 0,24 kg \\
\hline \multirow[t]{2}{*}{CE STANDARDS} & EMC conformity (electromagnetic compatibility) & \begin{tabular}{l}
Conforms to Directive 2014/30/EU norme EN 61326-1 \\
Emissions in industrial environment classe A
\end{tabular} \\
\hline & LVD safety & Conforms to Directive 2014/35/EU norme EN 61010-1 \\
\hline \multirow{4}{*}{CERTIFICATIONS} & Generals & This Gefran controller, when subjected to the necessary calibration operations in the field, is suitable for use in Nadcap applications for any class of oven, from 1 to 6 , according to specification AMS2750F, paragraph 3.3.1. \\
\hline & Europe & CE, RoHS, REACH \\
\hline & USA, Canada & UL, cUL \\
\hline & Russia & EAC \\
\hline
\end{tabular}
1) Programming is done with the GF_eXpress configuration program.

\subsection*{9.3. Controller 1850}

\section*{OPERATOR INTERFACE}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{OPERATOR INTERFACE} \\
\hline \multirow{12}{*}{DISPLAY} & Type & LCD black background \\
\hline & Screen area (\(\mathrm{L} \times \mathrm{H}\)) & \(83 \times 68 \mathrm{~mm}\) \\
\hline & Lighting & Backlit with LEDs, life \(>40,000\) hours @ \(25^{\circ} \mathrm{C}\) (with brightness level backl \(=0.8\)) \\
\hline & PV display & Number of digits: 4 to 7 segments, with decimal point Digit height: 23 mm Color: white \\
\hline & SV display & Number of digits: 4 to 7 segments, with decimal point Digit height: 11 mm Color: green \\
\hline & F display & Number of digits: 7 to 14 segments, with decimal point Digit height: 9 mm Color: amber \\
\hline & Unit of measurement & Selectable, \({ }^{\circ} \mathrm{C}\), \({ }^{\circ} \mathrm{F}\) or custom \({ }^{1}\) Color: same as PV display \\
\hline & Controller state signals & Number: 6 (RUN, MAN, _/-, REM, SP1/2) Color: amber \\
\hline & Output state signals & Number: 4 (1, 2, 3, 4) Color: red \\
\hline & Bargraph indicator, configurable & \begin{tabular}{l}
Type: graphic bargraph,11 segments \\
Power indication: \(0 . . .100 \%\) or \(-100 . . .100 \%\) \\
Current indication: \(0 . . .100 \%\) f.s. \\
Valve position indication: \(0 . . .100 \%\)
\end{tabular} \\
\hline & Bargraph indicator & Type: double bar, 11 segments Indication of process variable and setpoint: \(0 . . .100 \%\) f.s. \\
\hline & Inputs/outputs state signal (only with option) & Number: 8 inputs, 8 outputs Color: green for inputs, red for outputs Control via FB outputs \\
\hline KEYPAD & & Keys number: 6, silicone (Man/Auto, L/R, \({ }^{*}\), INC, DEC, F) Type: mechanical \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{INPUTS} \\
\hline \multirow{12}{*}{INGRESSI PRINCIPALE ED AUSILIARIO (Main, Aux1, Aux2)} & Sensor type & \begin{tabular}{l}
- Thermocouples, RTD (PT100, JPT100), IR pyrometers with type K output, \(4 \ldots . .20 \mathrm{~mA}, 0 \ldots 20 \mathrm{~mA}, 10 \mathrm{~V}, 5 \mathrm{~V}, 1 \mathrm{~V}, 60 \mathrm{mV}\), potentiometer \\
- Reading accuracy: \(\pm 0.1 \%\) of value read \\
This Gefran controller, when subjected to the necessary calibration operations in the field, is suitable for use in Nadcap applications for any class of oven, from 1 to 6 , according to specification AMS2750F, paragraph 3.3.1.
\end{tabular} \\
\hline & Thermocouple (only Main and Aux1) & \begin{tabular}{l}
- Types: J, K, R, S, T, C, D, B, E, L, L-GOST, U, G, N,Pt20RhPt40Rh Custom linearisation available \\
- Linearisation accuracy: according to standard ITS90 polynomes; refer to user manual for details \\
- Cold joint accuracy: \(< \pm 1^{\circ} \mathrm{C}\) at \(25^{\circ} \mathrm{C}\) ambient temperature \\
- Cold joint compensation: greater than 40:1, rejection at changes in room temperature exceeding \(25^{\circ} \mathrm{C}\) \\
- Diagnostics: Indication of faulty probe and out of scale
\end{tabular} \\
\hline & RTD input
(Pt100 and JPt100) & \begin{tabular}{l}
- Types: Pt100, JPt100. Custom linearisation available \\
- Calibration accuracy: \(< \pm 0,1 \%\) of the value read in \({ }^{\circ} \mathrm{C} \pm 0,4^{\circ} \mathrm{C}\) \\
- Linearisation accuracy: \(< \pm 0,062^{\circ} \mathrm{C}\) \\
- Thermal shift: \(<(\pm 0.002 \% \text { of read value })^{\circ} \mathrm{C}\), starting from \(25^{\circ} \mathrm{C}\) room temperature) \(\pm 0.1^{\circ} \mathrm{C}\) \\
- Diagnostics: Indication of faulty probe and out of scale
\end{tabular} \\
\hline & Linear DC input & \begin{tabular}{l}
- Tipi : 0... \(60 \mathrm{mV}, 0 . . .20 \mathrm{~mA}, 4 . .20 \mathrm{~mA}, 0 . .1 \mathrm{~V}, 0 . . .5 \mathrm{~V}, 0 . . .10 \mathrm{~V}\), \(0 . .2 .4 \mathrm{~V}\) high impedance, \(0 . . .1 .2 \mathrm{~V}\) high impedance \\
- Input impedance :
\[
\begin{aligned}
& 0 \ldots . .60 \mathrm{mV}, 0 \ldots 1 \mathrm{~V}, 0 \ldots 1.2 \mathrm{~V}, 0 \ldots .2 .4 \mathrm{~V}:>100 \mathrm{M} \Omega \\
& 0 \ldots 5 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}:>400 \mathrm{k} \Omega \\
& 0 . . .20 \mathrm{~mA}, 4 \ldots .20 \mathrm{~mA}: 50 \Omega
\end{aligned}
\] \\
- Linearisation: linear or custom \\
- Calibration accuracy: \(<0,1 \%\) out of scale \\
- Thermal shift: \(< \pm 0.003 \%\) full scale \(/^{\circ} \mathrm{C}\), starting from \(25^{\circ} \mathrm{C}\) room temperature
\end{tabular} \\
\hline & Sampling time & 60 ms or 120 ms , selectable \\
\hline & Digital filter & 0,0...20,0 s configurable \\
\hline & Rejection to network disturbance (\(48-62 \mathrm{~Hz}\)) & Rejection to differential mode: \(>80 \mathrm{~dB}\) Rejection to common mode: \(>150 \mathrm{~dB}\) \\
\hline & Temperature unit of measure & Grade C / F, selectable on the keypad \\
\hline & Reading interval & \begin{tabular}{l}
Type: linear \\
Scale: -1999...9999, settable decimal point
\end{tabular} \\
\hline & Insulation & Functional insulation between main and auxiliary inputs \\
\hline & Type & Isolato tramite trasformatore esterno \\
\hline & & \begin{tabular}{l}
Number: 2 max \\
Maximum load: x / \(50 \mathrm{~mA} A C\) \\
Network frequency: \(50 / 60 \mathrm{~Hz}\) \\
Input impedance (Ri): \(10 \Omega\)
\end{tabular} \\
\hline \multirow[b]{3}{*}{TA (ammeter) input} & Isolation & Isolated via external transformer \\
\hline & Accuracy & \(\pm 2 \%\) f.s. \(\pm 1\) digit @ \(25^{\circ} \mathrm{C}\) \\
\hline & Type & \begin{tabular}{l}
Number: 2 max \\
Max. capacity: x/50 mA AC \\
Line frequency: \(50 / 60 \mathrm{~Hz}\) \\
Input impedance (Ri): \(10 \Omega\)
\end{tabular} \\
\hline \multirow{3}{*}{DIGITAL INPUTS} & Numero & 5 max \\
\hline & Type & \begin{tabular}{l}
voltage-free contact, or \\
NPN 24 V-4,5 mA, o \\
PNP 12/24 V - max 3,6 mA \\
For detail see electrical connections
\end{tabular} \\
\hline & Isolation & 250 V \\
\hline
\end{tabular}

\section*{OUTPUTS}
\begin{tabular}{|c|c|c|}
\hline & Relay (R) & \begin{tabular}{l}
Number: 4 max \\
Type of relay contact: NO \\
Max. current: 5A (2A at ambient temperature up to \(45^{\circ} \mathrm{C}\) for certi- \\
fication UL), 250VAC \(/ 30 \mathrm{VDC}, \cos \varphi=1\) \\
Minimum load: \(5 \mathrm{~V}, 10 \mathrm{~mA}\) \\
Number of operations: >600,000 @ 2A load current \\
Double isolation \\
Installation of an external R-C suppressor ("snubber") is recommended
\end{tabular} \\
\hline & \begin{tabular}{l}
Logic \\
(D)
\end{tabular} & \begin{tabular}{l}
Number: 2 max \\
Type: for solid-state relays \\
Voltage: \(24 \mathrm{~V} \pm 10 \%\) (min 10 V @20 mA) \\
Isolated from main input
\end{tabular} \\
\hline & Isolated logic (M) & \begin{tabular}{l}
Number: 2 max \\
Type: MOS optoisolated for PLC inputs and AC/DC load \\
Voltage: 30 V AC/DC max \\
Current: 100 mA max \\
Resistance ON: 0,8 \(\Omega\) max \\
Isolation: 1500 V
\end{tabular} \\
\hline & Triac (long life relè) (T) & \begin{tabular}{l}
Number: 1 max \\
Load: resistive \\
Voltage: 75... 240 VAC \\
Current max: 1 A \\
Isolation 3 kV \\
snubber circuit integrated zero crossing switching
\end{tabular} \\
\hline & Continuous (C) & \begin{tabular}{l}
Number: 1 max Current: 4... 20 mA
\[
\mathrm{R}_{\text {out }}<500 \Omega
\] \\
Resolution: 12 bit Isolated from main input
\end{tabular} \\
\hline & Analog retransmission (A1) (A2) & \begin{tabular}{l}
Number: 2 max \\
\(0 . .10 \mathrm{~V}, \max 20 \mathrm{~mA}, \mathrm{R}_{\text {out }}:>500 \Omega\) \\
\(0 . . .20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}, \mathrm{R}_{\text {out }}:<500 \Omega\) \\
Resolution: 12 bit \\
Isolated from main input
\end{tabular} \\
\hline & Number of alarm functions & 4 max, assignable to an output \\
\hline ALARMS & Possible configurations & Maximum, minimum, symmetric, absolute/relative, exclusion at firing, memory, reset from keypad and/or contact, LBA, HB, HBB Hold Back Band if enabled with Programmer function, alarm after power variation at full power \\
\hline POWER SUPPLY & For sensor VT1, VT2 & Voltage: 24 VDC \(\pm 10 \%\) Current max: 30 mA VT1 option of Out3 \\
\hline & For potentiometer VP & Voltage: 1 VDC \(\pm 1 \%\) Current max: 30 mA \\
\hline INPUTS / OUTPUTS & ZIONALI & \\
\hline & Digital Inputs/Outputs & \begin{tabular}{l}
Number: 8, in two groups (\(5+3\) with separate power supply) Input: PNP 24 VDC, 5 mA \\
Output: PNP with 24 VDC external power supply, \(\pm 25 \%\), max 100 mA, short circuit protection with PTC Isolation: 250 V
\end{tabular} \\
\hline & Relay & \begin{tabular}{l}
Number: 8, in two groups (\(5+3\) relays with common contact) \\
Type of relay contact: NO \\
Max. current: 5A (at ambient temperature up to \(45^{\circ} \mathrm{C}\) for certification UL), 250VAC \(/ 30 \mathrm{VDC}, \cos =1\) \\
Max. current for each common: 5 A \\
Number of operations: >600,000 @ 2A load current \\
Double isolation \\
Installation of an external R-C suppressor ("snubber") is recommended
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{CONTROL} & Type & Single/Double loop \\
\hline & Control & PID, ON/OFF, single action heat or cool, double action heat/ cool \\
\hline & Control output & \begin{tabular}{l}
Continuous or ON/OFF \\
Cycle time: constant or optimized (BF)
\end{tabular} \\
\hline & Control output for motorized valves & OPEN/CLOSE for floating motorized valve or with feedback with position control by potentiometer on Relay, Solid-state, Triac outputs. \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
SETPOINT PROGRAMMER \\
(Double programmer if double loop)
\end{tabular}} & Number of programs & \begin{tabular}{l}
Max 16 (if double loop \(8+8\)) (*) \\
Start / Stop / Reset / Skip via digital inputs and/or outputs from logic operations \\
Output state: Run /Hold / Ready / End
\end{tabular} \\
\hline & Number of steps & \begin{tabular}{l}
Max 192, each with own setpoint, ramp time and hold time Times settable in HH:MM or MM:SS \\
Max 4 consents, configurable for ramp and for hold Max 4 events, configurable in ramp and in hold
\end{tabular} \\
\hline MULTIPLE SETPOINTS & Number of setpoints & Max 4, selectable from digital input Each setpoint change is subject to set ramp, different for up and down ramp \\
\hline LOGIC \({ }^{1}\) OPERATIONS & Digital function blocks & \begin{tabular}{l}
Max 32, with 4 input variables per block. \\
The result can act on the state of the controller, of the programmer on alarms and outputs. \\
Each function has an AND, OR with TIMER block
\end{tabular} \\
\hline OPERATIONS MATHEMATICAL \({ }^{1}\) & Analog function blocks & \begin{tabular}{l}
Max 8, with 2 input variables per block, with operators such as,+- , \(\times,:\), average, square root, ... \\
The result may act on analog variables in input to PID loops (controlled variable, setpoint) or analog outputs .
\end{tabular} \\
\hline TIMER FUNCTION & Modes & \begin{tabular}{l}
START / STOP (2 timer if double loop) \\
STABILIZATION (timer is on when PV enters a band set around setpoint; at end of count you can activate an output, shut down SW or change SP1/SP2) \\
FIRING (timed activation of control after power on)
\end{tabular} \\
\hline ENERGY COUNTER & & Calculation done on nominal line voltage and nominal load power or on rms current measured on load via CT \\
\hline DIAGNOSTIC & & Short circuit or open circuit (LBA alarm) Interrupted or partially interrupted load (HB alarm) Short circuit of control output (SSR alarm) \\
\hline \multirow[b]{2}{*}{RETENTIVE MEMORY} & Type & FRAM \\
\hline & Writes & \begin{tabular}{l}
Number max: > \(10^{10}\) cycles \\
Retention: > 10 years
\end{tabular} \\
\hline
\end{tabular}

\footnotetext{
(*) if in standard mode; if in "Simplified programmer" mode, Max 12 programs
}
freely selectable in any program, if in standard mode; if in "Simplified programmer" mode, MAX 16 steps per program, in a set order: Program 1 Step 1-16, Program 2 Step 17 - 32, and so on

GENERAL DATA
\begin{tabular}{|c|c|c|}
\hline \multirow{4}{*}{POWER SUPPLY} & Operating voltage & \begin{tabular}{l}
100... 240 VAC/VDC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\) \\
(20... 27 VAC/VDC \(\pm 10 \%, 50 / 60 \mathrm{~Hz}\))
\end{tabular} \\
\hline & Power dissipation & 12 W max \\
\hline & Protections & Overvoltage \(300 \mathrm{~V} / 35 \mathrm{~V}\) \\
\hline & Connection & Screw terminals and crimp connector, max. wire section \(1 \mathrm{~mm}^{2}\) \\
\hline \multirow{6}{*}{CONNECTIONS} & Serial configuration port & Connector: microUSB \\
\hline & \[
\begin{array}{|l}
\hline \text { RS485 } \\
\text { (option) }
\end{array}
\] & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, 115.200 bit/s \\
Protocol: Modbus RTU \\
Insulation compared to main entrance \\
Screw terminals and crimp connector, max. wire section \(2.5 \mathrm{~mm}^{2}\)
\end{tabular} \\
\hline & Master Modbus & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, \(115.200 \mathrm{bit} / \mathrm{s}\) \\
Protocol: Modbus RTU Master Connettore RJ10
\end{tabular} \\
\hline & RTU Bridge & \begin{tabular}{l}
Baudrate: 1200, 2400, 4800, 9600, 19.200, 38.400, 57.600, \(115.200 \mathrm{bit} / \mathrm{s}\) \\
Protocol: Modbus RTU Master \\
Screw terminals and crimp connector, max. wire section \(2.5 \mathrm{~mm}^{2}\)
\end{tabular} \\
\hline & Ethernet Modbus TCP and Webserver (option) & \begin{tabular}{l}
Baudrate: 10/100BaseTX, 10/100Mbit/s \\
Protocol : Modbus TCP slave, integrated Webserver \\
Isolation from other peripherals \\
Standard RJ45 connector
\end{tabular} \\
\hline & Inputs and outputs & Screw terminals and crimp connector, max. wire section 2.5 mm \({ }^{2}\) \\
\hline \multirow{5}{*}{AMBIENT CONDITIONS} & Use & Internal \\
\hline & Altitude & 2000 m max \\
\hline & Operating temperature & \(-10 \ldots+55^{\circ} \mathrm{C}\) (as per IEC 68-2-14) \\
\hline & Storage temperature & \(-20 \ldots+70^{\circ} \mathrm{C}\) (as per IEC 68-2-14) \\
\hline & Relative humidity & 20...85\% RH non condensante (as per IEC 68-2-3) \\
\hline PROTECTION LEVEL & & IP 65 on front panel (as per IEC 68-2-3) \\
\hline \multirow[b]{2}{*}{ASSEMBLY} & Positioning & On panel, removable faceplate \\
\hline & Installation regulations & \begin{tabular}{l}
Installation category: II \\
Pollution degree: 2 \\
Isolation: double
\end{tabular} \\
\hline DIMENSIONS & & \(96 \times 96 \mathrm{~mm}\) (1/4 DIN) Depth: 80 mm \\
\hline WEIGHT & & 0,24 kg \\
\hline \multirow[t]{2}{*}{CE STANDARDS} & \begin{tabular}{l}
EMC \\
(electromagnetic compatibility)
\end{tabular} & \begin{tabular}{l}
Conforms to Directive 2014/30/EU norme EN 61326-1 \\
Emissions in industrial environment classe A
\end{tabular} \\
\hline & LVD safety & Conforms to Directive 2014/35/EU norme EN 61010-1 \\
\hline \multirow{4}{*}{CERTIFICAZIONI} & Generals & This Gefran controller, when subjected to the necessary calibration operations in the field, is suitable for use in Nadcap applications for any class of oven, from 1 to 6 , according to specification AMS2750F, paragraph 3.3.1. \\
\hline & Europe & CE, RoHS, REACH \\
\hline & USA, Canada & UL, cUL \\
\hline & Russia & EAC \\
\hline
\end{tabular}
1) Programming is done with the GF_eXpress configuration program.

\subsection*{9.4. Isolation block diagram 850}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Sensor input, CT Input, Configuration port Transmitter power supply (VT1)} & \multirow[b]{3}{*}{7 VAC/VDC} \\
\hline \multicolumn{2}{|l|}{Auxiliary input (PV2), Transmitter power supply (VT2) Potentiometer power supply (VP)} & \\
\hline \multicolumn{2}{|c|}{Fieldbus communication interface} & \\
\hline \multicolumn{2}{|c|}{Ethernet communication interface} & - \\
\hline \multicolumn{2}{|l|}{Digital input, Logic output (SSR drive), DC output 1, Analog DC output 1, DC output A1} & ¢
0
0
0
3
0
0 \\
\hline \multicolumn{2}{|c|}{MOS digital output} & - \\
\hline \multicolumn{2}{|c|}{Relay output 1} & \(\stackrel{+}{\square}\) \\
\hline \multirow[t]{2}{*}{Relay outputs 2, 3, 4} & Relay output 2 & \(\bigcirc\) \\
\hline & Relay or Triac output 3 & \\
\hline
\end{tabular}

Functional isolation
Reinforced isolation

\subsection*{9.5. Isolation block diagram 1650-1850}

\begin{tabular}{|c|c|}
\hline Sensor input, CT Input, Configuration port, OUT1 G (Mster Modbus) & \multirow[b]{4}{*}{U} \\
\hline Auxiliary input (PV2), Transmitter power supply (VT2) Potentiometer power (VP)) & \\
\hline Fieldbus Communication interface & \\
\hline Ethernet communication interface & \\
\hline Digital input, Logic output (SSR drive), DC output 1, A1, A2 DC outputs, Transmitter power supply (VT1) & \multirow[t]{3}{*}{} \\
\hline 8 digital inputs, 8 digital outputs (only for 1850) & \\
\hline MOS digital output & \\
\hline Relay output & 안 \\
\hline Relay output 2 & 은 \\
\hline Relay output 3 & \\
\hline Uscita 34 relè o Triac & \\
\hline
\end{tabular}

\section*{Functional isolation}

Reinforced isolation

\section*{10. ORDER METHODS}

\subsection*{10.1. Controller 850}

\begin{tabular}{|l|c|}
\hline Output 1 (B) & R \\
\hline Relay & D \\
\hline Logic & A \\
\hline Analog & G \\
\hline \begin{tabular}{l}
Master Modbus RTU \\
communication
\end{tabular} & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Output 2 (C) - Output 3 (D) } \\
\hline Relay - Relay & R R \\
\hline Logic - Logic & D D \\
\hline Isolated logic - Isolated logic & MM \\
\hline Isolated logic - Long Life relay & M T \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{2}{|l|}{ Output 4 (E) } \\
\hline Absent & 0 \\
\hline Logic & D \\
\hline Relay (1) & R \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \begin{tabular}{|l|}
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Power supply sensor VT1 for \\
main input (F)
\end{tabular}} \\
\hline Absent
\end{tabular} \(0^{\text {VT1 } 24 \mathrm{~V}(2)}\) & 1 \\
\hline
\end{tabular}
\(\square\)

P

CK
\(\square\) operations + mathematical

\subsection*{10.2. Controller 1650}

\section*{Note}
1) Only with option (C) \(=\operatorname{Re}(D)=R\)
2) Only with option \(\mathrm{E}-\mathrm{M}=0\)
3) Only with option \((I)=1,2,3\)

Check before each request a list of codes available on the following pages

\subsection*{10.3. Controller 1850}

A B CDE F G H I L M N O P
Ordering code: \(1850|X-X-X| X|X-0-X-X| X-X-X X-X X-X-X X\)

\begin{tabular}{|l|c|}
\hline Retransmission (G) & 0 \\
\hline Absent & 1 \\
\hline Analogue A1 & 2 \\
\hline Analogue A1 + A2 &
\end{tabular}

Supply (0)
\begin{tabular}{c|l}
0 & \(20 . . .27\) VAC / VDC
\end{tabular}
1 100... 240 VAC / VDC
I/O opzionali (N
\begin{tabular}{|c|l|}
\hline 00 & Assenti \\
\hline 10 & 8 IN/OUT (4) \\
\hline 01 & 8 relè \((4)\) \\
\hline 11 & 8 IN/OUT +8 relè \((4)\) \\
\hline
\end{tabular}

\section*{Communication (M)}
\begin{tabular}{|c|l|}
\hline 00 & Absent \\
\hline M0 & RS485 Modbus RTU (slave) \\
\hline E0 & Ethernet Modbus TCP \\
\hline ME & \begin{tabular}{l}
Ethernet Modbus TCP / \\
RS485 bridge
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|l|}{ Digital inputs (L) } \\
\hline 0 & Absent (2) \\
\hline 5 & 5 DI \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Auxiliary input (I) } \\
\hline 0 & Absent \\
\hline 1 & Input Aux : TC, RTD, 60mV \\
\hline 2 & \begin{tabular}{l}
Input Aux: 1V/5V/10V/20mA \\
+VP 1 V
\end{tabular} \\
\hline 3 & \begin{tabular}{l}
Input Aux : 1V/5V/10V/20mA \\
\(+\mathrm{VT2} 24 \mathrm{~V}\)
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ Input CT \(/ \mathbf{3}^{\circ}\) Analog input (H) } \\
\hline 0 & Absent \\
\hline 2 & \(\mathrm{CT} 1+\mathrm{CT} 2\) \\
\hline 3 & \(3^{\circ}\) Input Aux + VP 2 1 V (3) \\
\hline
\end{tabular}

\section*{Notes}
1) Only with option \((C)=R\) and \((D)=R\)
2) Only with option \(\mathrm{E}-\mathrm{M}=0\)
3) Only with option \((I)=1,2,3\)
4) The option (N) require option (P) \(=\mathrm{FB}\) or CK

Check before each request a list of codes available on the following pages

\section*{11. ACCESSORIES}
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Code} & \multirow[b]{2}{*}{Description} & \multicolumn{3}{|c|}{Compatible} \\
\hline & & 850 & 1650 & 1850 \\
\hline F060800 & Cable for programming with PC, USB-TTL 3 V with USB - microUSB connectors, length 1.8 m & - & - & - \\
\hline F043958 & "GF_eXpress" software CD & - & - & - \\
\hline F060909 & Configuration kit for new instruments GF_eXK-3-0-0 & - & - & - \\
\hline 51968 & Rubber gasket \(48 \times 48\) front-box & - & & \\
\hline 51969 & Rubber gasket \(48 \times 96\) front-box & & - & \\
\hline 51970 & Rubber gasket 96x96 front-box & & & - \\
\hline 51292 & Rubber gasket \(48 \times 48\) box-panel & - & & \\
\hline 51068 & Rubber gasket \(48 \times 96\) box-panel & & - & \\
\hline 51069 & Rubber gasket \(99 \times 96\) box-panel & & & - \\
\hline 51250 & Fastening box to panel & - & & \\
\hline 49030 & Fastening box to panel & & - & - \\
\hline 51294 & Protection of contacts at box bottom & - & & \\
\hline 51328 & Protection of contacts at box bottom & & - & - \\
\hline 51454 & 18 contacts at box bottom & - & & \\
\hline 51453 & 24 contacts at box bottom & - & & \\
\hline 51738 & 36 contacts at box bottom & & - & \(\bullet\) \\
\hline 330200 & Current transformer (CT) 50/0.05 A & - & - & - \\
\hline 330201 & Current transformer (CT) 25/0.05 A & - & - & - \\
\hline
\end{tabular}

\section*{ธEFRAN}

GEFRAN spa via Sebina, 74
25050 Provaglio d'Iseo (BS) Italy
Tel. +39 0309888.1
Fax +39 0309839063
info@gefran.com
http://www.gefran.com```

[^0]: Overshoot

 PID

 Pt100 A commonly used temperature measurement device. At $0^{\circ} \mathrm{C}$ its resistance is 100 ohm, and at room temperature about 106 ohm. The Pt100 can be tested for galvanic continuity and normal extension cables can be used.

 PV Acronym for Process Value, i.e., the value that the process variable (temperature, valve opening, etc.) has at that moment.
 Solid state Also known as SSR, this is a relay designed relay

 Sensor

 Setpoint
 Situation in which PV exceeds SV because the control action stopped too late. The ON OFF controls have an overshoot greater than the PID controls.

 Acronym for Proportional-Integration-Differentiation, indicating a system with negative feedback, i.e., a device that acquires a value from a process in input, compares it to a reference value, and uses the difference (error) to calculate the value of the controller output variable, which is the variable that controls the process. The output is controlled based on the current value of the error (proportional action), on a set of previous error values (integral action), and on the speed of change of the error value (derivative action). na (such as change in resistance based on temperature) into electrical signals that can be acquired and processed by the controller.

 Set value (see SV).

[^1]: 8 Relay
 [with option I/O = 01, 11]

 ### 2.6. Serial RS485 Wiring Diagram

 Up to 31 controllers may be connected in parallel on physical line RS485, independently of which option is selected (Master Modbus (G), rete bridge RS485 (ME), Modbus RTU Slave (M0)); they may even be of different models.
 The line must be terminated with a resistor ($120 \Omega, 1 / 2 \mathrm{~W}$) at each end.

 Output 1 type G options have an integrated 120 Ohm termination, while options MO and ME require addition of termination outside the instrument.

 Figure 13-RS485 connection for 850 controller with optional communication $(\mathrm{M})=\mathrm{MO}$

 Figure 15 - Master Modbus connection of 850 controllers with option Output $1(B)=G$

 The accessories listed in the table may be used for connection of the Master Modbus port with other devices.

 | Pinout | | Rif. accessory | Lenght |
 | :---: | :---: | :---: | :---: |
 | | $\begin{aligned} & \text { 1- GND } \\ & \text { 2-TX/RX+ } \end{aligned}$ | CVP-03 Cod. F081138 | 0,3m |
 | | | CVP-1 Cod. F081140 | 1 m |

 Figure 17 - RS485 bridge connection of controllers 1650 and 1850 with communication option (M) = ME

 ### 2.7. Ethernet port wiring diagram

 Controllers 850, 1650 and 1850 may, on request, be equipped with an Ethernet 10/100BaseT port with direct connection via RJ45 connector.
 For this connection, use a type UTP cable of category 5 or greater, crimped with a standard non-shielded RJ45 connector.
 The instrument automatically recognises the polarity of the cable used, and so you may use either a straight or a cross cable equally well for point-to-point connections with a PC or to a switch.
 The maximum connection length supported is 100 m , according to standard IEEE 802.3u; if segments longer than 100
 m are required, insert signal repeaters (switches) to break up the network.
 Connector RJ45 has two signal and diagnostics LEDs:

 - Amber LED: when steady on, indicates the presence of the signal carrier (link)
 - Green LED: when flashing, indicates data exchange underway on port (activity).

 ## 3. COMMISSIONING

 ### 3.1. Information on displays and use of keys

 The general description of the displays and keys for each model is in paragraphs "1.3.1. Display and keys" on page 13 for the 850, "1.4.1. Display and keys" on page 16 for the 1650, and "1.5.1. Display and keys" on page 19 for the 1850.

 ### 3.1.1. Navigating the menus

 4 keys are used for navigating the menus and submenus and for changing parameters and confirming choices. Their function depends on the context and on how long they are pressed.

 The LEDs above the keys not only give confirmation that each key has been pressed (by flashing), but also show which keys can be used in each situation.

 The navigation functions assigned to the keys are:
 At first power-on, scrolls the fast configuration menu; otherwise, the user configuration menu (Setpoint, Alarm limits, Control output, etc.). Each time you press the key, the value of the displayed parameter is confirmed and you go to the next menu item.
 Keep the key pressed for more than 2 seconds to enter the Programming/Configuration menu.

 Each time you press the key, you return to the previous menu item or to the higher menu level, as appropriate. Keep the key pressed for more than 2 seconds to return to the Main menu.

 Press the key to enter a submenu or to reduce the value of the displayed parameter, as appropriate. Keep the key pressed to progressively increase the speed of reduction of the displayed parameter.

 Press the key to raise the value of the displayed parameter.
 Keep the key pressed to progressively increase the speed of raising the displayed parameter.

 When the process variable is displayed, in standard configuration the key Δ switches the controller function mode (manual/automatics).

 ### 3.1.2. Displays

 The controllers have 2 or 3 displays, depending on the model. The Main menu shows:

 - PV display: value of process variable.
 - SV display: value of parameter (default = setpoint, if parameter dS.SP = SETP).
 - F Display (models 1650 and 1850 only): value of control output (if parameter dS.F = OUT.P).

 On models 1650 and 1850, the percentage value of the control output is also shown graphically on a bargraph.
 On model 1850, an additional display shows the program number, step number, and unit of measurement (\%, A, kW, kWh).

 According to the situation (programming, alarm, etc.), the controller displays can show other information, such as the name of the parameter, description of the parameter, diagnostics messages and alarm messages..

 Attention! The displays show only the parameters and menus for a defined configuration.

 ### 3.1.2.1. Display characters

 The displays reproduce the various characters by combining 7 or 14 segments. The following tables show the shape of the various characters.

 | | $\stackrel{\square}{\square}$ | 11 | $\begin{aligned} & \hline \text { \# } \\ & \text { H } \end{aligned}$ | $\begin{aligned} & \$ \\ & \square \end{aligned}$ | $\begin{aligned} & \hline \% \\ & \text { W } \end{aligned}$ | \& \square | 1 | 1 1 |) 1 1 |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | * | $\begin{aligned} & + \\ & + \end{aligned}$ | , | .. | - | $\begin{aligned} & 1 \\ & 1 \end{aligned}$ | $\begin{aligned} & 0 \\ & 7 \\ & \square \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ | 2 | 3 |
 | $\begin{gathered} 4 \\ 4 \end{gathered}$ | 5 | $\stackrel{6}{6}$ | 7 | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | $\begin{aligned} & 9 \\ & \square \end{aligned}$ | - | | $\begin{aligned} & < \\ & 1 \\ & 1 \end{aligned}$ | = |
 | $\begin{aligned} & > \\ & 1 \\ & 1 \end{aligned}$ | $?$ | $\stackrel{-}{@}$ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{Q} \end{aligned}$ | $\begin{aligned} & B \\ & B \end{aligned}$ | $\begin{aligned} & \bar{c} \\ & \stackrel{L}{L} \end{aligned}$ | $\begin{aligned} & \mathrm{D} \\ & 7 \\ & 7 \end{aligned}$ | E | $\begin{aligned} & \bar{F} \\ & F \end{aligned}$ | $\stackrel{G}{G}$ |
 | $\begin{aligned} & H \\ & H \end{aligned}$ | $\underline{1}$ | $\begin{gathered} -J \\ \prime \\ \hline \end{gathered}$ | $\begin{aligned} & k \\ & k^{\prime} \end{aligned}$ | $\begin{aligned} & L \\ & L \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{M} \\ & \mathrm{M} \end{aligned}$ | $\begin{aligned} & \mathrm{N} \\ & \mathrm{~N} \\ & \mathrm{iN} \end{aligned}$ | | $\begin{aligned} & \mathrm{P} \\ & \mathrm{Q} \end{aligned}$ | $\stackrel{Q}{\square}$ |
 | $\begin{aligned} & R \\ & R \end{aligned}$ | $\begin{aligned} & \mathrm{s} \\ & \mathrm{c} \end{aligned}$ | \bar{T} | $\begin{aligned} & U \\ & 11 \\ & U \end{aligned}$ | $\begin{aligned} & \mathrm{v} \\ & \mathrm{w}^{\prime} \end{aligned}$ | $\begin{aligned} & \text { W } \\ & \text { IN } \end{aligned}$ | $\begin{aligned} & X \\ & Y \\ & \prime \prime \end{aligned}$ | $\begin{aligned} & \bar{Y} \\ & Y \\ & Y \end{aligned}$ | $\begin{aligned} & Z \\ & 1 \\ & L \end{aligned}$ | $\stackrel{1}{1}$ |
 | $\begin{aligned} & 1 \\ & 1 \\ & 1 \end{aligned}$ |] | \wedge
 ^ | - | 1 | a | $\begin{aligned} & b \\ & b \end{aligned}$ | $\begin{gathered} \text { c } \\ \text { [} \end{gathered}$ | $\begin{aligned} & d \\ & d \end{aligned}$ | ${ }_{5}^{e}$ |
 | $\stackrel{f}{5}$ | $\stackrel{\mathrm{g}}{\mathrm{G}}$ | $\begin{aligned} & \mathrm{h} \\ & \mathrm{~h} \end{aligned}$ | i
 1 | $\begin{aligned} & j \\ & \vdots \end{aligned}$ | $\begin{aligned} & k \\ & k^{\prime} \end{aligned}$ | $\begin{aligned} & 1 \\ & 1 \\ & L \end{aligned}$ | $\begin{aligned} & \mathrm{m} \\ & \mathrm{fn} \end{aligned}$ | $\begin{aligned} & \mathrm{n} \\ & \mathrm{f} \end{aligned}$ | |
 | $\begin{aligned} & p \\ & \square \end{aligned}$ | $\begin{aligned} & \mathrm{q} \\ & \underset{\sim}{2} \end{aligned}$ | $\begin{gathered} r \\ r \end{gathered}$ | $\stackrel{s}{5}$ | t | $\begin{aligned} & \mathrm{u} \\ & \mathrm{U} \end{aligned}$ | $\begin{aligned} & \text { v } \\ & \text { v } \end{aligned}$ | $\begin{aligned} & \text { w } \\ & \text { w } \end{aligned}$ | $\begin{aligned} & x \\ & y \\ & \end{aligned}$ | y |
 | $\begin{aligned} & z \\ & 1 \\ & 1 \end{aligned}$ | 1 | 芴 | | | | | | | |

 Figure 18-14-segment font

 | | ! | " | \# | \$ | \% | \& | | (|) |
 | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
 | * | + | , | | . | / | 0 | $\begin{aligned} & 1 \\ & 1 \\ & i \end{aligned}$ | 2 | 3 |
 | $\begin{aligned} & 4 \\ & 4 \end{aligned}$ | $\begin{aligned} & 5 \\ & 5 \end{aligned}$ | $\begin{aligned} & 6 \\ & 6 \end{aligned}$ | 7 | $\begin{aligned} & 8 \\ & 8 \end{aligned}$ | | - | ; | < | |
 | > | ? | @ | $\begin{aligned} & \mathrm{A} \\ & \mathrm{Q} \end{aligned}$ | $\begin{aligned} & B \\ & b \end{aligned}$ | C | $\begin{aligned} & \mathrm{D} \\ & \mathrm{~d} \end{aligned}$ | $\begin{aligned} & \mathrm{E} \\ & \mathrm{E} \end{aligned}$ | F | $\stackrel{G}{\text { G }}$ |
 | $\begin{aligned} & \mathrm{H} \\ & \mathrm{H} \end{aligned}$ | i | $\begin{aligned} & J \\ & \vdots \end{aligned}$ | K | $\frac{L}{L}$ | M | N Π | 0 \square | $\begin{aligned} & P \\ & Q \end{aligned}$ | Q |
 | $\begin{aligned} & \mathrm{R} \\ & \mathrm{r} \end{aligned}$ | 5 | L | $\begin{aligned} & U \\ & 1 \\ & 4 \\ & \hline \end{aligned}$ | V | W | X | Y Y | Z | [|

 ### 3.1.2.2. Scrolling messages

 The SV (850) and F (1650 and 1850) displays can show scrolling alphameric messages. These messages, up to 32 characters in length, appear:

 - during configuration, describing the active parameter;
 - during functioning, after the tripping of alarms, digital inputs and logic function outputs, if the relative messages were enabled

 Message texts can be set via PC with GF_eXpress software.
 There are 3 message groups, one for each of the 3 languages LAnG provided, selectable from the HMI menu with the parameter.
 Each group contains up to 25 messages.
 By setting LAnG=NONE the subdivision of the three groups is lost, obtaining up to 75 messages settability

 Figure 19-7-segment font

 ### 3.2. Sequence at power-on

 The following diagram shows the controller sequence at power-on.
 Note: the USB-TTL programming cable must be disconnected.

 (*) Any error is signaled by the message EEPROM CHECKSUM ERROR.
 (**) Only if MANUAL mode was used before the controller was powered off.

 ### 3.3. First power-on

 At first power-on, after the controller has run the self-diagnostics test, press the \mathbf{F} key to access the Fast Configuration Menu. The parameters shown are a subset of all the controller parameters and let you rapidly configure the inputs and outputs.
 The number and type of the parameters shown depends on the controller HW configuration and on the choices made with the parameters previously shown.
 For example, minimum and maximum scale limits are shown only if you have chosen an mA or V type temperature sensor. Fast Configuration also appears if the HMI menu is set to parameter QuiCk = On
 Fast configuration is not enabled at first power-on with programmer or valve model, and is not present when the optional auxiliary input is available.

 ### 3.3.1. Fast configuration

 ### 3.4. Setting up quick configuration

 The quick configuration menu lets you quickly configure and start a controller.
 To do this, it uses default values for many of the parameters assigned to the functions and other parameters are not activated.

 With this configuration, the controller can satisfy the majority of operating requirements.
 You can set up the first configuration with the main configuration menu (see paragraph "4.1 Programming/Configuration Menu" on page 51), which gives access to all of the parameters.

 For purposes of example, some of the controller's main functions are listed below, with a list of parameters to be changed after running fast configuration to adapt the controller to specific working conditions.

 ### 3.4.1. Setting up the Alarm

 If at least one output was configured as Alarm in the fast configuration.

 The ALARM submenu also lets you:

 - select the input or value to be monitored for the alarm (parameter rEFE, default = PV);
 - select the method for applying hysteresis (parameter no.Sy, default = NORML);
 - enable or disable the power-on alarm (parameter PWON.E, default = OFF);
 - latch/not latch the active alarm state (parameter LATCH,
 default = OFF);
 - set the alarm trip delay (parameter DELAY, default = 0.00);
 - activate or deactivate flashing of the PV display in case of alarm (parameter BLK.AL, default = OFF).

 ### 3.4.2. Setting up the Heater Break Alarm

 If at least one output was configured as Heater Break Alarm in the fast configuration.

 The AL.HB submenu also lets you:

 - set an HB alarm due to low current draw (parameter LOW.ON, default = 0.0);
 - set an HB alarm due to high current draw (parameter HIG.ON, default = 0.0);
 - set an HB alarm due to excess current draw (parameter HI.OFF, default = 0.0);
 - set the HB alarm trip delay (parameter TIME, default $=0$);
 - select the control output assigned to the HB alarm (parameter OUT, default = 1);
 - activate or deactivate flashing of the PV display in case of alarm (parameter BLK.AL, default = OFF).

 ### 3.4.3. \quad Setting up the PID

 ## The PID submenu also lets you:

 - set the Soft-Start time (parameter SOFT.T, default = 0.0);
 - select the type of Auto-Tuning used (parameter Aut.t, default = CONTI);
 - set the derivative time (parameter DERV.S, default = 1);
 - set the proportional heating band or hysteresis in ONOFF control (parameter H.PB, default = 1.0);
 - set the integral heating time (parameter H.IT, default = 4.00);
 - set the derivative heating time (parameter H.DT, default $=1.00$);
 - set the maximum heating power limit (parameter H.P.HI, default = 100.0);
 - set the minimum heating power limit (parameter H.P.LO, default $=0.0$);
 - select the cooling fluid (parameter COOL, default = FAN);
 - set the cooling setpoint compared to the heating setpoint (parameter C.SP, default $=0.0$);
 - set the proportional cooling band or hysteresis in ONOFF control (parameter C.PB, default = 1.0);
 - set the integral cooling time (parameter C.IT = 4.00);
 - set the derivative cooling time (parameter C.DT = 1.00);
 - set the maximum cooling power limit (parameter C.P.HI default = 100.0);
 - set the minimum cooling power limit (parameter C.P.LO, default $=0.0$);
 - set the Manual Reset value (parameter RESET, default $=0$);
 - \quad set the Reset Power value (parameter P.RST, default = 0.0);
 - set the Antireset value (parameter A.RST, default = 0);
 - set the Feedforward Power value (parameter, default = 0.0);
 - set the deadband (parameter DEAD.B, default = 0);
 - set the fault action power (parameter FAULT, default = 0.0);
 - set the setpoint gradient in raise (parameter GRAD.I, default = 0.0);
 - set the setpoint gradient in lower (parameter GRAD.D, default $=0.0$);
 - select the gradient unit of measurement (parameter Unit, default = DIG/S);
 - set the control output gradient (parameter GRAD.O, default = 0.0);
 - set the LBA alarm trip delay LBA (parameter LBA.TM, default = 30.0);
 - set the value of power delivered when the LBA alarm trips (parameter LBA.PW, default $=25.0$).

 ## 4. CONFIGURATION

 The fast configuration described in the previous chapter lets you rapidly put the controller into operation.
 To do this, the procedure configures the controller's main parameters only, which satisfies the most common application requirements.

 On the other hand, to satisfy all application requirements and to configure the controller in detail, you have to set the parameters that are accessible only on the Programming/ Configuration menu.

 This type of configuration is also useful for common applications (the ones covered by fast configuration),
 because optimum controller function depends a great deal on correct configuration and programming of the control parameters provided.

 The controller can be configured with the buttons on its panel and from the PC with GF_eXpress software (see chapter "6.PROGRAMMING WITH PC" on page"6. PROGRAMMING WITH PC" on page 267).

 ### 4.1. Programming/Configuration Menu

 ### 4.1.1. First: know what you're doing

 Correctly setting the parameters needed to configure the controller requires thorough knowledge of the problems and techniques involved.

 If you are unsure of your know-how, or are not fully aware of the consequences of incorrectly setting the parameters, we advise you not to configure the controller with this menu.

 Attention! To prevent harm to persons and damage to property, the user must check that the parameters are correctly set before commissioning the controller.

 In case of doubts, or if you need any explanations, please consult www.gefran.com or contact Gefran Customer Care.

 ### 4.1.2. Passwords

 The configuration menu is protected by 2 passwords that allow access to two different menu sections.

 The first section, accessed with password 1, groups the most operative submenus and parameters, i.e., the ones most involved in daily functioning of the controlled machine or system.

 The second section, accessed with password 2, groups the submenus and parameters used to configure HW resources

 The factory password settings are:

 - Password $1=1$
 - Password $2=2$

 The passwords can be changed and even disabled if you want. See paragraphs "4.35. PASC1 - Setting level 1 password" on page 197 and "4.36. PASC2 - Setting level 2 password" on page 197.

 ### 4.1.3. Password in the User Menu

 Two passwords can be entered in the User menu, respectively:

 - Password 0 (default = 1 See paragraphs "4.28. PASCO -

 Setting level 0 password 0" on page 169)

 - Password 1 to inhibit navigation to parameters in positions subsequent to that assigned to the password.

 Once one of the two passwords is reached:

 - if the value entered matches the value expected, navigation continues in the User Menu
 - if the value entered does not match the value expected, the Home screen will be displayed

 ### 4.2. Main menu

 ### 4.2.1. Functional schema

 ### 4.3. Legend for submenus and parameters

 The purposes and characteristics of submenus and parameters are described and summarized in the following tables.

 ### 4.3.1. Submenu

 1. Acronym of submenu as it appears on controller display.
 2. Text of scrolling message as it appears on controller display.
 3. Password needed to access submenu items.
 4. Description of functions that manage submenu..

 ### 4.3.2. Parameter

 1. Acronym of parameter as it appears on controller display.
 2. Text of scrolling message as it appears on controller display.
 3. Submenu to which parameter belongs.
 4. Attributes of parameter: $\mathrm{R}=$ readable, $\mathrm{W}=$ writable. If only R, the operator or technician can read the parameter value but cannot change it.
 5. Description of use of parameter, including any warnings or suggestions.
 6. Unit of measurement of value managed by parameter. The unit of measurement can be unique or depend on other configuration choices, for example, the unit of measurement of temperature, which can be set in degrees Centigrade or Fahrenheit. Not all parameters require the use of units of measurement.
 7. Description of parameter values or information that can be read or written, as appropriate.
 8. Value that the parameter can have. Value can be two
 types: discrete or pertaining to an interval of values, typically numerical. For a discrete value, all possible values are listed as they appear on the controller display. For intervals of values, the minimum and maximum parameter values are shown.
 9. Any additional description of value of individual parameter.

 ### 4.4. Submenu INFO - Information display

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :---: |
 | INFO | INSTRUMENT STATUS | Level 1 | Gives information on controller state and HW configuration. |

 ### 4.4.1. SW.VER - Software version

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | SW.VER | SOFTWARE VERSION | INFO | R |
 | The parameter shows the version (major.minor) of the controller software. | | | |
 | Unit of measurement: -
 Options: M | | | |

 ### 4.4.2. CODE - Identifying code of controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | CODE | INSTRUMENT ID CODE FOR SERIAL COMM | INFO | R |
 | The parameter shows identifying code of the device for serial communication. | | | |
 | Unit of measurement: - | | | |
 | Options: | $0 \ldots 247$ | | |

 ### 4.4.3. ERR. 1 - Main input error

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | ERR. 1 | INPUT ERROR | | INFO | R |
 | The parameter shows error detected by the main input. | | | | |
 | Unit of measurement: - | | | | |
 | Options: | Lou
 HIGH
 Err | = Value below minimum scale limit
 = Value above maximum scale limit
 = PT100 in short circuit or value below minimum limit (for example TC with wrong connection) | | |
 | | Sbr ECAL EAdC | = Sensor break or value above maximum limit
 = Calibration error
 = AD converter error | | |

 ### 4.4.4. ERR. 2 - Auxiliary input error

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | ERR. 2 | INPUT ERROR | | INFO | R |
 | The param
 Unit of me
 Options: | displays the urement:
 Lou
 HIGH
 Err
 Sbr
 ECAL
 EAdC | ror (if present) detected on the optional auxiliary input
 = Value below minimum scale limit
 = Value above maximum scale limit
 = PT100 in short circuit or value below minimum limit (for example TC with wrong connection)
 = Sensor break or value above maximum limit
 = Calibration error
 = AD converter error | | |

 ### 4.4.5. Auxiliary input error 2 (IN3)

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | ERR. 3 | INPUT ERROR | | INFO | R |
 | The parameter displays the error (if present) detected on the optional auxiliary input 2 (if available). | | | | |
 | Unit of measurement: - | | | | |
 | Options: | Lou | = Value below minimum scale limit | | |
 | | HIGH | = Value above maximum scale limit | | |
 | | Err | = PT100 in short circuit or value below minimum limit (for example TC with wrong connection) | | |
 | | Sbr | = Sensor break or value above maximum limit | | |
 | | ECAL | = Calibration error | | |
 | | EAdC | = AD converter error | | |

 ### 4.4.6. M.ERR.x* - Math function block x^{*} error

 | Acronym | | Scrolling message | Attributes |
 | :---: | :---: | :---: | :---: |
 | M.ERR.x* | MATH FUNCTION BLOCK \times ERROR | | R |
 | The parameter displays the error (if present) detected on math function block (MFB) x^{*} only when MFB. x^{*} has been configured. | | | |
 | Unit of measurement: - | | | |
 | Options: | Lou
 HIGH
 Err
 Sbr
 CALC
 O.Lou
 O.HIG | $=$ Value of an MFB input is below
 = Value of an MFB input is above
 = PT100 in short circuit or value of
 = Sensor break or value of an MF
 = MFB calculation error
 $=$ Value of MFB output is below m
 $=$ Value of MFB output is above m | |

 ### 4.4.7. SAP.C - SAP code

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | SAP.C | SAP ORDER CODE | INFO | R |
 | The parameter shows the product number (Fxxxxxx). | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.4.8. SER.N - Serial number of controller

 ### 4.4.9. \quad xxxxx - Model of controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | xxxxx | MODEL | INFO | R |
 | The parameter shows the model of the controller. xxxxx indicates the controller model (850LV, 850HV, 1650LV, 1650HV, 1850LV, 1
 Unit of measurement:
 Options: $\begin{array}{ll} \text { 850.LV } & =850 \text { controller powered at } 20 \ldots . .27 \mathrm{VAC} / \mathrm{VDC} \\ \text { 850.HV } & =850 \text { controller powered at } 100 \ldots . .240 \mathrm{VAC} / \mathrm{VDC} \\ \text { 165.LV } & =1650 \text { controller powered at } 20 \ldots . .27 \mathrm{VAC} / \mathrm{VDC} \\ \text { 165.HV } & =1650 \text { controller powered at } 100 \ldots . .240 \mathrm{VAC} / \mathrm{VDC} \\ \text { 185.LV } & =1850 \text { controller powered at } 20 \ldots .27 \mathrm{VAC} / \mathrm{VDC} \\ \text { 185.HV } & =1850 \text { controller powered at } 100 \ldots . .240 \mathrm{VAC} / \mathrm{VDC} \end{array}$ | | | |

 ### 4.4.10. xxxxx - Type of controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | xxxxx | MODEL OPTION | INFO | R |
 | The parameter shows the type (xxxxx) of function of the controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | CONTR $=$ The device functions only as a controller | | |
 | | PROGR $=$ The device functions as a programmer and controller | | |
 | | VALVE $=$ The device functions as a controller with valve control | | |
 | PR+VA $=$ The device functions as a programmer and controller with valve control | | | |
 | | | | |

 ### 4.4.11. FUNC.B - Logic and Math functions option available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | FUNC.B | LOGIC AND MATH FUNCTIONS AVAILABLE | INFO | R |
 | If present, the parameter indicates that the Logic and Math Functions option is installed on the controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.4.12. CALEN - Calendar Available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | CALEN | CALENDAR AVAILABLE | INFO | R |

 If present, this parameter indicates that the calendar option is installed in the controller.
 Unit of measurement: -
 Options:

 ### 4.4.13. IN.AUX - Auxiliary input available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | IN.AUX | AUXILIARY INPUT AVAILABLE | INFO | R |
 | If present, the parameter indicates that an auxiliary input is installed on the controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.4.14. I.AUX2 - Auxiliary input 2 available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | I.AUX | AUXILIARY INPUT 2 AVAILABLE | INFO | R |
 | If present, the parameter indicates that an auxiliary input 2 is installed on the controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.4.15. OUT.AN - Analog output available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | OUT.AN | ANALOG OUTPUT AVAILABLE | INFO | R |
 | If present, the parameter indicates that one or two analog outputs, configurable in voltage or current, are installed on the
 controller.
 Unit of measurement: $\quad-$
 Options:
 OUT.A1 = The device has 1 analog output
 $\mathbf{O . A 1 + 2}=$ The device has 2 analog outputs | | | |

 ### 4.4.16. CTx - Current transformer input available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | CTx | CURRENT TRASFORMER AVAILABLE | INFO | R |
 | If present, the parameter indicates that one or more current transformer inputs are installed on the controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | CT1+2 $=$ The device has 2 current transformer inputs | | |

 ### 4.4.17. x.IN.DG - Digital input available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | x.IN.DG | DIGITAL INPUT AVAILABLE | INFO | R |
 | If present, the parameter indicates how many digital inputs are installed on the controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | 3.IN.DG $=3$ digital inputs installed on the controller.
 5.IN.DG $=5$ digital inputs installed on the controller. | | |

 ### 4.4.18. RS485 - RS485 serial port available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | RS485 | FIELDBUS AVAILABLE | INFO | R |
 | If present, the parameter indicates that an RS485 is installed on the controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.4.19. MAC.E - Controller Ethernet Address

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | MAC.E | - | INFO | R |
 | If present, this parameter indicates that the controller has an Ethernet communication module. The parameter shows the
 physical MAC address of the Ethernet in the scrolling message.
 The information is shown in the format $x x-x x-x x-x x-x x-x x$. | | | |
 | Unit of measurement: - | | | |
 | Options: | | | |

 ### 4.4.20. IO.AUX - Auxiliary digital I/Os available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | $8.1 / \mathrm{O}$ | $8.1 / \mathrm{O}$ EXPANSION AVAILABLE | INFO | R |
 | If present, the parameter indicates that the 8 digital input/output expansion board is installed on the controller (model
 1850 only).
 Unit of measurement: -
 Options: l | | | |

 ### 4.4.21. IO.RELE - Auxiliary relays available

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | 8.RELY | 8 RELAY EXPANSION AVAILABLE | INFO | R |
 | If present, the parameter indicates that the 8 relay expansion board is installed on the controller (model 1850 only). | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.4.22. PS.MAI - Sensor power supply available for main input

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PS.MAI | MAIN SENSOR POWER SUPPLY AVAILABLE | INFO | R |
 | If present, the parameter indicates that the controller has a transmitter power supply on the main input (model 850 only). | | | |
 | Unit of measurement: - | | | |
 | Options: | VT1 $\quad=$ Power supply for 24V transmitter. | | |

 ### 4.4.23. PS.AUX - Sensor power supply available for auxiliary input

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PS.AUX | AUX SENSOR POWER SUPPLY AVAILABLE | INFO | R |
 | If present, the parameter indicates that the controller has a transmitter power supply or potentiometer power supply on
 the auxiliary input.
 Unit of measurement: -
 Options:\quadVT2
 VP1 | = Power supply for 24V transmitter.
 = 1V potentiometer power supply. | | |

 ### 4.4.24. OUT1 - Type of output 1

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Out1 | OUTPUT TYPE | INFO | R |
 | The parameter specifies the type of output 1. | | | |
 | Unit of measurement: - | | | |
 | Options: | RELAY $=$ Relay output | | |
 | | DIGIT $=24$ V logic output
 CONT.A $=$ Continuous output configurable in current and voltage (model 850 only).
 CONT.C $=$ Continuous output in current (models 1650 and 1850 only). | | |
 | | | | |

 ### 4.4.25. OUT2 - Type of output 2

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Out2 | OUTPUT TYPE | INFO | R |
 | If present, the parameter indicates that output 2 is available on the controller and specifies the type.
 Unit of measurement: | | | |
 | Options: | RELAY = Relay output
 DIGIT $=24 \mathrm{~V}$ logic output
 MOS = Optomos isolated logic output | | |

 ### 4.4.26. OUT3 - Type of output 3

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Out3 | OUTPUT TYPE | INFO | R |
 | If present, the parameter indicates that output 3 is available on the controller and specifies the type. | | | |
 | Unit of measurement: - | | | |
 | Options: | RELAY $=$ Relay output | | |
 | | DIGIT $=24$ V logic output | | |
 | | MOS $=$ Optomos isolated logic output | | |
 | | TRIAC $=$ Triac output (only for model 850) | | |
 | | VT24 $=$ Power supply output for transmitter (models 1650 and 1850 only). | | |
 | | | | |

 ### 4.4.27. OUT4 - Type of output 4

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Out4 | OUTPUT TYPE | INFO | R |
 | If present, the parameter indicates that output 4 is available on the controller and specifies the type. | | | |
 | Unit of measurement: - | | | |
 | Options: | RELAY $=$ Relay output | | |
 | |
 DIGIT $=24 V$ logic output (model 850 only)
 TRIAC $=$ Triac output (only for models 1650 and 1850) | | |
 | | | | |

 ### 4.4.28. OUT1.S - Number of switchings output 1

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | OUT1.S | NUMBER X 1000 OF CYCLES | INFO | R |
 | If output 1 is relay or logic, the parameter shows the number of switchings (in thousands).
 Unit of measurement: \quad Number $(\times 1000)$
 Options:$\quad-\quad$ | | | |

 ### 4.4.29. OUT2.S - Number of switchings output 2

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | OUT2.S | NUMBER X 1000 OF CYCLES | INFO | R |
 | If output 2 is available on the controller, the parameter shows the number of switchings (in thousands). | | | |
 | Unit of measurement: Number $(\times 1000)$ | | | |
 | Options: | - | | |

 ### 4.4.30. OUT3.S - Number of switchings output 3

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | OUT3.S | NUMBER X 1000 OF CYCLES | INFO | R |
 | If output 3 is available on the controller, and if it is relay or logic, the parameter shows the number of switchings (in thou-
 sands).
 Unit of measurement: \quad Number $(\times 1000)$
 Options:$\quad-$ | | | |

 ### 4.4.31. OUT4.S - Number of switchings output 4

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | OUT4.S | NUMBER X 1000 OF CYCLES | INFO | R |
 | If output 4
 is available on the controller, the parameter shows the number of switchings (in thousands).
 Unit of measurement: \quad Number $(\times 1000)$
 Options:$\quad-$ | | | |

 ### 4.4.32. NDG.S - Digital input switchings number

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | INDG.S | NUMBER OF DIGITAL INPUT CYCLES | INFO | R |
 | If a digital input with the F.in=CY.CNT function is configured on the controller, the parameter shows the number of swi-
 tchings performed.
 Unit of measurement: Number
 Options:$\quad-$ | | | |

 ### 4.4.33. T.DAYS - Total working days

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | T.DAYS | TOTAL DAYS OF OPERATION | INFO | R |
 | The parameter shows total number of working days of the controller since first power-on. Each working day equals 24
 hours of actual functioning.
 Unit of measurement: \quad Day
 Options:$\quad 0 . .9999$ | | | |

 ### 4.4.34. P.DAYS - Partial working days

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | P.DAYS | PARTIAL DAYS OF OPERATION | INFO | R |
 | The parameter shows the number of working days of the controller since the last counter reset, Each working day equals | | | |
 | 24 hours of actual functioning. | | | |
 | The counter can be reset with the Us.cal function. | | | |
 | Unit of measurement: Day | | | |
 | Options: | $0 . . .9999$ | | |

 ### 4.4.35. T.INT - Internal temperature of controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | T.INT | INTERNAL TEMPERATURE | INFO | R |
 | The parameter shows the instantaneous internal temperature of the controller. | | | |
 | Unit of measurement: $\quad{ }^{\circ} \mathrm{C}$
 Options:$\quad-\quad$ | | | |

 ### 4.4.36. T.MIN - Minimum internal temperature of the controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | T.MIN | MIN INTERNAL TEMPERATURE | INFO | R |
 | The parameter shows the minimum internal temperature of the controller measured during work. | | | |
 | Unit of measurement: $\quad{ }^{\circ} \mathrm{C}$ | | | |
 | Options: | - | | |

 ### 4.4.37. T.MAX - Maximum internal temperature of the controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | T.MAX | MAX INTERNAL TEMPERATURE | INFO | R |
 | The parameter shows the maximum internal temperature of the controller measured during work. | | | |
 | Unit of measurement: $\quad{ }^{\circ} \mathrm{C}$ | | | |
 | Options: | - | | |

 ### 4.4.38. TIME - Internal time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | tiME | | INFO | R |
 | The parameter shows the internal time in 24-hour format. Hours, minutes and seconds are shown with scrolling text:
 hours, minutes and seconds.
 Unit of measurement: hh:mm:ss
 Options:$\quad-\quad$ | | | |

 ### 4.4.39. DATE - Internal date

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | dAtE | INFO | R | |
 | The parameter shows the complete internal date of the controller: month, day, year, day of week, with scrolling text. | | | |
 | Unit of measurement: MM / DD / YYYY | | | |
 | Options: | - | | |

 ### 4.5. INFO.E Submenu - Displaying Ethernet Information

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :--- |
 | INFO.E | ETHERNET STATUS | Level 1 | Supplies various information on the state of Ethernet com-
 munications. |

 ### 4.5.1. VERS.E - Ethernet Software Version

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | VERS.E | ETHERNET SOFTWARE VERSION | INFO.E | R |
 | This parameter displays the software version (major.minor) on the controller's Ethernet card. | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.5.2. TY.S.E - Ethernet assignment mode status

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | ty.S.E | ETHERNET ASSIGNMENT MODE STATUS | INFO.E | R |
 | This parameter shows the assignment mode of the Ethernet IP address, subnet mask and gateway parameters. | | | |
 | Unit of measurement: - | | | |
 | Options: | FIXED
 DHCP
 $=$ Manually entered parameters are used
 = Parameters received from the network DHCP server are used | | |

 ### 4.5.3. CON.E - Ethernet Connection status

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Con.E | CONNECTION STATUS | INFO.E | R |
 | This parameter shows the status of the controller's Ethernet connection. | | | |
 | Unit of measurement: - | | | |
 | Options: | NO.CON $=$ No connection
 CONNE $=$ Active connection
 DUP.IP $=$ Duplicate IP address | | |
 | | | | |

 ### 4.5.4. LIN.E - Ethernet link status

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Lin.E | ETHERNET LINK STATUS | INFO.E | R |
 | This parameter shows the status of the controller's Ethernet connection | | | |
 | Unit of measurement: - | | | |
 | Options: \quadUP
 DOWN\quadRete attiva
 Rete non attiva | | | |

 ### 4.5.5. SPD.E - Ethernet speed status

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | SPd.E | ETHERNET SPEED STATUS | INFO.E | R |
 | This parameter shows the status of the controller's Ethernet connection | | | |
 | Unit of measurement: - | | | |
 | Options: | NONE $=$ Speed not detected | | |
 | | $\mathbf{1 0 / H}=10 \mathrm{Mbps}$ Half Duplex | | |
 | | $\mathbf{1 0 / F}$ | $=10 \mathrm{Mbps}$ Full Duplex | |
 | | $\mathbf{1 0 0 / H}$ | $=100 \mathrm{Mbps}$ Half Duplex | |
 | | $\mathbf{1 0 0 / F}$ | $=100 \mathrm{Mbps}$ Full Duplex | |

 ### 4.5.6. IP.E - Ethernet IP Address

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | IP.E - | INFO.E | R | |
 | This parameter shows the IP address identifying the controller on the Ethernet network.
 This information is displayed in the form of a scrolling message with the format xxx.xxx.xxx.xxx | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.5.7. SUB.E - Subnet mask Ethernet

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | Sub.E - | INFO.E | R | |
 | This parameter shows the Subnet mask identifying the controller on the Ethernet network. | | | |
 | This information is displayed in the form of a scrolling message with the format xxx.xxx.xxx.xxx | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.5.8. GAT.E - Ethernet Gateway address

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | GAt.E - | INFO.E | R | |
 | This parameter shows the Gateway adress identifying the controller on the Ethernet network.
 This information is displayed in the form of a scrolling message with the format xxx.xxx.xxx.xxx | | | |
 | Unit of measurement: - | | | |
 | Options: | - | | |

 ### 4.5.9. STA.E - Ethernet Network status

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | StA.E | ETHERNET STATUS | INFO.E | R |
 | This parameter shows connection status identifying the controller on the Ethernet network. | | | |
 | Unit of measurement: -
 Opzioni: OK
 FAIL.N
 $=$ Nessun errore
 $=$ NTP server not available | | | |

 ### 4.6. MASTER Submenu - Display of Master Modbus communication information and values

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | MASTE | MASTER ACTUAL DATA | Level 1 | It provides information relating to the status of the Modbus Master com-
 munication and provides to configure and set the 20 remote parameters
 definable via GF_Xpress.
 The submenu appears if the model has a serial communication port. The
 Modbus Master has been updated at least one remote parameter. |

 ### 4.6.1. STAT - Master communication status

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | StAt | MASTER STATUS | MASTER | R |
 | This parameter shows the status of the Master Modbus communication function. | | | |
 | Unit of measurement: - | | | |
 | Options: | RUN $=$ Communication active | | |
 | | M.ERR $=$ Communication error (at least one invalid response message) | | |
 | | TIM.OU $=$ Communication timeout (at least one response message not received) | | |
 | | DISAB $=$ Communication disabled | | |

 ### 4.6.2. MAS. $x x$ - Master communication value xx (*)

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | MAS.xx | (1) | | MASTER | (2) |
 | The parameter shows and sets (if R/W) the remote value. The parameter is visible only if configured via GF_eXpress. | | | | |
 | Unit of meas Options: | urement: (3) | | | |

 (1) Descizione definita tramite GF_eXpress
 (2) Tipo dato definito tramite GF_eXpress
 (3) Intervallo di impostazione definito tramite GF_eXpress
 (*) $x x=$ da 01 a 20

 ### 4.6.3. ERR.xx - Master communication error xx (*)

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | ERR.xx | MASTER ERROR | MASTER | R |
 | The parameter shows the status of the remote parameter in the event of malfunctioning.
 The parameter is visible only if configured via GF_eXpress.
 Unit of measurement: -
 Options:m.ERR $=$ Error response message
 tim. $\mathbf{O}=$ Timeout response message | | | |

 (*) $x x=$ da 01 a 20

 ### 4.7. RECIP Submenu - Configuring parameters recipes

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | RECIP | RECIPES | Level 1 | Lets you display 5 recipes of 25 parameters each, user-
 definable with the GF_eXpress template. |
 | CONFIGURATION | | The Recipes function must previously be enabled with the
 EN.FUN menu, parameter RECP.N $<>0$. | |

 (*) The acronym shown is that of the parameter set with GF_eXpress at element $x x$ of the recipe template.
 ${ }^{(* *)}$ The description shown is the one for the parameter set with GF_eXpress at element xx of the recipe template.

 ### 4.7.1. RECP.N - Selecting a recipe

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | RECP.N | RECIPE NUMBER | RECIP | R W |
 | Parameter n lets you select the recipe to be displayed. | | | |
 | Unit of measurement: - | | | |
 | Options: | $\mathbf{1 . . . 5 \quad =} \quad$ Number of recipe to display | | |

 ### 4.7.2. \quad ACRxx* - Parameter $\mathrm{xx}^{* *}$ of recipe

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | ACRxx * | RECIP. $1^{* * *}$ | RECIP | R W |
 | Lets you display the value of parameter $x x$ of the recipe selected with RECP.N.
 The parameter appears if it is enabled for the recipe via the GF_eXpress application.
 Unit of measurement: -
 Options:$\quad-\quad=-$ | | | |

 (*) The acronym shown is that of the parameter set with GF_eXpress at element $x x$ of the recipe template.
 (**) $x x=01 \ldots 25$
 $\left(^{* * *}\right)$ The description shown is the one for the parameter set with GF_eXpress at element $x x$ of the recipe template.

 ### 4.8. Submenu PR.OPT - Configuring programs

 | Acronimo | Messaggio
 a scorrimento | Password
 d'accesso | Descrizione |
 | :---: | :---: | :--- | :--- |
 | PR.OPT | PROGRAMMER
 CONFIGURATION | Livello 1 | Lets you configure the 16 programs manageable by the programmer.
 The parameters are configured for each program to be used.
 The Programmer function must previously be enabled with the
 MODE.1 and/or MODE.2 menus, assigned, respectively, with |
 | | | | MID.1 and PID.2, with parameter PROGR = On. |
 | | | | If "Simplified Programmer" mode is active (S.PROG parame-
 ter set to EN.FUN)), the controller can manage 12 programs,
 each of which has up to 16 configurable steps. |
 | | | For more information on configuring the programmer, see
 paragraph "5.13. Setpoint programmer" on page 214. | |

 ### 4.8.1. PR.OP.N - Selecting program

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | PR.OP.N | PROGRAM NUMBER | PR.OPT | R W |

 The parameter lets you select the program to be configured. During normal functioning, the controller shows the number of the program running and its state P.STAT, viewable in the User Configuration menu.

 Unit of measurement: Number
 Options:
 1... 16

 ### 4.8.2. FI.STP - Number of first step assigned to program

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | FI.STP | PR.OPT. 1 (o PR.OPT.2... PR.OPT.16) FIRST STEP OF PROGRAM | PR.OPT | R W |
 | The parameter lets you select the first step of the program. | | | |
 | This parameter is visible only if "Simplified Programmer" is deactivated (S.PROG parameter set to OFF) | | | |
 | Unit of measurement: Number | | | |
 | Options: | $\mathbf{1 . . . ~} 192$ | | |

 ### 4.8.3. LA.STP - Number of last step assigned to program

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | LA.STP | PR.OPT.1 (o PR.OPT.2... PR.OPT.16) LAST STEP OF PROGRAM | PR.OPT | R W |
 | The parameter lets you select the last step of the program. | | | |
 | This parameter is visible only if "Simplified Programmer" is deactivated (S.PROG parameter set to OFF) | | | |
 | ATTENTION: LA.STP cannot be less than FI.STP. | | | |
 | Unit of measurement: \quad Number
 Options:\quad FI.STP... 192 | | | |

 ### 4.8.4. \quad STRT - Restart mode

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | Strt | PR.OPT. 1 (o PR.OPT.2... PR.OPT.16) RESTART TYPE AFTER POWER-ON | PR.OPT | R W |
 | The parameter defines program restart mode after Power-on. | | | |
 | Unit of measurement: - | | | |
 | Options: | FI.STP $=$Program restarts from first step, with setpoint attributed or equal to PV based on the
 following parameter RST.SP | | |
 | | ST.STP $=$ Program restarts from condition in which it stopped (last step in execution, setpoint | | |
 | | RSRCH $=$ Program restarts with search for step (see programmer function...). | | |

 ### 4.8.5. RST.SP - Type of control after program restart

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | RST.SP | PR.OPT.1 (or PR.OPT.2... PR.OPT.16) CONTROL TYPE AFTER RESET | PR.OPT | R W |
 | The parameter defines the type of control that the controller runs after a reset while waiting for restart.
 With RST.SP $=$ On the setpoint takes the value of PV with reset command active. | | | |
 | Unit of measurement: -
 Options: OFF
 On
 $=$The controller continues the control, maintaining the active setpoint
 = The setpoint assumes the value of the process variable (PV) by imposing the control
 output to zero. | | | |

 ### 4.8.6. WAIT.S - Option to start execution of program

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | WAIT.S | PR.OPT.1 (or PR.OPT.2... PR.OPT.16) DEF OF START EXEC PROGRAM | PR.OPT | R W |
 | The parameter enables or disables the automatic execution of the time base reset the program after a switching STOP /
 START.
 Unit of measurement: -
 Options:
 OFF
 On\quad= Disables automatic execution
 = Enables automatic execution | | | |

 ### 4.8.7. END - Action at end of program

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | End | PR.OPT. 1 (or P | PR.OPT.2... PR.OPT.16) CONDITION AT END OF CYCLE | PR.OPT | R W |
 | The parameter defines what happens when the program in execution ends (last step done).
 Unit of measurement: | | | | |
 | | | | | |
 | Options: | NONE = Nothing happens. The controller continues control
 RESE = switching in the RESET state, the control type will depend on the parameter RST.SP
 LOOP = The program restarts from the first step
 OFF = The program ends and puts the controller in the OFF position, with control output to zero | | | |

 ### 4.8.8. LIMIT - Limitation of step duration

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | LIMIT | PR.OPT. 1 (or PR.OPT.2... PR.OPT.16) DEF OF STEP TIMING LIMITATION | PR.OPT | R W |
 | The parameter enables or disables limitation of step duration. It is useful for quick execution of the program.
 Eventuale HBB è disabilitato e l'uscita di controllo è forzate al valore di FAULT.
 Unit of measurement: -
 Options:OFF
 On\quad= Disables limitation of step duration
 = Enables limitation of step duration: limits ramp times to 20 seconds and hold times to 10
 seconds, in order to have a step time that never exceeds 30 seconds. | | | |

 ### 4.8.9. MSG.EN - Message assigned to end of program

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | MSG.EN | PR.OPT. 1 (o PR.OPT.2... PR.OPT.16) SCROLLING MESSAGE AT THE END | PR.OPT | R W |
 | The parameter shows and sets the number of the message assigned to the end of the program, i.e., the message that will
 be scrolled on the display at the end of the program.
 The message is displayed if (and only if) parameter End is NONE or Off.
 If the parameter is set to " 0 " no message will be displayed.
 For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
 Unit of measurement: Message number
 Options:
 $\mathbf{0 . . . 2 5 ~ (c o n ~ L A n G = L A N G 1 ~ o p p u r e ~ L A N G 2 ~ o p p u r e ~ L A N G 3) ~}$
 $\mathbf{0 . . . 7 5 ~ (c o n ~ L A n G = N O N E) ~}$ | | | |

 ### 4.9. Submenu PR.STP - Configuration of program steps

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | PR.STP | STEP DEFINITION | Level 1 | Lets you configure the steps that make up the program.
 The parameters are configured for each step to be used.
 The Programmer function must first be enabled with the
 MODE menu, parameter PROGR = On. |
 | | | | For more information on configuring the programmer, see
 paragraph "5.13. Setpoint programmer" on page 214. |

 ### 4.9.1. PR.NUM - Program selection

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PR.NUM | PROGRAMMER ACTUAL PROGRAM | PR.STP | R W |
 | This parameter shows and sets the program number that you intend to modify. Appears only if "Simplified Programmer"
 mode is selected - parameter S.PROG = ON).
 Unit of measurement: Program number
 Options:$\quad \mathbf{1 . . . 1 2}$ | | | |

 ### 4.9.2. PR.ST.N - Programming step

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | PR.ST.N | PROGRAMMER ACTUAL STEP | PR.STP | R W |
 | The parameter shows and sets the number of the programming step being configured. Appears only if simplified pro-
 gramming mode is selected.
 Unit of measurement: Number step
 Options:$\quad 1 . . .192$ if S.PROG = OFF; 16 if S.PROG = ON ("Simplified Programmer" mode) | | | |

 ### 4.9.3. ST.END - End step of the program configuration

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | ST.END | PR.STP.1 (o PR.STP.2...PR.STP.192) END STEP OF THE PROGRAM se mo-
 dalità "Programmatore semplificato" disattiva; (o PR.STP.1...PR.STP.16) END
 STEP OF THE PROGRAM se modalità "Programmatore semplificato" attiva) | PR.STP | R W |
 | This parameter shows and sets the current step as the last step in the program selected by the PR.NUM. parameter. | | | |
 | Appears only if simplified programming mode is selected. | | | |
 | Unit of measurement: - | | | |
 | Options: | NoYES the current step is not the last in the program selected by the PR.NUM parameter
 $=$ = the current step is the last in the program selected by the PR.NUM parameter | | |

 ### 4.9.4. REFE - Step reference programmer

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | rEFE | REFERENCE PROGRAMMER | PR.STP | R W |
 | The parameter shows and sets the step reference programmer. | | | |
 | Unit of measurement: Step number | | | |
 | Options: | BOTH $=$ Entrambi I programmatori | | |
 | | PROG1 $=$ Programmer 1 only | | |
 | PROG2 $=$ Programmer 2 only | | | |

 ### 4.9.5. SETP - Programming step setpoint

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | SETP | PR.STP.1 (o PR.STP.2...PR.STP.192) SETPOINT se modalità"Programmatore
 semplificato"disattiva; o PR.STP.1...PR.STP.16 SETPOINT se modalità"Prog-
 rammatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the setpoint for the current programming step. | | | |
 | Unit of measurement: $\quad{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \%$ based on chosen scale | | | |
 | Options: | $-1999 . . .9999$ | | |

 ### 4.9.6. RAMP.T - Step time ramp

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | RAMP.T | PR.STP.1 (o PR.STP.2...PR.STP.192) RAMP TIME se modalità"Programmatore
 semplificato"disattiva; o PR.STP.1...PR.STP.16 RAMP TIME se modalità"Prog-
 rammatore semplificato"attiva. | PR.STP | R W |

 The parameter shows and sets the time taken to go from the previous setpoint to the setpoint of the current programming step.

 Unit of measurement: hh.mm or mm.ss (hours.minutes or minutes.seconds). Depends on time base set with submenu MODE, parameter t.Pro

 ## Options:

 00.00...99.59

 ### 4.9.7. HOLD.T - Hold time in step

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HOLD.T | PR.STP.1 (o PR.STP.2...PR.STP.192) HOLD TIME se modalità"Programmatore
 semplificato"disattiva; o PR.STP.1...PR.STP.16 HOLD TIME se modalità"Prog-
 rammatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the time the program waits before going to the next step. | | | |
 | Unit of measurement: hh.mm or mm.ss (ore.minuti o minuti.secondi). Depends on time base set with submenu MODE, | | | |
 | parameter t.Pro | | | |
 | Options: | $\mathbf{0 0 . 0 0 . . . 9 9 . 5 9}$ | | |

 ### 4.9.8. HBB - Enable Hold Back Band function

 ### 4.9.9. BAND - Maximum deviation for HBB

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | BAND | PR.STP.1 (o PR.STP.2...PR.STP.192) HOLD BACK BAND VALUE se moda-
 lità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 HOLD
 BACK BAND VALUE se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | If the HBB function is enabled, the parameter shows and sets the maximum deviation allowed for PV compared to SV.
 Unit of measurement: $\quad{ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}, \%$ based on chosen scale
 Options: $\mathrm{0...999}$ | | | |

 ### 4.9.10. HBB.R - Enabling HBB during ramp

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | HBB.R | PR.STP.1 (o PR.STP.2...PR.STP.192) ENABLE HOLD BACK BAND DURING
 STEP RAMP se modalità"Programmatore semplificato"disattiva; o PR.STP.1...
 PR.STP.16 ENABLE HOLD BACK BAND DURING STEP RAMP se modalità
 "Programmatore semplificato"attiva. | PR.STP | R W |
 | If the HBB function is enabled, the parameter enables and disables it during the step ramp time. | | | |
 | Unit of measurement: - | | | |
 | Options: | OFF
 On | | |

 ### 4.9.11. HBB.H - Enabling HBB during hold

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | HBB.H | PR.STP.1 (o PR.STP.2...PR.STP.192) ENABLE HOLD BACK BAND DURING
 STEP HOLD se modalità"Programmatore semplificato"disattiva; o PR.STP.1...
 PR.STP.16 ENABLE HOLD BACK BAND DURING STEP HOLD se modali-
 tà"Programmatore semplificato"attiva. | PR.STP | R W |
 | If the HBB function is enabled, the parameter enables and disables it during the step ramp time.
 Unit of measurement: -
 Options:
 OFF \quad= Disables HBB function during ramp time
 On Enables HBB function during ramp time | | | |

 ### 4.9.12. HBB2 - Enabling HBB with respect to the auxiliary input

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | HBB2 | PR.STP.1 (o PR.STP.2...PR.STP.192) HOLD BACK BAND FUNCTION
 REFERRED TO AUX INP se modalità"Programmatore semplificato"disattiva;
 o PR.STP.1...PR.STP.16 HOLD BACK BAND FUNCTION REFERRED TO AUX
 INP se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | If the HBB function is enabled, the parameter enables and disables it with respect to the remote setpoint input, which can
 be enabled on the MODE submenu, SP.REM parameter = On
 When the function is enabled with respect to the auxiliary input, if deviation PV1-IN2 exceeds BAND value, the program's
 time base is blocked.
 The parameter is significant only if the step pertaining to PROGR.1 with optional auxiliary input is present and PID.2 and
 PROGR.2 are not enabled (parameter PID2.E=OFF and PROGR=On1 on EN.FUN submenu).
 Unit of measurement: -
 Options:
 OFF = Disables HBB function with respect to remote setpoint input
 On = Enables HBB function with respect to remote setpoint input | | | |

 ### 4.9.13. S.SP.EN - Enabling retransmission of setpoint to analog output

 | Acronym | Scrolling message | | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | S.SP.EN | PR.STP. 1 (o ENABLE se STP. 16 SUB rammatore | .STP.2...PR.STP.192) SUBDUED SETPOINT RETRANSMITTED dalità"Programmatore semplificato"disattiva; o PR.STP.1...PR. ED SETPOINT RETRANSMITTED ENABLE se modalità"Progplificato"attiva. | PR.STP | R W |
 | The parameter enables and disables retransmission of the setpoint value to other slaved controllers. The setpoint value is transmitted by analog output A1 or A2 if configured on submenu OUT.AN, parameter Func=SLV.S1 or Func=SLV.S2. | | | | |
 | Unit of measurement: - | | | | |
 | Options: | $\begin{aligned} & \text { OFF } \\ & \text { On } \end{aligned}$ | = Disables retransmission
 = Enables retransmission | | |

 ### 4.9.14. SUB.SP - Setpoint value of slaved controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | SUB.SP | PR.STP.1 (o PR.STP.2...PR.STP.192) SUBDUED SETPOINT ASSOCIATED TO
 STEP se modalità"Programmatore semplificato"disattiva; o PR.STP.1...PR.
 STP.16 SUBDUED SETPOINT ASSOCIATED TO STEP se modalità"Programm-
 atore semplificato"attiva. | PR.STP | R W |
 | If the S.SP.EN function is enabled, the parameter shows and sets the setpoint value to be retransmitted as a percentage | | | |
 | of the controller setpoint value | | | |
 | EXAMPLE | If the setpoint of the main controller is $180^{\circ} \mathrm{C}$ and you want the setpoint of the secondary controller to be
 $85^{\circ} \mathrm{C}$, then SUB.SP should be set to $47.2(47.2 \%$ of 180 is about 85$)$. | | |
 | Unit of measurement: \% \% | | | |
 | Options: | $\mathbf{0 . 0 . . 1 0 0 . 0 ~}$ | | |

 ### 4.9.15. S.RM.EN - Enabling ramp for slaved controller

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | S.RM.EN | PR.STP.1 (o PR.STP.2...PR.STP.192) SUBDUED SETPOINT RAMP ENABLE
 se modalità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16
 SUBDUED SETPOINT RAMP ENABLE se modalità"Programmatore semplifica-
 to"attiva. | PR.STP | R W |
 | If the S.SP.EN function is enabled, the parameter enables and disables the setpoint ramp for the slaved controller. | | | |
 | Unit of measurement: - | | | |
 | Options: | OFF
 On | = Disables setpoint ramp for slaved controller
 = Enables setpoint ramp for slaved controller | |

 ### 4.9.16. ENBL. 1 - Consent 1 to execute step

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | ENBL. 1 | PR.STP. 1 (o PR modalità"Pro ENABLE FOR | R.STP.2...PR.STP.192) STEP ENABLE FOR STEP START se rammatore semplificato"disattiva; o PR.STP.1...PR.STP. 16 STEP STEP START se modalità "Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets consent 1 condition to enable execution of the | | | | |
 | The consents automatically check that certain conditions have been met before the program continues. | | | | |
 | There are 4 different consents (1,2,3 and 4) and, at the start of the step, the state of each must match the programmed state. | | | | |
 | Consents can be set via digital inputs, function block outputs, and the RS485 serial input. | | | | |
 | If even one of the consents does not match the programmed state, the step is not executed. | | | | |
 | If all consents are set to nonE, execution of the step is not conditioned and is always executed. | | | | |
 | Unit of measurement: | | | | |
 | Options: | nonE
 On
 OFF | = Consent state is ignored, i.e., step is always executed
 = Consent must be on to execute step
 = Consent does not have to be on to execute step | | |

 ### 4.9.17. ENBL. 2 - Consent 2 to execute step

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | ENBL.2 | PR.STP.1 (o PR.STP.2...PR.STP.192) STEP ENABLE FOR STEP START se
 modalità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 STEP
 ENABLE FOR STEP START se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets consent 2 condition to enable execution of the step. | | | |
 | See ENBL. 1 for details. | | | |

 ### 4.9.18. ENBL. 3 - Consent 3 to execute step

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | ENBL.3 | PR.STP.1 (o PR.STP.2...PR.STP.192) STEP ENABLE FOR STEP START se
 modalità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 STEP
 ENABLE FOR STEP START se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets consent 3 condition to enable execution of the step. | | | |
 | See ENBL. 1 for details. | | | |

 ### 4.9.19. ENBL. 4 - Consent 4 to execute step

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | ENBL.4 | PR.STP.1 (o PR.STP.2...PR.STP.192) STEP ENABLE FOR STEP START se
 modalità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 STEP
 ENABLE FOR STEP START se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets consent 4 condition to enable execution of the step. | | | |
 | See ENBL. 1 for details. | | | |

 ### 4.9.20. EN.ST.N - Other programmer step as consent to execute step

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | EN.ST.N | PR.STP.1 (o PR.STP.2...PR.STP.192) STEP FOR STEP START se modali-
 tà"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 STEP FOR
 STEP START se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets step n of the other programmer used as consent to execute the step of the programmer
 being configured.
 Value $\mathrm{n}=0$ disables the function.
 The parameter is present only with double setpoint programmer.
 Unit of measurement: -
 Options:$\quad \mathbf{1 . . . 1 2 8 ~ = ~ N u m b e r ~ f o r ~ s t a r t ~ s t e p ~}$ | | | |

 ### 4.9.21. EVN.R. 1 - Event 1 during step ramp

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | EVN.R. 1 | PR.STP. 1 (o lità"Program DURING STE | .STP.2...PR.STP.192) EVENT DURING STEP RAMP se modaatore semplificato"disattiva; o PR.STP.1...PR.STP. 16 EVENT RAMP se modalità"Programmatore semplificato"attiva. | PR.STP | RW |
 | The parameter shows and sets the configuration of event 1 during the step ramp. | | | | |
 | Unit of measurement: | | | | |
 | Options: | nonE
 On
 OFF | = Event not modified
 = Event becomes active
 = Event becomes inactive | | |

 ### 4.9.22. EVN.R. 2 - Evento 2 durante la rampa del passo

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | EVN.R.2 | PR.STP.1 (o PR.STP.2...PR.STP.192) EVENT DURING STEP RAMP se moda-
 lità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 EVENT
 DURING STEP RAMP se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the configuration of event 2 during the step ramp | | | |
 | Unit of measurement: - | | | |
 | Options: | nonE $=$ Event not modified
 On
 OFF
 Ovent becomes active
 = Event becomes inactive | | |

 ### 4.9.23. EVN.R. 3 - Event 3 during step ramp

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | EVN.R. 3 | PR.STP. 1 (o PR lità"Programm DURING STE | R.STP.2...PR.STP.192) EVENT DURING STEP RAMP se modaatore semplificato"disattiva; o PR.STP.1...PR.STP. 16 EVENT RAMP se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the configuration of event 3 during the step ramp | | | | |
 | Unit of measurement: - | | | | |
 | Options: | nonE On OFF | = Event not modified
 = Event becomes active
 = Event becomes inactive | | |

 ### 4.9.24. EVN.R. 4 - Event 4 during step ramp

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | EVN.R.4 | PR.STP.1 (o PR.STP.2...PR.STP.192) EVENT DURING STEP RAMP se moda-
 lità"Programmatore semplificato"disattiva; o PR.STP.1..PR.STP.16 EVENT
 DURING STEP RAMP se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the configuration of event 4 during the step ramp | | | |
 | Unit of measurement: - | | | |
 | Options: | nonE
 On
 OFF $=$ Event not modified
 = Event becomes inactive | | |
 | | | | |

 ### 4.9.25. EVN.H. 1 - Event 1 during step hold

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | EVN.H. 1 | PR.STP. 1 (o PR.STP.2...PR.STP.192) EVENT DURING STEP HOLD se modalità "Programmatore semplificato"disattiva; o PR.STP.1...PR.STP. 16 EVENT DURING STEP HOLD se modalità"Programmatore semplificato"attiva. | | PR.STP | R W |
 | The parameter shows and sets the configuration of event 1 during the step hold.
 Unit of measurement: | | | | |
 | | | | | |
 | Options: | nonE On OFF | = Event not modified
 = Event becomes active
 = Event becomes inactive | | |

 ### 4.9.26. EVN.H. 2 - Event 2 during step hold

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | EVN.H.2 | PR.STP.1 (o PR.STP.2...PR.STP.192) EVENT DURING STEP HOLD se moda-
 lità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 EVENT
 DURING STEP HOLD se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the configuration of event 2 during the step hold. | | | |
 | Unit of measurement: - | | | |
 | Options: | nonE $=$ Event not modified
 On
 OFF
 Ovent becomes active
 = Event becomes inactive | | |

 ### 4.9.27. EVN.H. 3 - Event 3 during step hold

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | EVN.H.3 | PR.STP.1 (o PR.STP.2...PR.STP.192) EVENT DURING STEP HOLD se moda-
 lità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 EVENT
 DURING STEP HOLD se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the configuration of event 3 during the step hold.
 Unit of measurement: -
 Options:nonE $=$ Event not modified
 On
 OFF \quad Event becomes active
 = Event becomes inactive | | | |

 ### 4.9.28. EVN.H. 4 - Event 4 during step hold

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | EVN.H.4 | PR.STP.1 (o PR.STP.2...PR.STP.192) EVENT DURING STEP HOLD se moda-
 lità"Programmatore semplificato"disattiva; o PR.STP.1...PR.STP.16 EVENT
 DURING STEP HOLD se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the configuration of event 4 during the step hold.
 Unit of measurement: -
 Options:nonE $=$ Event not modified
 On
 OFF Event becomes active
 = Event becomes inactive | | | |

 ### 4.9.29. GROP.R - Group of parameters assigned to ramp

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | GROP.R | PR.STP.1 (o PR.STP.2...PR.STP.192) CONTROL PARAMETER GROUP DU-
 RING STEP RAMP se modalità"Programmatore semplificato"disattiva; o
 PR.STP.1...PR.STP.16 CONTROL PARAMETER GROUP DURING STEP RAMP
 se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | Unit of measurement: Number | | | |
 | Options: | $\mathbf{0 . . . 4}$ | | |

 ### 4.9.30. GROP.H - Group of parameters assigned to hold

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | GROP.H | PR.STP.1 (o PR.STP.2...PR.STP.192) CONTROL PARAMETER GROUP DU-
 RING STEP HOLD se modalità"Programmatore semplificato"disattiva; o
 PR.STP.1...PR.STP.16 CONTROL PARAMEETER GROUP DURING STEP HOLD
 se modalità"Programmatore semplificato"attiva. | PR.STP | R W |
 | The parameter shows and sets the group of control parameters assigned to the step during the hold.
 Unit of measurement: Number
 Options:$\quad \mathbf{0 . . . 4}$ | | | |

 ### 4.9.31. MSG.R - Message associated with the ramp

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | MSG.R | PR.STP.1 (o PR.STP.2...PR.STP.192) SCROLLING MESSAGE DURING STEP
 RAMP se modalità"Programmatore semplificato"disattiva; o PR.STP.1...PR.
 STP.16 SCROLLING MESSAGE DURING STEP RAMP se modalità"Programm-
 atore semplificato"attiva. | PR.STP | R W |
 | The parameter displays and sets the message number associated with the step during the ramp, which is the message
 that will appear on the display to scroll to the step you are configuring
 More information on the scrolling message can be found in the section "3.1.2.2. Scrolling messages" on page 44.
 Setting it to "0" will not show any messages.
 Unit of measurement: ID number of the message
 Options:
 $\mathbf{0 . . . 2 5 ~ (w i t h ~ L A n G = L A N G 1 ~ o r ~ L A N G 2 ~ o r ~ L A N G 3) ~}$
 $\mathbf{0 . . . 7 5}$ (with LAnG=NONE) | | | |

 ### 4.9.32. MSG.H - Message associated with the maintenance

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | MSG.H | PR.STP.1 (o PR.STP.2...PR.STP.192) SCROLLING MESSAGE DURING STEP
 HOLD se modalità"Programmatore semplificato"disattiva; o PR.STP.1...PR.
 STP.16 SCROLLING MESSAGE DURING STEP HOLD se modalità"Programm-
 atore semplificato"attiva. | PR.STP | R W |
 | The parameter displays and sets the message number associated with the step during the ramp, which is the message
 that will appear on the display to scroll to the step you are configuring
 More information on the scrolling message can be found in the section "3.1.2.2. Scrolling messages" on page 44.
 Setting it to "0" will not show any messages.
 Unit of measurement: ID number of the message
 Options:
 $\mathbf{0 . . . 2 5 ~ (w i t h ~ L A n G = L A N G 1 ~ o r ~ L A N G 2 ~ o r ~ L A N G 3) ~}$
 $\mathbf{0 . . . 7 5}$ (with LAnG=NONE) | | | |

 ### 4.10. Submenu INPUT - Configuring analog inputs

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | INPUT | INPUT CONFIG | Level 1 | Lets you configure the controller's analog inputs (main and
 auxiliary). |

 ### 4.10.1. Functional schema

 ### 4.10.2. INP.N - Selecting the analog input

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | INP.N | INPUT NUMBER | INPUT | R W |
 | The parameter shows and sets the identifying number of the analog input. | | | |
 | Unit of measurement: Number | | | |
 | Options: | $1 \ldots 3$ | | |

 ### 4.10.3. TYPE - Selecting sensor type

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | TYPE | INPUT.1 (or INPUT.2) or INPUT.3 TYPE OF PROBE | INPUT | R W |

 The parameter shows and sets the sensor type of the main or auxiliary input.
 The functions for calibrating Custom sensors are on the US.CAL menu.
 When a $4 \ldots . .20 \mathrm{~mA}$ input is used and the current is less than 2 mA , an Err message is generated and the relay state specified with the FAUL.T parameters is activated.

 The table shows the scale limits for each sensor type or input based on the set number of decimals.

 | Sensor type | Sensor | Unit of measurement | Scale limits for $\text { DEC. } P=0$ | Scale limits for DEC. $P=1$ | Error @ $\mathbf{2 5}^{\circ} \mathrm{C}$ |
 | :---: | :---: | :---: | :---: | :---: | :---: |
 | Thermocouple | J | ${ }^{\circ} \mathrm{C}$ | -210... 1200 | -199.9...999.9 | $\pm 0,05$ |
 | | K | ${ }^{\circ} \mathrm{C}$ | -270... 1372 | -199.9...999.9 | $\pm 0,06$ |
 | | R | ${ }^{\circ} \mathrm{C}$ | -50... 1768 | -50.0...999.9 | $\pm 0,02$ |
 | | S | ${ }^{\circ} \mathrm{C}$ | -50.. 1768 | -50.0...999.9 | $\pm 0,02$ |
 | | T | ${ }^{\circ} \mathrm{C}$ | -270... 400 | -199.9...400.0 | $\pm 0,04$ |
 | | C | ${ }^{\circ} \mathrm{C}$ | 0... 2315 | 0.0...999.9 | $\pm 0,011$ |
 | | D | ${ }^{\circ} \mathrm{C}$ | 0... 2315 | 0.0...999.9 | $\pm 0,023$ |
 | | B | ${ }^{\circ} \mathrm{C}$ | 40... 1820 | 40.0..999.9 | $\pm 0,03$ |
 | | E | ${ }^{\circ} \mathrm{C}$ | -270... 1000 | -199.9...999.9 | $\begin{aligned} & \pm 0,19 \text { per } \mathrm{T}<-200^{\circ} \mathrm{C} \\ & \pm 0,03 \text { per } \mathrm{T}>-200^{\circ} \mathrm{C} \end{aligned}$ |
 | | L | ${ }^{\circ} \mathrm{C}$ | -200... 900 | -199.9...900.0 | $\pm 0,09$ |
 | | L-GOST | ${ }^{\circ} \mathrm{C}$ | -200... 800 | -199.9...800.0 | $\pm 0,014$ |
 | | U | ${ }^{\circ} \mathrm{C}$ | -200... 600 | -199.9...600.0 | $\pm 0,135$ |
 | | G | ${ }^{\circ} \mathrm{C}$ | 0... 2315 | 0.0...999.9 | $\pm 0,042$ |
 | | N | ${ }^{\circ} \mathrm{C}$ | -270... 1300 | -199.9...999.9 | $\pm 0,047$ |
 | | Pt20Rh Pt40Rh | ${ }^{\circ} \mathrm{C}$ | 0... 1888 | 0...999.9 | $\pm 0,017$ |
 | Infrared characteristic of the Tc K model see note | 1 | ${ }^{\circ} \mathrm{C}$ | 10... 70 | 10.0...70.0 | $\pm 0,06$ |
 | | 2 | ${ }^{\circ} \mathrm{C}$ | 60... 120 | 60.0...120.0 | $\pm 0,06$ |
 | | 3 | ${ }^{\circ} \mathrm{C}$ | 115... 165 | 115.0...165.0 | $\pm 0,06$ |
 | | 4 | ${ }^{\circ} \mathrm{C}$ | 140... 260 | 140.0...260.0 | $\pm 0,06$ |
 | Thermoresistance | PT100 | ${ }^{\circ} \mathrm{C}$ | -200... 850 | -199.9...850.0 | $\pm 0,062$ |
 | | PT100 LIM | ${ }^{\circ} \mathrm{C}$ | -50... 250 | -50.0...250.0 | $\pm 0,062$ |
 | | JPT100 | ${ }^{\circ} \mathrm{C}$ | -200... 600 | -199.9...600.0 | $\pm 0,062$ |
 | Voltage /Current | $0 . . .60 \mathrm{mV}$ | | -1999... 9999 | -199.9...999.9 | - |
 | | $0 . . .20 \mathrm{~mA}$ | | | | |
 | | $4 . .20 \mathrm{~mA}$ | | | | |
 | | $0 . . .10 \mathrm{~V}$ | | | | |
 | | $2 . .10 \mathrm{~V}$ | | | | |
 | | $0 . . .5 \mathrm{~V}$ | | | | |
 | | $1 . . .5 \mathrm{~V}$ | | | | |
 | | 0... 1 V | | | | |
 | | $0 . . .2,4 \mathrm{~V} \mathrm{HI}$ | | | | |
 | | $\begin{gathered} 0 \ldots 1,2 \mathrm{VHI} \\ 0 . . .1 \mathrm{~V} \mathrm{HI} \end{gathered}$ | | | | |
 | Custom | RTD | | -1999... 9999 | -199.9...999.9 | - |
 | | $0 . . .60 \mathrm{mV}$ | | | | |
 | | $0 . . .20 \mathrm{~mA}$ | | | | |
 | | 4... 20 mA | | | | |
 | | $0 . . .10 \mathrm{~V}$ | | | | |
 | | $2 . .10 \mathrm{~V}$ | | | | |
 | | 0... 5 V | | | | |
 | | $1 . . .5 \mathrm{~V}$ | | | | |
 | | 0... 1 V | | | | |
 | | 0...2,4V HI | | | | |
 | | $0 . . .1,2 \mathrm{~V} \mathrm{HI}$ | | | | |

 Note: the infrared temperature sensor has an output in voltage for direct connection to the input terminals of the temperature controller. An external thermometer is needed in order to correct the sensor error.
 After identifying the work temperature range (for example, $140-260^{\circ} \mathrm{C}$), set an SP near the minimum scale value, and after reaching it make a note of value A1 indicated by the instrument and of value A2 indicated by the external thermometer. Set an SP near the maximum scale value, and after reaching it make a note of value B1 indicated by the instrument and of value B2 indicated by the external thermometer. Enable 4-point linearization (see Correcting 4-point input) and enter the four requested values (A1, B1 and A2, B2).

 ## Unit of measurement

 Options:
 TYPE 1

 | J.TC | = Thermocouple J |
 | :---: | :---: |
 | K.TC | = Thermocouple K |
 | R.TC | = Thermocouple R |
 | S.TC | = Thermocouple S |
 | T.TC | = Thermocouple T |
 | C.TC | = Thermocouple C |
 | D.TC | = Thermocouple D |
 | B.TC | = Thermocouple B |
 | E.TC | = Thermocouple E |
 | L.TC | = Thermocouple L |
 | L.GO.TC | = Thermocouple L.GOST |
 | U.TC | = Thermocouple U |
 | G.TC | = Thermocouple G |
 | N.TC | = Thermocouple N |
 | PT2.TC | = Thermocouple Pt20Rh / Pt40Rh |
 | INFR1 | = IR type sensor 1 |
 | INFR2 | = IR type sensor 2 |
 | INFR3 | = IR type sensor 3 |
 | INFR4 | = IR type sensor 4 |

 with model 850 (without option VT1), 1650 and 1850:
 PT100 = Thermoresistance Pt100
 PT.LIM = Thermoresistance Pt 100 limitated
 JPT10 = Thermoresistance JPT100
 60MV \quad Sensor $0 . . .60 \mathrm{mV}$
 20MA = Sensor 0... 20 mA
 4-20M = Sensor 4... 20 mA
 $10 \mathrm{~V}=$ Sensor $0 . . .10 \mathrm{~V}$
 2-10V = Sensor $2 . . .10 \mathrm{~V}$
 $5 \mathrm{~V}=$ Sensor $0 . . .5 \mathrm{~V}$
 1-5V = Sensor $1 . .5 \mathrm{~V}$
 1 V = Sensor 0... 1 V
 0.2-1V = Sensor 0,2... 1 V
 C.RTD = Sensor RTD with custom calibration
 C.60MV $=$ Sensor $0 . . .60 \mathrm{mV}$ with custom calibration
 C.20MA = Sensor 0... 20 mA with custom calibration
 C.4-20 = Sensor 4... 20 mA with custom calibration
 C.10V = Sensor $0 . . .10 \mathrm{~V}$ with custom calibration
 C.2-10 = Sensor $2 . . .10 \mathrm{~V}$ with custom calibration
 C. $5 \mathrm{~V}=$ Sensor $0 . . .5 \mathrm{~V}$ with custom calibration
 C.1-5V = Sensor $1 . . .5 \mathrm{~V}$ with custom calibration
 C. $1 \mathrm{~V}=$ Sensor $0 . . .1 \mathrm{~V}$ with custom calibration
 C.0.2-1 = Sensor 0,2... 1 V with custom calibration
 with model 850 (with option VT1):

 | 60MV | = Sensor 0... 60 mV |
 | :---: | :---: |
 | 20MA | = Sensor 0... 20 mA |
 | 4-20M | = Sensor 4... 20 mA |
 | 10V | = Sensor 0... 10 V |
 | 2-10V | = Sensor $2 . . .10 \mathrm{~V}$ |
 | 5V | = Sensor 0... 5 V |
 | 1-5V | = Sensor 1... 5 V |
 | 1V | = Sensor 0... 1 V |
 | 0.2-1V | = Sensor 0,2..1 1 V |
 | C.RTD | = Sensor RTD with custom calibration |
 | C.60MV | = Sensor 0... 60 mV with custom calibration |
 | C.20MA | = Sensor 0... 20 mA with custom calibration |

 with model 850 (with option VT1):

 | C.4-20 | $=$ Sensor $4 \ldots .20 \mathrm{~mA}$ with custom calibration |
 | :--- | :--- |
 | C.10V | $=$ Sensor $0 \ldots .10 \mathrm{~V}$ with custom calibration |
 | C.2-10 | $=$ Sensor $2 \ldots . .10 \mathrm{~V}$ with custom calibration |
 | C. 5 V | $=$ Sensor $0 \ldots .5 \mathrm{~V}$ with custom calibration |
 | C.1-5V | $=$ Sensor $1 \ldots .5 \mathrm{~V}$ with custom calibration |
 | C.1V | $=$ Sensor $0 \ldots .1 \mathrm{~V}$ with custom calibration |
 | C.0.2-1 | $=$ Sensor $0,2 \ldots 1 \mathrm{~V}$ with custom calibration |

 | TYPE 2 | |
 | :---: | :---: |
 | without options VP o VT2, | |
 | J.TC | = Thermocouple J |
 | K.TC | = Thermocouple K |
 | R TC | = Thermocouple R |
 | S TC | = Thermocouple S |
 | T.TC | = Thermocouple T |
 | C.TC | = Thermocouple C |
 | D.TC | = Thermocouple D |
 | B.TC | = Thermocouple B |
 | E.TC | = Thermocouple E |
 | L TC | = Thermocouple L |
 | L.GO.TC | = Thermocouple L.GOST |
 | U.TC | = Thermocouple U |
 | G.TC | = Thermocouple G |
 | N.TC | = Thermocouple N |
 | PT2.TC | = Thermocouple Pt20Rh / Pt40Rh |
 | INFR1 | = IR type sensor 1 |
 | INFR2 | = IR type sensor 2 |
 | INFR3 | = IR type sensor 3 |
 | INFR4 | $=\mathrm{IR}$ type sensor 4 |

 without options VP o VT2:
 PT100 = Thermoresistance Pt100
 PT.LIM = Thermoresistance Pt 100 limitata
 JPT10 = Thermoresistance JPT100
 60MV = Sensor 0... 60 mV
 with options VP o VT2:

 | 20MA | $=$ Sensor $0 \ldots .20 \mathrm{~mA}$ |
 | :--- | :--- |
 | $\mathbf{4 - 2 0 M}$ | $=$ Sensor $4 \ldots .20 \mathrm{~mA}$ |
 | $\mathbf{1 0 V}$ | $=$ Sensor $0 \ldots .10 \mathrm{~V}$ |
 | $\mathbf{2 - 1 0 \mathrm { V }}$ | $=$ Sensor $2 \ldots . .10 \mathrm{~V}$ |
 | $\mathbf{5 V}$ | $=$ Sensor $0 \ldots .5 \mathrm{~V}$ |
 | $\mathbf{1 - 5 \mathbf { V }}$ | $=$ Sensor $1 \ldots .5 \mathrm{~V}$ |
 | $\mathbf{1 V}$ | $=$ Sensor $0 \ldots .1 \mathrm{~V}$ |
 | $\mathbf{0 . 2 - 1 V}$ | $=$ Sensor $0,2 . .1 \mathrm{~V}$ |

 with options VP o VT2:

 | C.RTD | $=$ Sensor RTD with custom calibration |
 | :--- | :--- |
 | C.60MV | $=$ Sensor $0 . . .60 \mathrm{mV}$ with custom calibration |

 with options VP o VT2:

 | C.20MA | $=$ Sensor $0 \ldots .20 \mathrm{~mA}$ with custom calibration |
 | :--- | :--- |
 | C.4-20 | $=$ Sensor $4 \ldots . \ldots 20 \mathrm{~mA}$ with custom calibration |
 | C.10V | $=$ Sensor $0 \ldots . .10 \mathrm{~V}$ with custom calibration |
 | C.2-10 | $=$ Sensor $2 \ldots . .10 \mathrm{~V}$ with custom calibration |
 | C.5V | $=$ Sensor $0 . .5 \mathrm{~V}$ with custom calibration |
 | C.1-5V | $=$ Sensor $1 \ldots . .5 \mathrm{~V}$ with custom calibration |
 | C.1V | Sensor $0 \ldots . .1 \mathrm{~V}$ with custom calibration |
 | C.0.2-1 | Sensor $0,2 \ldots 1 \mathrm{~V}$ with custom calibration |

 | TYPE 3 | |
 | :---: | :---: |
 | 20MA | = Sensor 0... 20 mA |
 | 4-20M | = Sensor 4... 20 mA |
 | 10V | = Sensor 0... 10 V |
 | 2-10V | = Sensor 2... 10 V |
 | 5V | = Sensor 0... 5 V |
 | -5V | enso |

 | $\mathbf{2 . 4 V H I}$ | $=$ Sensor $0 \ldots 2.4 \mathrm{~V}$ high impedance |
 | :--- | :--- |
 | $\mathbf{1 . 2 V H I}$ | $=$ Sensor $0 . .1 .2 \mathrm{~V}$ high impedance |
 | $\mathbf{1 V H I}$ | $=$ Sensor $0 . .1 \mathrm{~V}$ high impedance |

 C.20MA $=$ Sensor $0 . . .20 \mathrm{~mA}$ with custom calibration
 C.4-20 = Sensor 4... 20 mA with custom calibration
 C.10V = Sensor 0... 10 V with custom calibration
 C.2-10 = Sensor $2 . . .10 \mathrm{~V}$ with custom calibration
 C.5V = Sensor $0 . . .5 \mathrm{~V}$ with custom calibration
 C.1-5V = Sensor $1 . . .5 \mathrm{~V}$ with custom calibration
 C2.4VH = Sensor 0...2.4 V high impedance with custom calibration
 C1.2VH = Sensor 0...1.2 V high impedance with custom calibration

 ### 4.10.4. SBR.E - Enabling SBR error

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | SBR.E | INPUT.1 (or INPUT.2) SBR ENABLE | INPUT | R W |

 Enables open thermocouple probe error detection, also permitting infrared sensor management with maximum 4Kohm output impedance.
 This parameter only appears when a thermocouple type input is selected.
 When OFF, the parameter will be forced to ON (see options) at each Power On
 Unit of measurement:
 Options:
 OFF = Disable SBR alarm
 On = Enable SBR alarm
 On.t = Enable SBR alarm with timing

 ### 4.10.5. FUNC - Selecting auxiliary input function

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | FUnC | FUNCTION OF AUX INPUT | INPUT | R W |
 | The parameter shows and sets the function assigned to the auxiliary input. The parameter is shown only for the auxiliary input. | | | |
 | Unit of measurement: - | | | |
 | Options: | FUNC 2
 NONE = No function (only IN2 display)
 SETP = Remote setpoint of Process Value (PV1) for PID. 1 (*)
 POWER = Remote setpoint of Power for PID. 1 (${ }^{*}$)
 RST.PW = Reset power for PID. 1
 RATIO = Reference of ratio controller for PID. 1 (**)
 if model has valve control:
 VALV.P = Valve position signal
 PV2 = Process Value (PV2) per PID. 2
 FUNC 3
 NONE = Nessuna funzione (solo visualizzazione IN3)
 SETP = Remote setpoint of Process Value (PV1) for PID. 1 (*)
 POWER = Remote setpoint of Power for PID. 1 (${ }^{*}$)
 RST.PW = Reset power for PID.
 RATIO = Riferimento per regolatore di rapporto per PID. 1 (**)
 if model has valve control:
 VALV.P = Segnale di posizione valvola
 SETP2 = Remote setpoint of Process Value (PV2) for PID. 2
 POWE2 = Remote setpoint of Power for PID. 2
 RST.P2 $=$ Reset power for PID. 2 | | |
 | $\left({ }^{*}\right)$ Remote setpoint mode is obtained with function keys/digital inputs /Logic Function Blocks /serial after having enabled remote setpoint SP.rEM=On.
 (**) In remote setpoint mode, the controller tends to maintain PV1 = SSP1 = IN2 (o IN3) x RATIO, where RATIO (range from 0.01 to 99.99) is the value of the ratio required between PV1 and IN2 (o IN3). It is calculated in manual switching manual $>$ automatic (with MA.AU = BUMPL) and can be modified on the User menu. | | | |

 ### 4.10.6. LIN - Selecting linearization type

 | Acronym | Scrolling message |
 | :---: | :---: |
 | Lin | INPUT. 1 (or INPUT. 2 or INPUT.3) CUSTOM LINEARIZATION |
 | The parameter sets linearization for the selected sensor type.
 The function corrects any linearity and proportionality errors in the correlation between the actual value of the physical quantity measured.. | |
 | | |

 This correction can be made with two different algorithms: 32-step linearization and 4-point linearization. Values are set (33 for 32-step linearization and 4 for 4-point linearization) with the LINRZ submenu parameters.Z and LIN.4.P. submenu .

 For an explanation of 4-point linearization, see paragraph "5.4. 4-point input correction" on page 202.
 Unit of measurement:
 Options: NONE = No linearization
 32.STP $=32$-step linearization
 4.POIN $=4$-point linearization

 ### 4.10.7. UNIT - Selecting the displayed unit of measurement

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Unit | INPUT. 1 (or INPUT. 2 or INPUT.3) UNIT OF MEASURE | INPUT | R W |
 | The parameter shows and sets the unit of measurement displayed for input in use. The unit appears on the Home.x page of the display.
 For thermocouple or resistance thermometer inputs, the ${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$ selection automatically converts the temperature value; the related scale limits and setpoint limits must be set. | | | |
 | Unit of measurement: - | | | |
 | Options: | ```NONE = No unit of measurement \({ }^{\circ} \mathbf{C} \quad=\) Degrees Celsius \({ }^{\circ}\) F \(\quad=\) Degrees Fahrenheit CUST = Custom, settable with GF_eXpress``` | | |

 ### 4.10.8. FILT - Digital filter

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | FILT | INPUT.1 (or INPUT.2 DIGITAL FILTER | INPUT | R W |
 | The parameter shows and sets the value of the digital filter time constant. | | | |
 | With 0.00 no filter is applied. | | | |
 | Unit of measurement: Seconds | | | |
 | Options: $\quad \mathbf{0 . 0 0 . . . 2 0 . 0 0 ~}$ | | | |

 ### 4.10.9. FILT.D - Digital filter on PV display

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | FILT.D | INPUT.1 (or INPUT.2 or INPUT.3) DIGITAL FILTER ON DISPLAY PV | INPUT | R W |
 | The parameter shows and sets the allowed tolerance between the real PV value and the value on the PV display: if the | | | |
 | variation in real PV is within the interval displayed value - FILT.D... displayed value + FILT.D the displayed value does not | | | |
 | change. With 0.00 no filter is applied.. | | | |
 | Unit of measurement: \quad The one set with the Unit parameter | | | |
 | Options: | $\mathbf{0 . 0 . . . 9 . 9}$ | | |

 ### 4.10.10. DEC.P - Number of decimals displayed

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | DEC.P | INPUT. 1 (or | INPUT. 2 or INPUT.3) DECIMAL POINT POSITION | INPUT | R W |
 | The parameter shows and sets the decimal point position for the process value (PV) displayed, i.e., defines its number of decimal figures.
 The number of decimal set may reduce the limits of the measurement scale used. | | | | |
 | Unit of measurement: Number | | | | |
 | Options: | $\begin{aligned} & 0 . .3 \\ & 0 / 1 \end{aligned}$ | = Number of decimals displayed
 = Number of decimals displayed, only for TC | | |

 ### 4.10.11. LO.SCL - Lower limit of scale

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | LO.SCL | INPUT.1 (or INPUT.2 or INPUT.3) INPUT LOW LIMIT | INPUT | R W |

 The parameter shows and sets the lower limit of the measurement scale used for the main or auxiliary input, based on input (or sensor) type, unit of measurement, and number of decimals selected.
 The upper value of LO.SCL is not limited by the value of HI.SCL.
 Unit of measurement: The one set with the Unit parameter
 Options: A numerical value within the temperature range of the input or sensor

 | Type | $\begin{aligned} & \text { Unit }={ }^{\circ} \mathrm{C} \\ & \text { DEC. } . P=0 \end{aligned}$ | $\begin{aligned} & \text { Unit }={ }^{\circ} \mathrm{F} \\ & \text { DEC } . P=0 \end{aligned}$ |
 | :---: | :---: | :---: |
 | J.TC | -210...1200 | -346... 2192 |
 | K.TC | -270... 1372 | -454... 2502 |
 | R TC | -50... 1768 | -58... 3214 |
 | S TC | -50... 1768 | -58... 3214 |
 | T.TC | -270... 400 | -454... 752 |
 | C.TC | 0... 2315 | 32... 4199 |
 | D.TC | 0... 2315 | 32... 4199 |
 | B | 40... 1820 | 104... 3308 |
 | E | -270... 1000 | -454... 1832 |
 | L | -200... 900 | -328... 1652 |
 | L-GOST | -200... 800 | -328... 1472 |
 | U | -200... 600 | -328... 1112 |
 | G | 0... 2315 | 32... 4199 |
 | N | -270... 1300 | -454... 2372 |
 | PT2.TC | 0... 1888 | 32... 3430 |
 | INFR1 | 10... 70 | 50... 158 |
 | INFR2 | 60... 120 | 140... 248 |
 | INFR3 | 115... 165 | 239... 329 |
 | INFR4 | 140... 260 | 284... 500 |
 | PT100 | -200... 850 | -328... 1562 |
 | PT.LIM | -50... 250 | -58... 212 |
 | JPT10 | -200... 600 | -328... 1112 |

 | | $\begin{aligned} & \text { Unit }={ }^{\circ} \mathrm{G} \\ & \text { DEC } . P=0 \end{aligned}$ | $\begin{aligned} & \text { Unit }={ }^{\circ} F \\ & \text { DEC } . P=0 \end{aligned}$ |
 | :---: | :---: | :---: |
 | 60MV | -1999... 9999 | -199.9...999.9 |
 | 20MA | -1999... 9999 | -199.9...999.9 |
 | 4-20M | -1999... 9999 | -1999... 9999 |
 | 10V | -1999... 9999 | -1999... 9999 |
 | 2-10V | -1999... 9999 | -1999... 9999 |
 | 5V | -1999... 9999 | -1999... 9999 |
 | 1-5V | -1999... 9999 | -1999... 9999 |
 | 1V | -1999... 9999 | -1999... 9999 |
 | 0.2-1V | -1999... 9999 | -1999... 9999 |
 | 2.4 VHI | -1999... 9999 | -1999... 9999 |
 | 1.2VHI | -1999... 9999 | -1999... 9999 |
 | C1VH | -1999... 9999 | -1999... 9999 |
 | C.20MA | -1999... 9999 | -1999... 9999 |
 | C.4-20 | -1999... 9999 | -1999... 9999 |
 | C.10V | -1999... 9999 | -1999... 9999 |
 | C.2-10 | -1999... 9999 | -1999... 9999 |
 | C.5V | -1999... 9999 | -1999... 9999 |
 | C.1-5V | -1999... 9999 | -1999...9999 |
 | C.1V | -1999... 9999 | -1999... 9999 |
 | C.0.2-1 | -1999... 9999 | -1999... 9999 |
 | C2.4 VH | -1999... 9999 | -1999... 9999 |
 | C1.2VH | -1999...9999 | -1999...9999 |

 ### 4.10.12. HI.SCL - Upper limit of scale

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HI.SCL | INPUT.1 (or INPUT.2 or INPUT.3) INPUT HIGH LIMIT | INPUT | R W |
 | The parameter shows and sets the upper limit of the measurement scale used for the main or auxiliary input, based on
 input (or sensor) type, unit of measurement, and number of decimals selected.
 The lower value of HI.SCL is limited by the value of LO.SCL.
 Unit of measurement: The one set with the Unit parameter
 Options:\quad A value in the interval corresponding to the input or sensor type (see tables for LO.SCL parameter). | | | |

 ### 4.10.13. OF.SCL - Scale offset correction

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | OF.SCL | INPUT.1 (or INPUT.2 or INPUT.3) INPUT OFFSET | INPUT | R W |

 The parameter shows and sets the offset applied to the value read in input to make it correspond to the expected value for a certain temperature. It corrects any constant read error of the sensor.
 This offset is applied linearly to all reads; therefore it cannot be used to correct any sensor linearity errors.
 Unit of measurement: The one set with the Unit parameter
 Options: -999... 999

 ### 4.10.14. LO.SP - Lower limit for setpoint

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | LO.SP | INPUT.1 (or INPUT.2 or INPUT.3) LOW LIMIT FOR SETPOINT | INPUT | R W |
 | The parameter shows and sets the lower limit for defining the setpoint, i.e., the minimum value for setting a setpoint.
 The scale limit is ignored if the setpoint is assigned to an MFB output (or calculated by an MFB).
 Unit of measurement: The one set with the Unit parameter
 Options:
 LO.SCL...HI.SCL | | | |

 ### 4.10.15. HI.SP - Upper limit for setpoint

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HI.SP | INPUT.1 (or INPUT.2) HIGH LIMIT FOR SETPOINT | INPUT | R W |

 The parameter shows and sets the upper limit for defining the setpoint, i.e., the maximum value for setting a setpoint.
 The lower value of HI.SP is limited by the value of LO.SP.
 The scale limit is ignored if the setpoint is assigned to an MFB output (or calculated by an MFB).
 Unit of measurement: The one set with the Unit parameter
 Options: LO.SP...HI.SCL

 ### 4.10.16. LO.AL - Lower limit for alarms

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | LO.AL | INPUT.1 (or INPUT.2 or INPUT.3) LOW LIMIT FOR ABSOLUTE ALARMS | INPUT | R W |

 The parameter shows and sets the lower limit for defining alarms, i.e., the minimum value for setting an alarm.
 Unit of measurement: The one used for the alarm limit.
 Options:
 -1999... 9999

 ### 4.10.17. HI.AL - Upper limit for alarms

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HI.AL | INPUT.1 (or INPUT.2 or INPUT.3) HIGH LIMIT FOR ABSOLUTE ALARMS | INPUT | R W |
 | The parameter shows and sets the upper limit for defining alarms, i.e., the maximum value for setting an alarm. | | | |
 | Unit of measurement: The one used for the alarm limit. | | | |
 | Options: | $-1999 . . .9999$ | | |

 ### 4.10.18. MSG.LO - Selecting the message assigned to Low

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | MSG.LO | INPUT.1 (or INPUT.2 or INPUT.3) NUM SCROLLING MSG WHEN INPUT IS
 LOW ERR | INPUT | R W |

 The parameter shows and sets the number of the message assigned to Low (input < minimum scale limit), i.e., the scrolling message shown on the display..
 For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
 If the parameter is set to " 0 " no message will be displayed for Lou.
 As default, MSG.LO is assigned the message "1" (for LANG1 corresponds to "IN 1 (or IN 2 or IN 3) UNDER LOW LIMIT", for LANG2 corresponds to "IN 1 (or IN 2 or IN3) INFERIORE AL MINIMO".

 Unit of measurement: Message number
 Options: $\quad 0 . . .25$ (con LAnG=LANG1 oppure LANG2 oppure LANG3) 0... 75 (con LAnG=NONE)

 ### 4.10.19. MSG.HI - Selecting the message assigned to HIGH

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | MSG.HI | INPUT.1 (or INPUT.2 or INPUT.3) NUM SCROLLING MSG WHEN INPUT IS HI
 ERR | INPUT | R W |

 The parameter shows and sets the number of the message assigned to HIGH (input > maximum scale limit), i.e., the scrolling message shown on the display.
 For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
 If the parameter is set to " 0 " no message will be displayed for Hi GH .
 As default, MSG.HI is assigned the message "2" (for LANG1 corresponds to "IN 1 (or IN 2 o IN 3) OVER HIGH LIMIT ", for LANG2 corresponds to "IN 1 (or IN 2 or IN3) SUPERIORE AL MASSIMO".

 Unit of measurement: Message number
 Options: $\quad 0 . .25$ (con LAnG=LANG1 oppure LANG2 oppure LANG3)
 $0 . . .75$ (con LAnG=NONE)

 ### 4.10.20. MSG.ER - Selecting the message assigned to Err

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | MSG.ER | INPUT.1 (or INPUT.2 or INPUT.3) NUM SCROLLING MSG WHEN INPUT IS
 ERR ERR | INPUT | R W |
 | The parameter shows and sets the number of the message assigned to Err (Pt100 in short circuit or input values below
 minimum limit), i.e., the scrolling message shown on the display.
 For more information on scrolling messages, see paragraph " 3.1 .2 .2 . Scrolling messages" on page 44.
 If the parameter is set to " 0 " no message will be displayed for Err. | | | |
 | As default, MSG.ER is assigned the message " 3 " (for LANG1 corresponds to "INPUT SENSOR 1 (or SENSOR 2 or SONDA
 3) FAIL CONNECTION", for LANG2 corresponds to "ERRATA CONNESSIONE SONDA 1 (or SONDA 2 or SONDA 3)".
 Unit of measurement: Message number
 Options:
 $\mathbf{0 . . . 2 5 ~ (c o n ~ L A n G = L A N G 1 ~ o p p u r e ~ L A N G 2 ~ o p p u r e ~ L A N G 3) ~}$
 $\mathbf{0 . . . 7 5 \text { (con LAnG=NONE) }}$ | | | |

 ### 4.10.21. MSG.SB - Selecting the message assigned to Sbr

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | MSG.SB | INPUT.1 (or INPUT.2 or INPUT.3) NUM SCROLLING MSG WHEN INPUT IS SB
 ERR | INPUT | R W |

 The parameter shows and sets the number of the message assigned to Err (sensor break in short circuit or input values above maximum limit), i.e., the scrolling message shown on the display.
 For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
 If the parameter is set to " 0 " no message will be displayed for Sbr.
 As default, MSG.SB is assigned the message " 4 " (for LANG1 corresponds to ""SENSOR BROKEN" 1 (or SENSOR 2 or SONDA 3), for LANG2 corresponds to "SONDA 1 (or SONDA 2 or SONDA 3) APERTA".

 Unit of measurement: Number message

 Options: | $0 . . .25$ (con LAnG=LANG1 oppure LANG2 oppure LANG3) | |
 | :--- | :--- |
 | | $0 . . .75$ (con LAnG=NONE) |

 ### 4.11. Submenu IN.CT - Configuration of current inputs

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | IN.CT | CT INPUT CONFIG | Level 1 | Lets you configure the inputs of the controller's current trans-
 formers. |

 ### 4.11.1. Functional diagram

 ### 4.11.2. IN.CT.N - Configuring current transformers

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | IN.CT.N | CURRENT TRASFORMER NUMBER | IN.CT | R W |
 | The parameter shows and sets the identifying number of the current transformer. | | | |
 | Unit of measurement: Number | | | |
 | Options: | $1 \ldots 2$ | | |

 ### 4.11.3. FILT - Digital filter

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | FILT | IN.CT.1 (or IN.CT.2) DIGITAL FILTER | IN.CT | R W |
 | The parameter shows and sets the value of the digital filter time constant applied to the input for current transformer CT.1
 or CT2.
 Unit of measurement: Seconds
 Options:$\quad \mathbf{0 . 0 0 . . . 2 0 . 0 0 ~}$ | | | |

 ### 4.11.4. HI.SCL - Maximum scale limit

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HI.SCL | IN.CT.1 (or IN.CT.2) HIGH LIMIT | IN.CT | R W |
 | The parameter shows and sets the maximum scale limit of the input for current transformer CT1 or CT.2. | | | |
 | Unit of measurement: A | | | |
 | Options: | $\mathbf{0 . 0 . . . 1 0 0 . 0 ~}$ | | |

 ### 4.11.5. OF.SCL - Scale offset correction

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | OF.SCL | IN.CT.1 (or IN.CT.2) OFFSET | IN.CT | R W |
 | The parameter shows and sets the scale offset, i.e., the constant offset applied to all values measured by current tran-
 sformer CT1 or CT2.
 Unit of measurement: A
 Options:$\quad-99.9 . .99 .9$ | | | |

 ### 4.12. Submenu ALARM - Configuration of alarms

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :---: |
 | ALARM | ALARM CONFIG | Level 1 | Lets you configure the generic alarms. |

 ### 4.12.1. Functional diagram

 ### 4.12.2. ALARM -Selecting the alarm to be configured

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :--- | :---: | :---: |
 | ALRM.N | ALARM NUMBER | ALARM | R W |

 The parameter shows and sets the alarm to be configured, identified by its number.
 Unit of measurement: Number
 Options: 1...ALRM.N = Identifying number of alarm, where ALRM.N is the total number of alarms, setting by submenu MODE..

 ### 4.12.3. REFE - Selecting the alarm reference

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | REFE | ALARM.1 (o ALARM.2...ALARM.4) SELECTING REFERENCE SIGNAL | ALARM | R W |

 The parameter shows and sets the reference of alarm number " x " selected with the previous parameter ALARM, where the reference can be an input or value to be monitored.

 Unit of measurement:
 Options: PV1 = Process variable for PID. 1
 if model with auxiliary input:
 IN2 = Auxiliary input
 SSP1 = Active Setpoint for PID. 1
 if model with CT1+CT2:
 CURR1 = Current of current transformer CT1
 CURR2 = Current of current transformer CT2
 if energy count function is enabled in MODE.1:
 OU.KW1 = Power transferred to the load ENERG. 1
 O.KWH1 = Energy transferred to load ENERG. 1
 E.KWH1 = Totalizer of energy transferred to load ENERG. 1
 T.INT = Temperatura interna

 IN1 = Main input
 P.DAYS = Partial working days
 if PID2.E function is enabled in EN.FUN:
 PV2 = Process variable PID. 2
 SSP2 = Active Setpoint for PID. 2
 if energy count function is enabled in MODE.2:
 OU.KW2= Power transferred to load ENERG. 2
 O.KWH2 = Energy transferred to load ENERG. 2
 E.KWH2 = Totalizer of energy transferred to load ENERG. 2
 if model with auxiliary input 2 :
 IN3 = Auxiliary input 2
 if model with Master Modbus serial and Master parameter configured::
 MAS. 01 = Master Value 1
 MAS. 02 = Master Value 2
 MAS. 03 = Master Value 3
 MAS. 04 = Master Value 4
 MAS. 05 = Master Value 5
 MAS. 06 = Master Value 6
 MAS. 07 = Master Value 7
 MAS. 08 = Master Value 8
 MAS. 09 = Master Value 9
 MAS. 10 = Master Value 10
 MAS. 11 = Master Value 11
 MAS. 12 = Master Value 12
 MAS. 13 = Master Value 13
 MAS. 14 = Master Value 14
 MAS. 15 = Master Value 15
 MAS. 16 = Master Value 16
 MAS. 17 = Master Value 17
 MAS. 18 = Master Value 18
 MAS. 19 = Master Value 19
 MAS. $\mathbf{2 0}$ = Master Value 20

 ### 4.12.4. DI.IN - Selecting direct or inverse alarm

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | di.in | ALARM.1 (or ALARM.2...ALARM.4) DIRECT/INVERSE DEFINITION | ALARM | R W |
 | The parameter shows and sets the behavior of alarm number " x " with respect to the alarm limit and hysteresis.
 Direct or inverse defines when the alarm has to trip.
 For a detailed explanation of this behavior, see paragraph "5.6.1. AL1...AL4 Generic alarms" on page 204.
 Unit of measurement: $\quad-$
 Options:\quadDIREC = Direct Alarm
 INVRS $=$ Inverse Alarm | | | |

 ### 4.12.5. AB.RE - Selecting absolute or deviation alarm

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Ab.rE | ALARM.1 (or ALARM.2...ALARM.4) ABSOLUTE/RELATIVE DEFINITION | ALARM | R W |

 The parameter shows and defines the reference value of alarm number " x " for the alarm limit.
 For a detailed explanation of the difference between absolute and deviation, see paragraph "5.6.1. AL1...AL4 Generic alarms" on page 204.

 Unit of measurement:
 Options:
 ABSLT $=$ Absolute alarm
 RELAT $=$ Deviation alarm
 4.12.6. NO.SY - Method for applying hysteresis

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | no.SY | ALARM.1 (or ALARM.2...ALARM.4) NORMAL/SYMMETRIC DEFINITION | ALARM | R W |
 | The parameter shows and sets the method for applying hysteresis for alarm number "x" with respect to the alarm limit value.
 With normal, hysteresis is added to / subtracted from the alarm limit(s) based on the general alarm configuration.
 With symmetrical, hysteresis is added to / subtracted from the alarm limit itself. For a detailed explanation of the differen-
 ce between normal and symmetrical, see paragraph "5.6.1. AL1...AL4 Generic alarms" on page 204.
 Unit of measurement: -
 Options:
 NORML = Normal alarm
 SYMMT = Symmetrical alarm (window) | | | |

 ### 4.12.7. PWON.E - Disabling the alarm at power-on

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PWON.E | ALARM.1 (or ALARM.2...ALARM.4) DISABLE AT SWITCH ON | ALARM | R W |

 The parameter shows and sets the behavior of the alarm (being configured) when the controller is powered on. If the parameter is "OFF," the alarm will trip when the controller is powered on if the process variable exceeds the alarm setpoint limits.
 If the parameter is "On," the alarm will not trip until the alarm limit value is reached at least once after the controller is powered on.

 ATTENTION! The setpoint can be reached in increment or in decrement, or it may never be reached. Therefore, with "On" the alarm might never trip even if the value of the process variable exceeds the alarm setpoint limits.

 ## Example - Minimum, inverse and absolute alarm

 When the system is off, the process variable equals room temperature $\left(20^{\circ} \mathrm{C}\right)$. The alarm setpoint is set at $150^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}$. The controller powers on with the system.
 So with "OFF" the alarm trips as soon as the controller is powered on because the temperature of the process variable exceeds the alarm setpoint limits.
 Instead, with "On" the alarm trips only after the temperature of $150^{\circ} \mathrm{C}$ is reached at least once for the process variable.
 Unit of measurement:

 | Options: | OFF | = Alarm enabled at power-on |
 | :--- | :--- | :--- |
 | | On | $=$ Alarm disabled at power-on (until setpoint is reached) |

 ### 4.12.8. SP1C.E - Disabling alarm on Setpoint1 change

 | Acronimo | | Messaggio a scorrimento | Submenu | Attributi |
 | :---: | :---: | :---: | :---: | :---: |
 | SP1C.E | ALARM. 1 (o | ARM.2...ALARM.4) DISABLE AT SETP1 CHANGE | ALARM | R/W |
 | The parameter shows and sets the behaviour of the alarm when the SETP of PID1 is changed, for the alarm being configured. Setting the parameter from OFF to ON takes effect at the next setpoint change and masks the alarm. | | | | |
 | Example
 ALARM. 1 set as Direct Alarm, Absolute, Normal on PV1 with PV1 $=43$ and ALARM. $1=26$ (alarm is active) | | | | |
 | | | | | |
 | If SP1C.E = OFF and the SETP of PID1 changes, the alarm remains active.
 If SP1C.E = On and the SETP of PID1 changes, the alarm is inhibited; at this point, if PV1 falls below ALARM. 1 and then rises again, with the same SETP, the alarm becomes active again, until the next SETP change | | | | |
 | Unità di misura: - | | | | |
 | Opzioni: | OFF On | = Alarm enabled on SETP1 change
 =Alarm disabled on SETP1 change | | |

 ### 4.12.9. SP2C.E - Disabling alarm on Setpoint2 change

 ### 4.12.10. LATCH - Memorizing the alarm

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | LATCH | ALARM.1 (or ALARM.2...ALARM.4) MEMORY DEFINITION | ALARM | R W |
 | The parameter shows and sets enabling of memorization of the alarm being configured.
 Memorization maintains the active alarm state even after the alarm conditions are eliminated.
 The alarm state can be deleted by from the digital input, serial input, or key. | | | |
 | Unit of measurement: -
 Options: OFF $\quad=$ Alarm not latched
 On
 = Alarm latched | | | |

 ### 4.12.11. HYSTE - Hysteresis

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HYSTE | ALARM.1 (or ALARM.2...ALARM.4) HYSTERESIS | ALARM | R W |

 The parameter shows and sets the hysteresis applied to the alarm setpoint value for the alarm being configured.
 Unit of measurement: Scale points
 Options: $\quad 0 . . .999 \quad=$ For absolute (A.r.x $=$ ABSLT) and symmetrical alarm (n.S. $x=$ SYMMT) -999... 999 = For other types of alarms

 ### 4.12.12. DELAY - Alarm trip delay

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | DELAY | ALARM.1 (or ALARM.2...ALARM.4) DELAY OF ACTIVATION | ALARM | R W |

 The parameter shows and sets the alarm trip delay for the alarm being configured, i.e., the time that the value of the process variable has to exceed the alarm setpoint for the alarm to trip.
 This parameter prevents repeated alarms due to instantaneous and insignificant exceeding of that value.
 If the parameter is set to " 0.00 " the alarm will be instantaneous, regardless of the time in which the process variable exceeds the alarm setpoint.
 For a detailed explanation of this behavior, see paragraph "5.6.1. AL1...AL4 Generic alarms" on page 204.
 Unit of measurement: Minutes.seconds
 Options: 0.00...99.59

 ### 4.12.13. MSG.AL - Message associated with tripping of alarm

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | MSG.AL | ALARM.1 (or ALARM.2...ALARM.4) SCROLLING MESSAGE AT ALARM ACT | ALARM | R W |
 | The parameter shows and sets the number of the message associated with tripping of the alarm being configured, i.e.,
 the scrolling message shown on the display.
 For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
 If the parameter is set to " 0 " no message will be displayed when the alarm trips.
 The same message number can be assigned to different alarms
 Unit of measurement: Message number
 Options:
 $\mathbf{0 . . . 2 5 ~ (w i t h ~ L A n G = L A N G 1 ~ o r ~ L A N G 2 ~ o r ~ L A N G 3) ~}$
 $\mathbf{0 . . 7 5}$ (with LAnG=NONE) | | | |

 ### 4.12.14. BLK.AL - Flashing of PV display

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | BLK.AL | ALARM.1 (or ALARM.2..ALARM.4) BLINK DISPLAY PV DEF | ALARM | R W |

 The parameter shows and sets the flashing of the PV display in case of alarm, for the alarm being configured.
 If the parameter is "On," the value shown on the PV display starts to flash in case of alarm.
 Unit of measurement:
 $\begin{array}{lll}\text { Options: } & \begin{array}{ll}\text { OFF } & =\text { PV display does not flash in case of alarm } \\ \text { On } & =\text { PV display flashes in case of alarm }\end{array}\end{array}$

 ### 4.13. Submenu AL.HB - Configuring the Heater Break alarm

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | AL.HB | HEATER BREAK ALARM
 CONFIG | Level 1 | Lets you configure the Heater Break alarm, i.e., the alarm that
 trips when the heating element is outside normal operating
 parameters. |
 | The submenu is present if the CT1+CT2 input option was pre-
 viously selected. | | | |

 ### 4.13.1. Functional diagram

 ### 4.13.2. LOW.ON - Alarm due to insufficient current draw

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | LOW.ON | LOW LOAD CURR THRESH ON TIME | AL.HB | R W |
 | The parameter shows and sets the current draw value below which the Heater Break alarm trips when the control output
 is ON.
 If the draw is too low it is assumed that the heating element is broken. The signal may also be caused by a power failure
 on the heating element supply line.
 Unit of measurement: A
 Options: | | | |

 ### 4.13.3. HIG.ON - Alarm due to excessive current draw

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HIG.ON | HIGH LOAD CURR THRESH ON TIME | AL.HB | R W |
 | The parameter shows and sets the current draw value above which the Heater Break alarm trips when the control output
 is ON.
 If the draw is too high it is assumed that the heating element or its supply line is in short circuit.
 Unit of measurement: A
 Options: $\mathbf{0 . 0 . . . 9 9 9 . 9 ~}$ | | | |

 ### 4.13.4. HI.OFF - Alarm due to excessive current draw

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | HI.OFF | HIGH LOAD CURR THRESH OFF TIME | AL.HB | R W |
 | The parameter shows and sets the current draw value above which the Heater Break alarm trips when the control output
 is OFF.
 If the draw is too high it is assumed that the heating element or its supply line (eg a module SSR) is in short circuit.
 Unit of measurement: A
 Options:
 $0.0 . . .999 .9 ~$ | | | |

 ### 4.13.5. TIME - HB alarm trip delay

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | TIME | WAITING TIME FOR ALHB TRIP | AL.HB | R W |
 | The parameter shows and sets the minimum time in which the overrun defined by LOW.ON, HIG.ON and HI.OFF must
 persist before the HB alarm trips.
 This parameter prevents false alarms caused by momentary positive or negative peaks in current draw.
 If the value is set to "0" the alarm is immediate.
 Unit of measurement: Seconds
 Options:$\quad \mathbf{0 . . 9 9 9}$ | | | |

 ### 4.13.6. THR.PE - Percentage of HB current compared to calibration

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | THR.PE | PERCENTAGE HB ALARM SP IN HB CALIB | AL.HB | R W |
 | The parameter shows and sets the current draw value for the Heater Break alarm. | | | |
 | This value is expressed as a percentage of the current draw value set during calibration. | | | |
 | For more information on this calibration, see paragraph LOW.ON. | | | |
 | See also paragraph "4.33. Submenu US.CAL - Calibrazioni utente" on page 192. | | | |
 | Unit of measurement: \% | | | |
 | Options: $\quad \mathbf{0 . 0 . . . 1 0 0 . 0 ~ (d e f a u l t ~ v a l u e ~ = ~ 8 0 . 0) ~}$ | | | |

 ### 4.13.7. OUT - Control output associated with HB alarm

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | OUT | CONTROL OUTPUT HB AL | AL.HB | R W |
 | The parameter shows and sets the number of the control output associated with the alarm. | | | |
 | This is the output whose ON/OFF state is checked, as indicated in the description of the LOW.ON, HIG.ON and HI.OFF | | | |
 | parameters. | | | |
 | Unit of measurement: Number | | | |
 | Options: | $\mathbf{1 . . 4}$ | | |

 ### 4.13.8. LOAD - Selecting type of connected load

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | LoAd | TYPE OF LOAD CONFIGURATION | AL.HB | R W |
 | The parameter shows and sets the type of load connected to the control output.For more information on load type, see paragraph "5.6.2. HB alarm" on page 205 | | | |
 | For more in | rmation on load type, see paragraph "5.6.2. HB ala | | |
 | Unit of measurement: - | | | |
 | Options: | MONO = Monophase power supply, with current transformer CT1 only (transformer CT2 present it is ignored) | | |
 | STAR = 3-phase star power supply without neutre, with CT1 and CT2 | | | |

 ### 4.13.9. MSG.HB - Message associated with tripping of HB alarm

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | MSG.HB | SCROLLING MESSAGE AT HB ACT | AL.HB | R W |
 | The parameter shows and sets the number of the message associated with tripping of the HB alarm, i.e., the scrolling
 message shown on the display.
 For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
 If the parameter is set to " 0 " no message will be displayed when the alarm trips.
 The same message number can be assigned to different alarms.
 Unit of measurement: Message number
 Options:
 $\mathbf{0 . . . 2 5 ~ (w i t h ~ L A n G = L A N G 1 ~ o r ~ L A N G 2 ~ o r ~ L A N G 3) ~}$
 $\mathbf{0 . . . 7 5 ~ (w i t h ~ L A n G = N O N E) ~}$ | | | |

 ### 4.13.10. BLK.HB - Flashing of PV display

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | BLK.HB | BLINK DISPLAY PV DEF HB AL | AL.HB | R W |
 | The parameter shows and sets the flashing of the PV display in case of HB alarm.
 If the parameter is "On," the value shown on the PV display starts to flash with backlight at full brightness in case of HB
 alarm.
 Unit of measurement: -
 Options:
 OFF
 On\quad= PV display does not flash in case of alarm
 = PV display flashes in case of alarm | | | |

 ### 4.14. Submenu AL.PW - Configuring power alarm

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | AL.PW | POWER ALARM CONFIG | Level 1 | Lets you configure the power alarm, i.e., the alarm that trips
 when average power deviates from a configurable stability
 band. |

 ### 4.14.1. Functional diagram

 ### 4.14.2. AL.PW - Select the Power alarm to configure

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | AL.PW.N | POWER | ARM NUMBER | AL.PW | R W |
 | The parameter shows and sets the alarm to be configured, identified by its number. | | | | |
 | Unit of measurement: | | Number | | |
 | Options: | 1 | = Select alarm referring to PID. 1
 = Select alarm referring to PID. 2 (only with auxiliary input option) | | |
 | | 2 | | | |

 ### 4.14.3. PV.BND - Process variable stability band

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PV.BND | AL.PW.1 (or AL.PW.2) PV STABILITY BAND | AL.PW | R W |

 The parameter shows and sets the value of the process variable stability band within which the alarm is assessed. If the parameter is " 0.0 " the power alarm is disabled.

 Unit of measurement: \%
 Options: 0.0...100.0

 ### 4.14.4. PW.BND - Power stability band

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | PW.BND | AL.PW.1 (or AL.PW.2) PW STABILITY | AL.PW | R W |
 | The parameter shows and sets the value of the power stability band. When the process variable is in PV.BND stability
 band and average power exits PW.BND power stability band, the alarm activates after TIME. When the power alarm is
 active, it is automatically cancelled if the setpoint is changed, or by setting parameter AL.ACK = On on the user configu-
 ration menu, or by switching to Manual mode.
 Unit of measurement: $\%$
 Options:$\quad 0.0 . . .100 .0$ | | | |

 ### 4.14.5. TIME - Power alarm trip delay

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | TIME | AL.PW. 1 (or AL.PW.2) WAITING TIME FOR ALPW TRIP | AL.PW | R W |
 | The parameter shows and sets the minimum time during which the power stability band has to be exceeded before the
 power alarm trips.
 This parameter is used to avoid false alarms. If the value is set to " 0 " the alarm is immediate.
 Unit of measurement: Seconds
 Options:$\quad 0 . . .999$ | | | |

 ### 4.14.6. MSG.PW - Message associated with tripping of power alarm

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | MSG.PW | AL.PW. 1 (or AL.PW.2) SCROLLING MESSAGE AT PW ACT | AL.PW | R W |
 | The parameter shows and sets the number of the message associated with tripping of the power alarm, i.e., the scrolling
 message shown on the display.
 For more information on scrolling messages, see paragraph "3.1.2.2. Scrolling messages" on page 44.
 If the parameter is set to " 0 " no message will be displayed when the alarm trips. The same message number can be
 assigned to different alarms.
 Unit of measurement: Message number
 Options:
 $\mathbf{0 . . . 2 5 ~ (w i t h ~ L A n G = L A N G 1 ~ o r ~ L A N G 2 ~ o r ~ L A N G 3) ~}$
 $\mathbf{0 . . . 7 5 ~ (w i t h ~ L A n G = N O N E) ~}$ | | | |

 ### 4.14.7. BLK.PW - Flashing of PV display when power alarm trips

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | BLK.PW | AL.PW.1 (or AL.PW.2) BLINK DISPLAY PV DEF PW AL | AL.PW | R W |

 The parameter shows and sets the flashing of the PV display in case of power alarm.
 If the parameter is "On," in case of HB alarm the value on the PV display flashes with backlight at maximum brightness.

 Unit of measurement:

 | Options: | OFF | $=$ PV display does not flash in case of alarm |
 | :--- | :--- | :--- |
 | On | $=$ PV display flashes in case of alarm | |

 ### 4.15. Submenu PID - Configuring control parameters

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :---: |
 | PID | PID CONFIG | Level 1 | Lets you configure the control parameters. |

 ### 4.15.1. Functional diagram

 ### 4.15.2. PID.N - PID Configuration

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PID.N | PID NUMBER | PID | R W |
 | The parameter shows and sets the identifying number of the available PID. | | | |
 | Unit of measurement: Number | | | |
 | Options: | $1 \ldots 2$ | | |

 ### 4.15.3. S.TUNE - Enabling Self-Tuning

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | S.TUNE | PID.1 (or PID.2) SELF TUNING ENABLE | PID | R W |
 | The parameter shows and sets enabling of Self-Tuning. | | | |
 | For more information on the Self-Tuning function, see paragraph "5.10.3. Self-Tuning" on page 208. | | | |
 | Unit of measurement: - | | | |
 | Options: \quadOFF $=$ Self-Tuning disabled
 On $=$ Self-Tuning enabled at next power-on only
 On.AL $=$ Self-Tuning enabled at all power-on | | | |
 | | | | |

 ### 4.15.4. SOFT.S - Enabling Soft-Start

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | SOFT.S | PID. 1 (or PID | SOFT START ENABLE | PID | R W |
 | The parameter shows and sets enabling of Soft-Start.
 For more information on the Self-Start function, see paragraph "5.9. Soft-Start" on page 207. This parameter appears only if S.TUNE = OFF.
 Unit of measurement: | | | | |

 ### 4.15.5. SOFT.T - Soft-Start Time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | SOFT.T | PID. 1 (or PID.2) SOFT START TIME | PID | R W |
 | The parameter shows and sets Soft-Start time, i.e., the time that the control output needs to reach the value required by
 the PID.
 This parameter appears only if SOFT.S = On.
 Unit of measurement: Minutes
 Options:$\quad \mathbf{0 . 0 . . . 5 0 0 . 0}$ | | | |

 ### 4.15.6. A.TUNE - Enabling Auto-Tuning

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | A.TUNE | PID. 1 (or PID.2) AUTO TUNING ENABLE | PID | R W |
 | The parameter shows and sets enabling of Auto-Tuning.
 For more information on the Auto-Tuning function, see paragraph "5.10.4. Auto-Tuning" on page 209.
 Unit of measurement: -
 Options:

 OFFOn Auto-Tuning disabled
 On Auto-Tuning enabled | | | |

 ### 4.15.7. AUT.T - Selecting type of Auto-Tuning

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Aut.t | PID. 1 (or PID.2) AUTO TUNING SELECTION | PID | R W |
 | The param Unit of meas Options: | r shows and sets the type of Auto-Tuning used.
 urement:
 CONTI = Continuous Auto-Tuning
 O.SHOT = One-shot Auto-Tuning
 DEV0.5 = One-shot Auto-Tuning with activation when $\|S P-P V\|>0,5 \%$ of full scale of main or auxiliary input
 DEV1 = One-shot Auto-Tuning with activation when $\|S P-P V\|>1 \%$ of full scale of main or auxiliary input
 DEV2 = One-shot Auto-Tuning with activation when $\|S P-P V\|>2 \%$ of full scale of main or auxiliary input
 DEV4 =One-shot Auto-Tuning with activation when $\|S P-P V\|>4 \%$ of full scale of main or auxiliary input | | |

 ### 4.15.8. CNTR - Selecting type of control

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | Cntr | PID. 1 (or PID.2) TYPE | OF CONTROL | PID | R W |
 | The parameter shows and sets the type control performed by the controller. | | | | |
 | Unit of measurement: | | | | |
 | Options: | H.PROP | $=$ Proportional heating | | |
 | | H.PI | $=$ Proportional/integral heating | | |
 | | H.PID | $=$ Proportional integral/derivative heating | | |
 | | C.PROP | $=$ Proportional cooling | | |
 | | C.PI | $=$ Proportional/integral cooling | | |
 | | C.PID | $=$ Proportional integral/derivative cooling | | |
 | | HC.P | $=$ Proportional heating/cooling | | |
 | | HC.PI | $=$ Proportional/integral heating/cooling | | |
 | | HC.PID | = Proportional integral/derivative heating/cooling | | |
 | | H.ONOF | $=$ Heating ON-OFF | | |
 | | C.ONOF | $=$ Cooling ON-OFF | | |
 | | HC.ONO | $=$ Heating/cooling ON-OFF | | |
 | | HP.CON | $=$ PID heating / cooling ON-OFF | | |
 | | HON.CP | $=$ Heating ON-OFF / PID cooling | | |
 | | PID.RG | $=$ Heating / PID cooling with relative gain | | |

 ### 4.15.9. DERV.S - Derivative sampling time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | DERV.S | PID. 1 (or PID.2) DERIVATIVE SAMPLE TIME | PID | R W |
 | The parameter shows and sets the derivative sampling time. | | | |
 | The parameter is shown if the derivative action was enabled with parameter Cntr. | | | |
 | Unit of measurement: Seconds | | | |
 | Options: | $\mathbf{0 . 2 4 0}$ | | |
 | | $\mathbf{1}$ | | |
 | | $\mathbf{8}$ | | |

 ### 4.15.10. H.PB - Proportional heating band or hysteresis in ON-OFF control

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.PB | PID.1 (or PID.2) HEATING PROPORTIONAL BAND OR ON/OFF HYST | PID | R W |
 | The parameter shows and sets the proportional heating band or hysteresis in the ON-OFF control, calculated as a percent-
 age of full scale of the main or auxiliary input.
 Unit of measurement: $\%$
 Options:
 $0.0 . . .999 .9 ~$ | | | |

 ### 4.15.11. H.IT - Integral heating time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.IT | PID.1 (or PID.2) HEATING INTEGRAL TIME | PID | R W |
 | The parameter shows and sets the integral heating time. | | | |
 | Unit of measurement: Minutes | | | |
 | Options: | $0.00 \ldots 99.99$ | | |

 ### 4.15.12. H.DT - Derivative heating time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.DT | PID. 1 (or PID.2) HEATING DERIVATIVE TIME | PID | R W |
 | The parameter shows and sets the derivative heating time. | | | |
 | Unit of measurement: Minutes | | | |
 | Options: | $0.00 \ldots 99.99$ | | |

 ### 4.15.13. H.P.HI - Maximum limit of heating power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.P.HI | PID.1 (or PID.2) HEATING POWER HIGH LIMIT | PID | R W |
 | The parameter shows and sets the maximum limit of heating power. | | | |
 | Unit of measurement: $\%$ | | | |
 | Options: | $\mathbf{0 . 0 . . . 1 0 0 . 0}$ | | |

 ### 4.15.14. H.P.LO - Minimum limit of heating power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.P.LO | PID. 1 (or PID.2) HEATING POWER LOW LIMIT | PID | R W |
 | The parameter shows and sets the minimum limit of heating power. | | | |
 | Not available for dual action. The power of PID heating/cooling control (called dual action) is limited by the values of | | | |
 | H.P.HI and C.P.HI. | | | |
 | Unit of measurement: \% | | | |
 | Options: | $\mathbf{0 . 0 . . . 1 0 0 . 0 ~}$ | | |

 ### 4.15.15. COOL - Selecting cooling fluid

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | COOL | PID. 1 (or PID.2) COOLING MEDIA | | PID | R W |
 | The parameter shows and sets the fluid used for cooling. The parameter appears if the parameter Cntr = PID.RGn was selected. | | | | |
 | | | | | |
 | Unit of measurement: - | | | | |
 | Options: | FAN OIL
 H2O | = Air (relative gain H.PB/C.PB = 1)
 $=$ Oil (relative gain H.PB/C.PB $=0,8$)
 $=$ Water (relative gain H.PB/C.PB $=0,4$) | | |

 ### 4.15.16. C.SP - Cooling setpoint with respect to heating setpoint

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | C.SP | PID. 1 (or PID.2) COOLING SETPOINT RELEVANT TO HEATING SETP | PID | R W |
 | The parameter shows and sets the cooling setpoint as a percentage change of the heating setpoint. | | | |
 | Negative values superimpose cooling on heating. | | | |
 | Unit of measurement: \%, of full scale of main or auxiliary input | | | |
 | Options: | $-\mathbf{2 5 . 0} . . \mathbf{2 5 . 0}$ | | |

 ### 4.15.17. C.PB - Proportional cooling band or hysteresis in ON-OFF control

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | C.PB | PID.1 (or PID.2) COOLING PROPORTIONAL BAND OR ON/OFF HYST | PID | R W |
 | The parameter shows and sets the proportional cooling band or hysteresis in the ON-OFF control, calculated as a per-
 centage of full scale of the main or auxiliary input.
 Unit of measurement: $\%$
 Options:
 $0.0 . .999 .9 ~$ | | | |

 ### 4.15.18. C.IT - Integral cooling time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | C.IT | PID.1 (or PID.2) COOLING INTEGRAL TIME | PID | R W |
 | The parameter shows and sets the integral cooling time.
 Unit of measurement: \quad Minutes
 Options:$\quad 0.00 \ldots 99.99$ | | | |

 ### 4.15.19. C.DT - Derivative cooling time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | C.DT | PID.1 (or PID.2) COOLING DERIVATIVE TIME | PID | R W |
 | The parameter shows and sets the derivative cooling time. | | | |
 | Unit of measurement: Minutes | | | |
 | Options: | $\mathbf{0 . 0 0 . . 9 9 . 9 9 ~}$ | | |

 ### 4.15.20. C.P.HI - Maximum limit of cooling power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | C.P.HI | PID.1 (or PID.2) COOLING POWER HIGH LIMIT | PID | R W |
 | The parameter shows and sets the maximum limit of cooling power.
 Unit of measurement: $\%$
 Options:$\quad 0.0 . .100 .0 \frac{\text { FEEDF }}{\text { fondecoala_iniziocoala- }} \times \frac{}{100}$ | | | |

 ### 4.15.21. C.P.LO - Minimum limit of cooling power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | C.P.LO | PID.1 (or PID.2) COOLING POWER LOW LIMIT | PID | R W |
 | The parameter shows and sets the lower limit of cooling power. | | | |
 | Not available for dual action. The power of PID heating/cooling control (called dual action) is limited by the values of | | | |
 | H.P.HI and C.P.HI. | | | |
 | Unit of measurement: \% | | | |
 | Options: | $\mathbf{0 . 0 . . . 1 0 0 . 0 ~}$ | | |

 ### 4.15.22. RESET - Manual reset

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | RESET | PID.1 (or PID.2) MANUAL RESET | PID | R W |
 | The parameter shows and sets the Manual reset value, i.e., the value which, when added to setpoint, becomes the refe- | | | |
 | rence for the control. It is useful in a PID control with non-variable setpoint to compensate the error at full scale. | | | |
 | Unit of measurement: Scale points of main or auxiliary input | | | |
 | Options: | $-999 . . .999$ | | |

 ### 4.15.23. P.RST - Power reset

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | P.RST | PID.1 (or PID.2) RESET POWER | PID | R W |
 | The parameter shows and sets the Reset power value, i.e., the value added to the control power. | | | |
 | For example, in proportional control it corresponds to the output at zero value (PV = SV). | | | |
 | Unit of measurement: \% | | | |
 | Options: | $-\mathbf{1 0 0 . 0 . . . 1 0 0 . 0}$ | | |

 ### 4.15.24. A.RST - Antireset

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | A.RST | PID.1 (or PID.2) ANTIRESET | PID | R W |
 | The parameter shows and sets the Antireset value.
 If set to other than " 0 ", it defines band width (below the setpoint if heating, above the setpoint if cooling) within which the
 integral action is applied, if provided (PI or PID control).
 Unit of measurement: Scale points of main or auxiliary input
 Options: $0 .. .9999$ | | | |

 ### 4.15.25. FEEDF - Feedforward power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | FEEDF | PID.1 (o PID.2) FEEDFORWARD | PID | R W |

 The parameter shows and sets the feedforward power value, i.e., the value that generates an additional factor at the control output based on the setpoint value.

 $$
 U=\frac{\text { setpoint }}{\substack{\text { end of scale }- \text { start of } \\ \text { scale }}} \times \frac{\text { FEEDF }}{100.0}
 $$

 Unit of measurement: \%
 Options:
 -100.0...100.0

 ### 4.15.26. DEAD.B - Deadband

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | DEAD.B | PID. 1 (or PID.2) DEAD BAND | PID | R W |
 | The parameter shows and sets the deadband. | | | |
 | The deadband is symmetrical to the setpoint. If the process value (PV) stays in this band, the control output keeps the | | | |
 | required power value constant. | | | |
 | Unit of measurement: Scale points of main or auxiliary input. | | | |
 | Options: | $0 . . .999$ | | |

 ### 4.15.27. FAULT - Fault action power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | ---: | :---: |
 | FAULT | PID.1 (or PID.2) FAULT ACTION POWER | PID | R W |
 | The parameter shows and sets the fault action power, supplied if the sensor is broken. | | | |
 | Example
 If Cntr = HP.CON (Proportional Heat, ON/OFF Cool), the option is On, OFF, 0.0...100.0, i.e., if you set FAULT = On the
 cooling output will be ON in case of fault.
 Unit of measurement: \%
 Options:

 -100.0...100.0
 On, OFF | for P or PI or PID action
 for ON / OFF action | | |

 ### 4.15.28. GRAD.I - Setpoint gradient in increase

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | GRAD.I | PID.1 (or PID.2) SETPOINT GRADIENT IN INCREMENT | PID | R W |
 | The parameter shows and sets the gradient used when the setpoint value is increased.
 If the parameter is " 0.0 " the gradient is disabled.
 Unit of measurement: digit/second or digit/minute, depending on unit parameter setting
 Options:
 $0.0 . . .999 .9 ~$ | | | |

 ### 4.15.29. GRAD.D - Setpoint Gradient in decreasing

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | GRAD.D | PID. 1 (or PID.2) SETPOINT GRADIENT IN DECREMENT | PID | R W |

 The parameter shows and sets the gradient used when the setpoint value is decreased.
 If the parameter is " 0.0 " the gradient is disabled.
 Unit of measurement: digit/second or digit/minute, depending on unit parameter setting
 Options:
 0.0...999.9

 ### 4.15.30. UNIT - Unit of measurement of gradient

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | Unit | PID.1 (or PID.2) GRADIENT UNIT OF MEASURE | PID | R W |
 | The parameter shows and sets the unit of measurement of gradient GRAD.I and GRAD.D.
 The parameter appears only if GRAD.I or GRAD.D are greater than " 0.0 ". | | | |
 | Unit of measurement: - | | | |
 | Options: | DIG/S = Digit/second | | |
 | DIG/M $=$ Digit/minute | | | |

 ### 4.15.31. GRAD.O - Gradient of control output

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | GRAD.O | PID.1 (or PID.2) CONTROL OUTPUT GRADIENT | PID | |
 | The parameter shows and sets the gradient used by the control output.
 The gradient is used to limit rapid changes in the control output.
 If the parameter is "0.0" the gradient is disabled.
 Unit of measurement: $\% /$ second
 Options:
 $\mathbf{0 . 0 . . 1 0 0 . 0 ~}$ | | | |

 ### 4.15.32. LBA.TM - Tripping delay

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | LBA.TM | PID.1 (or PID.2) WAITING TIME FOR LBA ALARM TRIP | PID | R W |
 | The parameter shows and sets the delay time for tripping of the LBA alarm.
 If the parameter is "0.0" the LBA alarm is disabled.
 When the LBA alarm is active, it is automatically cancelled if the PV rises (in heating) or lowers (in cooling), or by setting
 the parameter AL.ACK = On on the user configuration menu or by switching to Manual mode.
 This parameter will not appear in the presence of ON-OFF control (of heating, cooling and heating, and
 heating/cooling).
 Unit of measurement: Minutes
 Options: | | | |

 ### 4.15.33. LBA.PW - Power delivered when LBA alarm trips

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | LBA.PW | PID.1 (or PID.2) POWER LIMITS BY LBA ALARM CONDITION | PID | R W |
 | The parameter shows and sets the power value delivered when the LBA alarm trips. | | | |
 | This parameter will not appear in the presence of ON-OFF control (of heating, cooling and heating, and heating/cooling). | | | |
 | In the presence of PID control with ON-OFF heating or cooling, power . may be set for the PID part only | | | |
 | Unit of measurement: \% | | | |
 | Options: | $-\mathbf{1 0 0 . 0} . . \mathbf{1 0 0 . 0}$ | | |

 ### 4.16. Submenu PID.GR - Configuring groups of control parameters

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :---: |
 | PID.GR | PID GROUP PARAMETERS CONFIG | Level 1 | Lets you configure groups of control parameters. Groups of control parameters must be enabled with the parameter PID. $\mathrm{GN}=.1 \ldots 4$ on the MODE menu (the menu is not shown if PID. GN = 0).
 Groups are used to preconfigure sets of function parameters that can be easily called when needed, without having to reconfigure the PID parameters every time. The number of parameters available in groups is less than the number on the PID submenu. The number of parameters available in groups is limited to those for PID heating and/or cooling control. |

 4.16.1. PID.N - Selecting PID for parameters to be configured

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PID.N | PID NUMBER | PID.GR | R W |
 | The parameter shows and sets the identifying number of the available PID. | | | |
 | Unit of measurement: Number | | | |
 | Options: | $1 . . .2$ | | |

 ### 4.16.2. PID.G.N - Selecting PID for parameters group to be configured

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | PID.G.N | PID PARAMETERS GROUP NUMBER | PID.GR | R W |
 | The parameter shows and sets the parameter group to be configured, identified by its number.
 Unit of measurement: Number
 Options:
 1...PD.G.N \quad= Numerical identification where PID.G.N is the total number of groups of parameters
 set on the MODE submenu | | | |

 ### 4.16.3. H.PB - Proportional heating band or hysteresis in ON-OFF control

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.PB | PID.GR.1 (or PID.GR.2...PID.GR.4) HEATING PROPORTIONAL BAND OR ON/
 OFF HYST | PID.GR | R W |
 | The parameter shows and sets the proportional heating band or hysteresis in the ON-OFF control, calculated as a per-
 centage of full scale of the main or auxiliary input.
 Unit of measurement: \%
 Options:$\quad \mathbf{0 . 0 . . . 9 9 9 . 9 ~}$ | | | |

 ### 4.16.4. H.IT - Integral heating time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | H.IT | PID.GR.1 (or PID.GR.2...PID.GR.4) HEATING INTEGRAL TIME | PID.GR | R W |
 | The parameter shows and sets the integral heating time. | | | |
 | Unit of measurement: Minutes | | | |
 | Options: | $0.00 . . .99 .99$ | | |

 ### 4.16.5. H.DT - Derivative heating time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.DT | PID.GR.1 (or PID.GR.2...PID.GR.4) HEATING DERIVATIVE TIME | PID.GR | R W |
 | The parameter shows and sets the derivative heating time. | | | |
 | Unit of measurement: Minutes | | | |
 | Options: | $\mathbf{0 . 0 0 . . . 9 9 . 9 9 ~}$ | | |

 ### 4.16.6. H.P.HI - Maximum heating power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | H.P.HI | PID.GR.1 (or PID.GR.2...PID.GR.4) HEATING POWER HIGH LIMIT | PID.GR | R W |
 | The parameter shows and sets the maximum limit of heating power.
 Unit of measurement: $\%$
 Options:$\quad \mathbf{0 . 0 . . 1 0 0 . 0 ~}$ | | | |

 ### 4.16.7. H.P.LO - Minimum limit of heating power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | H.P.LO | PID.GR.1 (or PID.GR.2...PID.GR.4) HEATING POWER LOW LIMIT | PID.GR | R W |
 | The parameter shows and sets the minimum limit of heating power. | | | |
 | For details, see paragraph "4.15.14. H.P.LO - Minimum limit of heating power" on page 117. | | | |
 | Unit of measurement: \% | | | |
 | Options: | $\mathbf{0 . 0 . . . 1 0 0 . 0}$ | | |

 ### 4.16.8. C.PB - Proportional cooling band or hysteresis in ON-OFF control

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | C.PB | PID.GR.1 (or PID.GR.2...PID.GR.4) COOLING PROPORTIONAL BAND OR ON/
 OFF HYST | PID.GR | R W |
 | The parameter shows and sets the proportional cooling band or hysteresis in the ON-OFF control, calculated as a percent-
 age of full scale of the main or auxiliary input.
 Unit of measurement: $\%$
 Options:$\quad 0.0 \ldots 999.9$ | | | |

 ### 4.16.9. C.IT - Integral cooling time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | C.IT | PID.GR. 1 (or PID.GR.2...PID.GR.4) COOLING INTEGRAL TIME | PID.GR | R W |
 | The parameter shows and sets the integral cooling time. | | | |
 | Unit of measurement: Minutes | | | |
 | Options: | $\mathbf{0 . 0 0 . . 9 9 . 9 9}$ | | |

 ### 4.16.10. C.DT - Derivative cooling time

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | C.DT | PID.GR. 1 (or PID.GR.2...PID.GR.4) COOLING DERIVATIVE TIME | PID.GR | R W |
 | The parameter shows and sets the derivative cooling time. | | | |
 | Unit of measurement: Minutes | | | |
 | Options: | $0.00 \ldots 99.99$ | | |

 ### 4.16.11. C.P.HI - Maximum limit of cooling power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | C.P.HI | PID.GR.1 (or PID.GR.2...PID.GR.4) COOLING POWER HIGH LIMIT | PID.GR | R W |
 | The parameter shows and sets the maximum limit of cooling power. | | | |
 | Unit of measurement: $\%$ | | | |
 | Options: | $\mathbf{0 . 0 . . . 1 0 0 . 0}$ | | |

 ### 4.16.12. C.P.LO - Minimum limit of cooling power

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | C.P.LO | PID.GR.1 (or PID.GR.2...PID.GR.4) COOLING POWER LOW LIMIT | PID.GR | R W |
 | The parameter shows and sets the minimum limit of cooling power. | | | |
 | For details, see paragraph "4.15.21. C.P.LO - Minimum limit of cooling power" on page 119. | | | |
 | Unit of measurement: \% | | | |
 | Options: | $\mathbf{0 . 0 . . . 1 0 0 . 0}$ | | |

 ### 4.16.13. PV.THR - Threshold PV for the activation of the group of PID parameters

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | PV.THR | PID.GR.1 (or PID.GR.2...PID.GR.4) PV BEYOND WHICH THE GROUP IS ACTIVE | PID.GR | R W |
 | The parameter shows and sets the PV over which the group of PID parameters is active. | | | |
 | The parameter is shown only if the respective programmer is not enabled. | | | |
 | Unit of measurement: Scale points of main or auxiliary input | | | |
 | Options: | LO.SCL...HI.SCL | | |

 ### 4.17. CAL.EV sub-menu - Enable Calendar events

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | CAL.EV | CALENDAR ENABLING | Level 1 | Show Event Calendar settings |

 ### 4.17.1. CAL.E - Enable calendar

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | CAL.E | CALENDAR ENABLE | CAL.EV | R W |
 | The parameter shows and sets when the calendar is enabled. | | | |
 | Unit of measurement: | | | |
 | Options: | OFF = Calendar disabled
 ONE.WE = Single week calendar enabled
 WEKLY = Weekly calendar enabled | | |
 | | | | |

 ### 4.17.2. MONDA - Enable Monday

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | MONDA | DAYS ENABLE | CAL.EV | R W |
 | The parameter shows and sets events enabled for Monday. | | | |
 | Unit of measurement:
 Options:\quadNone = Monday calendar disabled
 ON $=$ Monday calendar enabled | | | |

 ### 4.17.3. TUESD - Enable Tuesday

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | TUESD | DAYS ENA | BLE | CAL.EV | R W |
 | The parameter shows and sets when the calendar is enabled. | | | | |
 | Unit of measurement: | | | | |
 | Options:$\begin{aligned} & \text { None }=\text { Tuesday calendar disabled } \\ & \text { ON } \quad \text { = Tuesday calendar enabled } \end{aligned}$ | | | | |

 ### 4.17.4. WEDNE - Enable Wednesday

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | WEDNE | DAYS ENABLE | CAL.EV | R W |
 | The parameter shows and sets events enabled for Wednesday. | | | |
 | Unit of measurement: | | | |
 | Options: | None
 ON | = Wednesday calendar disabled
 = Wednesday calendar enabled | |

 ### 4.17.5. THURS - Enable Thursday

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | THURS | DAYS ENABLE | CAL.EV | R W |
 | The parameter shows and sets the events enabled for Thursday. | | | |
 | Unit of measurement: -
 Options: None
 ON $=$ Thursday calendar disabled
 = Thursday calendar enabled | | | |

 ### 4.17.6. FRIDA - Enable Friday

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | FRIDA | DAYS ENABLE | CAL.EV | R W |
 | The parameter shows and sets the events enabled for Friday. | | | |
 | Unit of measurement:
 Options: None
 ON Friday calendar disabled
 = Friday calendar enabled | | | |

 ### 4.17.7. SATUR - Enable Saturday

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | SATUR | DAYS ENABLE | CAL.EV | R W |
 | The parameter shows and sets the events enabled for Saturday. | | | |
 | Unit of measurement:
 Options: None = Saturday calendar disabled
 ON Saturday calendar enabled | | | |

 ### 4.17.8. SUNDA - Enable Sunday

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | SUNDA | DAYS ENABLE | CAL.EV | R W |
 | The parameter shows and sets the events enabled for Sunday. | | | |
 | Unit of measurement:
 Options:\quadNone
 ON Sunday calendar disabled
 = Sunday calendar enabled | | | |

 ### 4.18. CALE.C sub-menu - Enable Event Calendar

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :---: |
 | CALE.C | CALENDAR CONFIGURATION | Level 1 | Show Event Calendar settings |

 ### 4.18.1. D.O.E - Event day selection

 ### 4.18.2. EVE.N - Event number selection

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | EVE.N | EVENT NuMBER | CALE.C | R W |
 | The parameter shows and sets the calendar event number to be selected. | | | |
 | Unit of measurement: number | | | |
 | Options: | $1 . .4$ | | |

 ### 4.18.3. HH - Hour of the event

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | HH | HOUR OF EVENT | CALE.C | R W |
 | The parameter shows and sets the hour of the selected Calendar event. | | | |
 | Unit of measurement: number (hh) | | | |
 | Options: | $0 . .23$ | | |

 ### 4.18.4. MM - Minute of the event

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | MM | MINUTE OF EVENT | CALE.C | R W |
 | The parameter shows and sets the minutes of the selected Calendar event. | | | |
 | Unit of measurement: number (mm) | | | |
 | Options: | $0 . .59$ | | |

 ### 4.18.5. SS - Seconds of the event

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :--- | :---: | :---: |
 | SS | SECOND OF EVENT | CALE.C | R W |
 | The parameter shows and sets the seconds of the selected Calendar event. | | | |
 | Unit of measurement: number (ss) | | | |
 | Options: | $0 . .59$ | | |

 ### 4.18.6. ACt - Seconds of the event

 | Acronym | | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: | :---: |
 | ACt | ACTION | EVENT | CALE.C | R W |
 | The parameter shows and sets the seconds of the selected Calendar event. | | | | |
 | Unit of measurement: | | | | |
 | Options: | | NONE = no event | | |
 | | | ON.SW = SOFTWARE ON | | |
 | | | OFF.SW = SOFTWARE OFF | | |
 | | | O.S.S1 = SOFTWARE ON and Programmer 1 START | | |
 | | | O.S.S2 = SOFTWARE ON and Programmer 2 START | | |
 | | | ST.PR1 = Programmer 1 START | | |
 | | | STP.P1 = Programmer 1 STOP | | |
 | | | RESE1 = Programmer 1 RESET | | |
 | | | ST.PR2 = Programmer 2 START | | |
 | | | STP.P2 = Programmer 2 STOP | | |
 | | | RESE2 = Programmer 2 RESET | | |
 | | | ST.P12 = Programmer 1 and 2 START | | |
 | | | STP. 12 = Programmer 1 and 2 STOP | | |
 | | | RES.1.2 $=$ Programmer 1 and 2 RESET | | |
 | | | TRIG1 = Trigger1 Function Block event | | |
 | | | TRIG2 = Trigger2 Function Block event | | |

 ### 4.19. Submenu IN.DIG - Configuring digital inputs

 | Acronym | Scrolling message | Password | Description |
 | :---: | :---: | :---: | :--- |
 | IN.DIG | DIGITAL INPUT CONFIG | Level 2 | Lets you configure the controller's digital inputs.
 The menu is present if there are digital inputs. |

 | | Parameter | Pag. |
 | :---: | :---: | :---: |
 | I.DIG.N | Selecting the digital input | 133 |
 | $\stackrel{\mid}{\boldsymbol{F}}$ | | |
 | StAt | Defining the input state | 133 |
 | $\frac{1}{7}$ | | |
 | F.in | Selecting the assigned function | 133 |
 | $\frac{1}{F}$ | | |
 | ST.EN.N | Setting assigned consent number | 135 |
 | | | |
 | | Pre-scaler setting for number of input switchings | 135 |
 | $\frac{1}{F}$ | | |
 | SWTCH | Setting of number of input switchings for signal | 135 |
 | MSG.IN | Selecting the digital input message | 136 |

 ### 4.19.1. Functional diagram

 *) Verranno rilevate commutazioni con frequenza massima di 25 Hz con tempo di ON e di OFF pari ad almeno 20 msec.

 ### 4.19.2. I.DIG.N - Selecting the digital input

 | Acronym | Scrolling message | Submenu | Attributes |
 | :--- | :---: | :---: | :---: |
 | I.DIG.N | DIGITAL INPUT NUMBER | IN.DIG | R W |
 | The parameter shows and sets the identifying number of the digital input to be configured. | | | |
 | Unit of measurement: \quad Number | | | |
 | Options: | $\mathbf{1 . . 3} \quad$ for model 850 with 3 digital inputs option | | |
 | | $\mathbf{1 . . 5} \quad$ for models 1650 and 1850 with 5 digital inputs option | | |

 ### 4.19.3. STAT - Defining the input state

 | Acronym | Scrolling message | Submenu | Attributes |
 | :---: | :---: | :---: | :---: |
 | StAt | IN.DIG. 1 (o IN.DIG.2 ... IN.DIG.5) DIGITAL INPUT STATUS | IN.DIG | R W |
 | The parameter shows and sets the state of the input with identifying number " x ". | | | |
 | The direct digital input is active when there is current in the digital input or the contact is closed. | | | |
 | The inverse digital input is active when there is no current in the digital input or the contact is open. | | | |
 | Digital inputs can be forced so that they are always on or off. | | | |
 | Unit of measurement: - | | | |
 | Options: | DIREC
 INVRS = Inverse digital input
 OFF $=$ Digital input forced off
 ON = Digital input forced on | | |
 | | | | |

 ### 4.19.4. F.IN - Selecting the assigned function

 if the Logic Options function is enabled:
 LFB.IN = Function Blocks Logic Input
 KEY.U = Repetition of UP button
 KEY.D = Repetition of DOWN button
 KEY.F = Repetition of F button
 if the Programmer 1 function is enabled in parameter PROGR on the EN.FUN menu: (for details, see paragraph"5.13. Setpoint programmer" on page 214):
 P.PR1.0 = Select program for PROGR. 1 bit 0
 P.PR1.1 = Select program for PROGR. 1 bit 1
 P.PR1. 2 = Select program for PROGR. 1 bit 2
 P.PR1. 3 = Select program for PROGR. 1 bit 3
 if the Programmer 1 function is enabled in parameter PROGR on the EN.FUN menu: (for details, see paragraph"5.13. Setpoint programmer" on page 214):
 P.PR1.0 = Select program for PROGR. 1 bit 0
 P.PR1.1 = Select program for PROGR. 1 bit 1
 P.PR1. 2 = Select program for PROGR. 1 bit 2
 P.PR1. 3 = Select program for PROGR. 1 bit 3

 CY.CNT = Activate switching cycle count shown in INDG.S (INFO menu) *
 CY.RES = Reset switching cycle count shown in INDG.S (INFO menu)
 if the Parameters recipe function RECP.N >= 2 is enabled (for details, see paragraph "5.18. Recipe management" on page 244):
 REC. 0 = Select parameters recipe bit 0
 if the Parameters recipe function RECP.N >= 3 is enabled (for details, see paragraph "5.18. Recipe management" on page 244):
 REC. 1 = Select parameters recipe bit 1
 if the Parameters recipe function RECP.N $=5$ is enabled (for details, see paragraph " 5.18 . Recipe management" on page 244):
 REC. 2 = Select parameters recipe bit 2
 if PID2.E function is enabled in EN.FUN:
 AU.MA2 = Automatic-Manual control for PID. 2
 LO.RE2 = Local-Remote setpoint mode for PID. 2
 HOLD2 = Hold value of input IN. 2
 S.TUN2 = Activate Self-Tuning for PID. 2
 A.TUN2 = Activate Auto-Tuning for PID. 2
 if the Multiset funcion is enabled in MODE.2:
 SEL2.0 = Select setpoint M.SP1.2/M.SP2.2 or M.SP1.2...M.SP4.2 bit 0
 SEL2.1 = Select setpoint M.SP1.2...M.SP2.2 bit 1
 if the Programmer 2 function is enabled in parameter PROGR on the EN.FUN menu:
 (for details, see paragraph"5.13. Setpoint programmer" on page 214):
 P.PR2.0 = Select program for PROGR. 2 bit 0
 P.PR2.1 = Select program for PROGR. 2 bit 1
 P.PR2. 2 = Select program for PROGR. 2 bit 2
 P.PR2. 3 = Select program for PROGR. 2 bit 3
 P.STS2 = START/STOP PROGR. 2 programmer time base
 P.STR2 = START PROGR. 2 programmer time base
 P.STP2 = STOP PROGR. 2 programmer time base
 P.RST2 = RESET PROGR. 2 programmer time base
 P.SKP2 = SKIP to end program (end cycle) PROGR. 2

 ST.SK2 = SKIP to end step PROGR. 2
 ST.EN2 = STEP ENABLE 2: input with consent function at start of PROGR. 2 step
 if the Timer function is enabled in MODE.2:
 T.STS2 = START/STOP timer TIMER. 2
 T.RST2 = RESET timer TIMER. 2
 if the Multiset function in MODE. 1 and the Multiset function in MODE. 2 are enabled:
 SE12.0 = Select setpoint M.SP1.1/M.SP2.1 and M.SP1.2/M.SP2. 2 or M.SP1.1...M.SP4.1 bit 0 and M.SP1.2...M.SP4.2 bit 0

 SE12.1 = Select setpoint M.SP1.1...M.SP4.1 bit 1 and M.SP1.2...M.SP4. 2 bit 1

    ```
    if the Programmer ```

