GEFRAN

```
\ 850
```

code 80428A - 03/2017-ENG

```
QuICK INSTALLATION GUIDE
Side \(1 \quad\) Warings and said
Warrings and saftety
Package Contents
Display and keys
Mounting
Comnections
Side \(2 \quad \begin{aligned} & \text { Driling dimensions and templates } \\ & \text { Technical specifications }\end{aligned}\)
```

Gefran spa

WARNINGS AND SAFETY

MAINTENANCE

\triangle Inis is a class A product intended for suse in an industrial envirionment. Therere may be potential dififucuties in

Disp Th 850 controlers must be disposed of in contiontity to current taws and regulutions.

PACKAGE CONTENTS

n. 1 PDD Temperature Cotrolerer $1 / 16 \mathrm{DN}$ model 850

$$
\begin{aligned}
& \begin{array}{l}
\text { Unit of measurement or number of pro- } \\
\text { pram unned. } \\
\text { plang or number of loop dis- }
\end{array} \\
& \begin{array}{l}
\text { gram unning or number of loop dis- } \\
\text { played. } \\
\text { 2.Stae of outputs out1, outa, out3, } \\
\text { OUT1 }
\end{array} \\
& \begin{array}{l}
\text { State of outputs OUT1, OUT2, OUT3, } \\
\text { OUT4. }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { tunctioning, steady on }= \\
\text { ning); }
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { - } \mathrm{REM}=\text { = eromete setpoint enables; } \\
\text { - SPP/ } / 2=\text { setpoint active (} \text { (fft }=\text { setpoint } 1 \text {, }
\end{array}
\end{aligned}
$$

9. PV display : processs variabole, parameter values.

MOUNTING

\triangle Attenion! The devices described in this manual must b en instaled
Betfer installing, check that the controlere is in peffect condition and was not damaged in stipment. Make sure
 the tastening brackets
Check that the order
and Chect hat the orter coded match
and type of inputs and outputs).

re controller must be installed ina location thatis not stubject tos sudden temperature changes or of terezing oc conden. sation, and no cororosiviv gases must be present.

s not alow scrap or metal paricies toom machining or condensation productis tor reach the device.

 For correct installation, respect the dimensions of each hole and the distance between adicecent holes shown in the figures.

Re fornt of the controler has an 1P65 protection ind

the suporot on wich the devicie is is istaled is se perectly smoth and witho
-the nole on fies stipots scuruwousy yespects the seecified driling dimensions:
The device is fluly tightened to the support to ensure that the gasket insereded between the edevice and the panel is wa
pight.

 the eveice is mounted on a s supoort thate exceeds theses inimits, its advisable to porovide a suspension system to reduce

Ficed cooling fore xample, with a tan) Of the rearo of the controleler may cause measurementer eror
The controller must be positioned sot that the edsplay is not subject to diriect sunighto or to very strong surres of fight:
necessary, fitier diecect light or or example, with a refelective scree
astering tot the pane
 the decaraed protection index of the faceapate.

CONNECTIONS

3. Pace the supplied brackets) onto the rear of the controloer

Comenected external circuits must have double isolation
In case of stielded cables. the stied must tbe erounded ata a single point possibly near the controlle.
Do not commect unused teminials
Tiotiten the terminals withouttoricing. Loose terminals may casse sparks and fires. The recoommended tightening torque D. 0 NM . When making connections, respect poonarity weier reauired
 Technical Characterisicics.
Use copper cables with 607 $5^{\circ} \mathrm{C}$ isulution.
-power comections.

Cable / terminal	Cable section /terminal	Terminal size
Rigid		
Twisted	0, $0.3 .2,5 \mathrm{~mm}{ }^{2}(18 . .114 \mathrm{AWG})$	
Tag terminal (to be cirimea)	0,25...5 mm ${ }^{\text {2 }}$ (23..14 4 NG$)$	
Fork termina (to be crinped)		${ }_{5} 5.8 \mathrm{~mm}$
Ring teminal (to be crimed)		5.8 mm

Attention. Anchor the cables, at eastin pairs, so that mechanical stersses do not tischarage on the terminal comenecions. Attention!
data palat.
Because the controler does not have a swith, a bipolar switch with tuse must be inserted upine.
Opeator
Asingle suitch can control mutipe controles

The contoleren mas fors

Ift the controler's sower ine in sheaily disturbed by the switching of thyistor power units orby motors, itis a avisabde to use

 Ine separatad trom the one used for electromechanier
\triangle Athention! Make sure the ground comnecion is sefficien
Absent tor inefficienten roununding can make te tie evevicie unstable due to execessive noise. Specifically, check that voltage beween mass
-esistance is $<6 \Omega$.

The controlers' inut and output tines must be separated foom the power ine

To prevenent noise, the controlere's input and output cables must t be kept away trom the power cables high voltages or hign | courensts: |
| :---: |
| The input ant |

The input and output cables and the power cables must not be placed parallel to one another. Use stiededed cables ar
separate caile tays.
 Tholo steo

TECHNICAL DATA		
OPERATORINTERFACE		
DISPLAY	Type	LCD black background
	Screen area (LXH)	$35 \times 30 \mathrm{~mm}$
	Lighting	Backlit with LEDs, life >40.000 hours @ $25^{\circ} \mathrm{C}$ (with brightness level backl = 8)
	PV display	Number of digits: 4 to 7 segments, with decimal point. Digit height: 17 mm Color: white
	SV display	Number of digits: 5 to 14 segments, with decimal point. Digit height: 7.5 mm Color: green
	Unit of measurement	Selectable, ${ }^{\circ} \mathrm{C}$, ${ }^{\circ} \mathrm{F}$ or custom'
		Color: same as PV display
	Controller state	Number: 6 (RUN, MAN, /-, REM, SP1/2) Color: amber
	Output state signals	Number 4 (1, , , , , 4)
		Color red
KEYPAD		
inputs		
MAIN input	Sensor type	TC, RTD (PT100, JPT100), IR ES1B, DC linear
	Acurracy	TC input
		Calibuation accuray:
		$< \pm\left(0,25 \%\right.$ of reading in $\left.{ }^{\circ} \mathrm{C}+0,1^{\circ} \mathrm{C}\right)$ Linearization accuracy: $0,1 \%$ of reading
		Cold junction accuracy:
		$< \pm 1^{\circ} \mathrm{C}$ at $25^{\circ} \mathrm{C}$ ambient temperature Cold junction compensation:
		$>30: 1$ rejection to the change of the ambient temperature
		RTD input
		Calibration accuracy: $< \pm\left(0,15 \%\right.$ of reading in $\left.{ }^{\circ} \mathrm{C}+0,4^{\circ} \mathrm{C}\right)$
		$< \pm(0,15 \%$ of rea Temperature drift:
		$< \pm\left(0,005 \% \text { of reading in }{ }^{\circ} \mathrm{C}+0,015^{\circ} \mathrm{C}\right)^{\circ} \mathrm{C}$ from $25^{\circ} \mathrm{C}$ ambient temperature
		Linearization accuracy: $0,1 \%$ of reading
		Calibration accuracy: $<0,1 \%$ F.S. Temperature drift: $< \pm 0,005 \%$ F.S. $/{ }^{\circ} \mathrm{C}$ from $25^{\circ} \mathrm{C}$
	Sampling time	$60 \mathrm{~ms} / 120 \mathrm{~ms}$, selectable
	Digitata filter	0,0...20,0 s
	Temperature unit of	Degrees C / F, selectable from keypad
	Signal interval	
		Scee: IInear Scas $1999 .$. ..999, settable decimal point
	TC (thermocouple)	Thermocouple: J, , , , , , , , , , , , D
	RTD (resistancethermometer) input	
		Resistance thermometer: PT100, JPT100
		Linearization: DIN 43760 or custom
		Max. Ine resistance: 20Ω
	DC linear input	$0 . .60 \mathrm{mV}$ input impedance (Ri): $>70 \mathrm{k} \Omega$
		0.1. V , input impedance (Ri): $>15 \mathrm{k} \Omega$
		Linearization:

AUXILIARY INPUT	Sensor type	TC, RTD (PT100, JPT100), sensor IR ES1B, linear DC
	Accuracy	TC input Calibration accuracy: $< \pm\left(0,25 \%\right.$ of reading in $\left.{ }^{\circ} \mathrm{C}+0,1^{\circ} \mathrm{C}\right)$ Linearization accuracy: $0,1 \%$ of reading Cold junction accuracy: $< \pm 1^{\circ} \mathrm{C}$ a $25^{\circ} \mathrm{C}$ ambient temperature Cold junction compensation: $>30: 1$ rejection to the change of the ambient tem- RTD input Calibration accuracy $< \pm\left(0,15 \%\right.$ of reading in $\left.{ }^{\circ} \mathrm{C}+0,4^{\circ} \mathrm{C}\right)$, $< \pm\left(0,005 \%\right.$ of reading in $\left.\left.{ }^{\circ} \mathrm{C}+0,015^{\circ} \mathrm{C}\right)\right)^{\circ} \mathrm{C}$ from Linearization accuracy: $0,1 \%$ of reading Linear input: Calibration accuracy: $<0,1 \%$ F.S. Temperature drift: $< \pm 0,005 \%$ F.S. $/{ }^{\circ} \mathrm{C}$ from $25^{\circ} \mathrm{C}$ ambient temperature
	Temperature unit	${ }^{\circ} \mathrm{C} /{ }^{\circ} \mathrm{F}$, selectable from keyboard
	Range of indication	Type: linear Range: -1999...9999, decimal point position
	TC (thermocouple) input	Thermocouples: J, K, R, S, T, C, D Linearization: ITS90 or custom
	RTD (resistance thermometer) input	Resistance thermometer: PT100, JPT100 Input impedance (Ri): $\geq 10 \mathrm{M} \Omega$ Linearization: DIN 43760 or custom Max. line resistance: 20Ω
	DC inear input	
	Isolation	Functional isolation
$\underset{\substack{\text { CT (ammeter) } \\ \text { INPUT }}}{ }$	Type	Isolated via externa transtormer
		Max. capacity: x/50 mA AC Line frequency: $50 / 60 \mathrm{~Hz}$ Input impedance (Ri): 10Ω
	Accuracy	$\pm 2 \%$ f.s. ± 1 digit $\mathbb{2} 25^{\circ} \mathrm{C}$
digital inputs	Type	voltage-free contact, or NPN 24 V - 4, 5 mA , o PNP 12/24 V - max 3,6 mA for detail see electrical connections
	Isolation	${ }^{250 \mathrm{~V}}$

1) Programming is done with the GF_ express configuration program
