SIEMENS

	Safety guidelines	2
Weiahina systems	Description	3
Electronic weighing system	Application planning	4
SIWAREX WP241	Installation	5
Manual	Connecting	6
	Commissioning	7
	Scale parameters and functions of the belt scale	8
	Messages	9
	Command lists	10
	Communication	11
	Technical specifications	12
	Accessories	13
	Appendix	Α
7MH4960-4AA01	ESD guidelines	В
	List of abbreviations	С
	· · · · · · · · · · · · · · · · · · ·	

1

Introduction

Legal information

Warning notice system

This manual contains notices you have to observe in order to ensure your personal safety, as well as to prevent damage to property. The notices referring to your personal safety are highlighted in the manual by a safety alert symbol, notices referring only to property damage have no safety alert symbol. These notices shown below are graded according to the degree of danger.

A DANGER

indicates that death or severe personal injury will result if proper precautions are not taken.

🛕 WARNING

indicates that death or severe personal injury may result if proper precautions are not taken.

indicates that minor personal injury can result if proper precautions are not taken.

NOTICE

indicates that property damage can result if proper precautions are not taken.

If more than one degree of danger is present, the warning notice representing the highest degree of danger will be used. A notice warning of injury to persons with a safety alert symbol may also include a warning relating to property damage.

Qualified Personnel

The product/system described in this documentation may be operated only by **personnel qualified** for the specific task in accordance with the relevant documentation, in particular its warning notices and safety instructions. Qualified personnel are those who, based on their training and experience, are capable of identifying risks and avoiding potential hazards when working with these products/systems.

Proper use of Siemens products

Note the following:

A WARNING

Siemens products may only be used for the applications described in the catalog and in the relevant technical documentation. If products and components from other manufacturers are used, these must be recommended or approved by Siemens. Proper transport, storage, installation, assembly, commissioning, operation and maintenance are required to ensure that the products operate safely and without any problems. The permissible ambient conditions must be complied with. The information in the relevant documentation must be observed.

Trademarks

All names identified by [®] are registered trademarks of Siemens AG. The remaining trademarks in this publication may be trademarks whose use by third parties for their own purposes could violate the rights of the owner.

Disclaimer of Liability

We have reviewed the contents of this publication to ensure consistency with the hardware and software described. Since variance cannot be precluded entirely, we cannot guarantee full consistency. However, the information in this publication is reviewed regularly and any necessary corrections are included in subsequent editions.

Table of contents

1	Introduct	tion	11
	1.1	Purpose of the manual	11
	1.2	Document history	11
	1.3	Product compatibility	11
	1.4	Checking the consignment	12
	1.5	Security information	12
	1.6	Transportation and storage	13
	1.7	Basic knowledge required	13
	1.8	Notes on warranty	13
2	Safety g	uidelines	15
	2.1	General safety instructions	15
3	Descripti	ion	17
	3.1	Product overview	17
	3.2	Area of application	17
	3.3	System integration in SIMATIC	17
	3.4	Customer benefits	17
	3.5	Scope of delivery	
4	Applicati	on planning	19
	4.1	Functions	
	4.2 4.2.1 4.2.2 4.2.3	Parameter assignment options Parameter assignment with the PC Parameter assignment with a SIMATIC Panel Parameter assignment by means of the Modbus interface	19
5	Installati	on	23
	5.1	Installation guideline	23
	5.2 5.2.1 5.2.2 5.2.3 5.2.4	EMC-compliant setup Introduction Possible effects of interference Coupling mechanisms Five basic rules for securing EMC	
	5.3	Mounting on the SIMATIC S7-1200	25
6	Connect	ing	27
	6.1	Overview	27

	6.2	24 V connection	28
	6.3 6.3.1 6.3.2	Connecting the load cells Connection of an MLC / MBS / MUS / MCS / MSI / MMI belt scale to WP241 Connection of any scales or load cells	28 33 34
	6.4	Shield connection	35
	6.5	Connection of digital outputs (4 x DQ)	36
	6.6	Connection of digital inputs (4 x DI)	37
	6.7	Connection of the analog output (1 x AQ)	38
	6.8	Connection of RS485 serial interface	38
	6.9	Connection of the Ethernet interface	39
	6.10 6.10.1 6.10.2 6.10.3 6.10.4	Connection of a speed sensor RBSS speed sensor on WP241 TASS speed sensor on WP241 WS100 speed sensor on WP241 WS300 speed sensor on WP241	39 39 40 41 42
7	Commissior	ning	45
	7.1	Introduction	45
	7.2	Factory-set parameters	45
	7.3	Commissioning tools	45
	7.4	Factory setting of the mode selector	46
	7.5 7.5.1	Start-up with the operator panel and the Ready-for-Use software	46 48
	7.5.1.1	Specification of a pulse constant	49
	7.5.1.2	Pulse constant calculation	50
	7.5.2	Commissioning without speed sensor.	51
	7.5.2.1	Specification of a known, constant belt speed	51
	7.3.2.2	Determination of current belt speed (belt leaded)	
	7.5.2.5	External specification of a speed	55 54
	754	Zero calibration	55
	7.5.5	Span calibration	
	7.5.5.1	Span calibration by weight	
	7.5.5.2	Span calibration by test chain.	57
	7.5.5.3	Span by material batch	58
	7.5.5.4	Automatic span calibration	59
	7.5.6	Determination of a correction factor	61
	7.5.7	Activating the pulse signal for a remote totalizer	62
	7.6	Service with SIWATOOL software	62
	7.6.1	Windows and functions of SIWATOOL.	63
	7.6.2	Offline parameter assignment	64
	7.6.3	IP address for SIWAREX	64
	7.6.3.1	Entering a known SIWAREX IP address	65
	7.6.3.2	Determining an unknown IP address	65
	7.6.3.3	Setting up a network	65

	7.6.4	Online parameter assignment	65
	7.6.5	Available help options	66
	7.6.6	Entering parameters with SIWATOOL	66
	7.6.7	Recording scale traces	66
	7.6.8	Firmware update	67
8	Scale para	ameters and functions of the belt scale	69
	8.1	Parameters and functions	69
	8.2	DR 2 command code	69
	8.3	DR 3 Belt scale parameters	70
	8.3.1	Scale name	
	8.3.2	Unit for belt load and belt speed	72
	8.3.3	Unit for flow rate	73
	8.3.4	Resolution of weight and belt load	73
	8.3.5	Resolution of flow rate	73
	8.3.6	Resolution of master totalizer	73
	8.3.7	Design flow rate	73
	8.3.8	Weigh length	74
	8.3.9	Belt length	74
	8.3.10	Number of belt revolutions	74
	8.3.11	Speed detection	74
	8.3.12	Design speed	74
	8.3.13	Speed correction if belt loaded	74
	8.3.14	Belt load factor for speed correction	75
	8.3.15	Impulse constant speed sensor	75
	8.3.16	Initial zero calibration digits	75
	8.3.17	Calibration weight	75
	8.3.18	Calibration load	75
	8.3.19	Calibration quantity	75
	8.3.20	Span calibration digits	76
	8.3.21	Simulation mode	76
	8.3.22	Warm-up timer	76
	8.4	Calibration procedure	76
	8.4.1	General information	76
	8.4.2	Calibration of the speed	77
	8.4.3	Specification of known speed parameters	78
	8.5	Calibration of weight measurement	79
	8.5.1	Determination of zero point	79
	8.5.2	Span calibration by weight	80
	8.5.3	Automatic span calibration with load cell data	80
	8.5.4	Span calibration by test chain	81
	8.5.5	Span calibration with known material flow	82
	8.6	DR 4 Temporary parameters	82
	8.6.1	Stop watch	85
	8.6.2	Result calculator	85
	8.6.3	Progress dynamic command (%)	85
	8.7	DR 5 Correction factors for material flow rate	85
	8.7.1	Belt load factor 1	
	8.7.2	Belt load factor 2	86

8.7.3	Correction factors 1 and 2	86
8.8 8.8.1 8.8.2 8.8.3 8.8.4 8.8.5 8.8.6 8.8.7 8.8.8 8.8.9 8.8.10 8.8.11 8.8.12 8.8.13 8.8.14 8.8.15	DR 6 Limits. Negative and positive zero offset in %. Minimum flow rate. Maximum flow rate. Delay for flow rate limits. Minimum belt speed. Maximum belt speed. Delay for belt speed limits. Minimum belt load. Maximum belt load. Delay for belt load limits. Medium load for totalizing. Frequency low pass filter weight/belt load/belt speed. Order no low pass filter. Depth average filter flow rate. Number of samples of the analog output average value filter.	87 88 88 89 89 89 89 89 89 89 89 90 90 90 90 90 90
8.9 8.9.1 8.9.2 8.9.3 8.9.4 8.9.5 8.9.6 8.9.7 8.9.8 8.9.9 8.9.10 8.9.11 8.9.12 8.9.13 8.9.14	DR 7 Process interfaces Assignment digital input DI 0, 1, 2, 3 Input filtering (hardware setting) Assignment digital output DQ 0, 1, 2, 3 Response of digital outputs to faults or SIMATIC STOP Substitute value for DQ 0, 1, 2, 3 following fault or SIMATIC STOP Analog output range Analog output source Response of analog output to faults or SIMATIC STOP Start value for the analog output. End value for the analog output. Output value following fault or SIMATIC STOP Trace recording cycle Trace storage method Load per pulse.	91 94 95 95 96 96 96 97 97 97 97 97 97 97 97 97 98 98 98
8.10	DR 8 date and time	99
8.11	DR 9 module information	
8.12 8.12.1 8.12.2 8.12.3 8.12.4	DR 10 load cell parameters Number of load cells 50/60 Hz toggling Load cell characteristic value Rated load of a load cell	
8.13 8.13.1 8.13.2 8.13.3 8.13.4 8.13.5 8.13.6 8.13.7	DR 12 Ethernet parameters Device MAC address. Port MAC address. IP address. Subnet mask. Gateway. Device name. Byte/Word swap options.	102 104 104 104 104 104 105 105 105
8.14 8.14.1	DR 13 RS485 parameters RS485 protocol	105 106

8.14.2 8.14.3 8.14.4 8.14.5 8.14.6 8.14.7 8.14.8	RS485 baud rate RS485 character parity RS485 number of data bits RS485 number of stop bits RS485 Modbus address Modbus RTU response delay Byte/Word swap options	
8.15 8.15.1	DR 15 belt angle Current belt angle	
8.16 8.16.1 8.16.2	DR 16 Simulation (belt speed and belt load) Value for belt load simulation Value for belt speed simulation	
8.17 8.17.1	DR 17 Control analog output Analog output specification	
8.18 8.18.1	DR 18 Control digital output Definition for digital output DQ.0, 1, 2, 3	110 112
8.19	DR 19 External speed	112
8.20	DR 20 Message configuration	113
8.21	DR 21 Calculator	114
8.22 8.22.1 8.22.2 8.22.3 8.22.4 8.22.5 8.22.6 8.22.7 8.22.8 8.22.9	DR 30 Process state Current weight Current belt load Current belt load in % Current flow rate Current flow rate in % Current speed Current speed in % Current master totalizer (S1) Current main totalizer (S2)	
8.22.9 8.22.10	Refresh counter for process values	118
8.23 8.23.1 8.23.2 8.23.3 8.23.4 8.23.5 8.23.6 8.23.7 8.23.8 8.23.9	DR 31 Process state extended Unfiltered digit value Filtered digit value Current load cell signal (mV) Current analog output (mA) Pulses per belt revolution Pulses per second at nominal speed Pulses per second Nominal boat load Refresh counter for process values.	
8.24 8.24.1 8.24.2 8.24.3 8.24.4 8.24.5 8.25	DR 32 display of data and operator errors Data and operator errors, bytes 0 to 7 Modbus RTU error code Modbus Ethernet error code SIWATOOL error code Error code following commands at digital input DR 33 Totalizers	
0.20	UR 33 TUlailzeis	

	8.25.1 8.25.2 8.25.3 8.25.4	Current master totalizer (S1) Current main totalizer (S2) Totalizer 3 (S3), totalizer 4 (S4), totalizer 5 (S5) Totalizer 6 (S6)	
	8.26 8.26.1	DR 34 ASCII main display value Content of main display as ASCII string	125 126
	8.27	DR 38 Process state extended	
	8.28	DR 48 Date and time 2	
9	Messages		
	9.1	Message types	129
	9.2	Message paths	
	9.3	Evaluating messages with the help of SIWATOOL	130
	9.4	Detecting messages with the help of FB SIWA	
	9.5 9.5.1 9.5.2 9.5.3 9.5.4	Message list System status message list Technology error message list Data and operating errors message list Messages by LEDs on the module	
10	Command	l lists	135
	10.1	Overview	135
	10.2	Command lists	135
11	Communic	cation	141
	$\begin{array}{c} 11.1\\ 11.1.1\\ 11.1.2\\ 11.1.3\\ 11.1.4\\ 11.1.5\\ 11.1.6\\ 11.1.7\\ 11.2\\ 11.2.1\\ 11.2.2\\ 11.2.3\\ 11.2.4\\ 11.2.5\end{array}$	Integration in SIMATIC S7-1200 General information Operation on S7-1200 failsafe controllers Creating the hardware configuration Calling of function block Working with the function block I/O interface of function block Error codes of function block Communication via Modbus General information Principle of data transmission Data record concept Command mailboxes Reading registers	
	11.2.6	Writing registers	151
12	Technical	specifications	153
	12.1	Analog load cell interface connection	153
	12.2	Digital inputs (DI*)	155
	12.3	Electrical, EMC and climatic requirements	158
	12.4	Approvals	161

13	Accessories		163
Α	Appendix		165
	A.1	Technical support	165
В	ESD guideli	nes	167
	B.1	ESD Guidelines	167
С	List of abbre	eviations	169
	C.1	List of abbreviations	169
	Index		171

Introduction

1.1 Purpose of the manual

This manual contains all necessary information on the setup, installation, wiring and commissioning of the SIWAREX WP241 electronic weighing system.

1.2 Document history

The most important changes in the documentation when compared with the respective previous edition are given in the following table.

Manual edition	Note
09/2017	 "Introduction" section and Safety guidelines (Page 15): revised
	 "Application planning" > Parameter assignment by means of the Modbus interface (Page 21):
	• Section Connection of digital outputs (4 x DQ) (Page 36): Graphic enhanced
	 Section Connection of the analog output (1 x AQ) (Page 38): revised
	 Section Scale parameters and functions of the belt scale (Page 69):
	 DR 4 (Page 82): revised
	 DR 6 (Page 87): revised
	 DR 12 (Page 102) and DR 13 (Page 105): "Byte/Word swap options" new
	 Section Technology error message list (Page 131): revised
	 Section Command lists (Page 135): revised
	Section Communication (Page 141): revised
	 Section Electrical, EMC and climatic requirements (Page 158): new
	Section Approvals (Page 161): revised
05/2016	General revision

1.3 Product compatibility

The following table describes compatibility between manual edition, device revision, and the engineering system.

Manual edition	Comment	Device revision	Engineering system
09/2017	New characteristics	FW: 1.2.0	STEP 7 TIA Portal V14 or higher
		Device revision 1 or higher	
05/2016	New characteristics	FW: 1.0.1	STEP 7 TIA Portal V11 or higher
		Device revision 1 or higher	

1.5 Security information

1.4 Checking the consignment

- 1. Check the packaging and the delivered items for visible damage.
- 2. Report any claims for damages immediately to the shipping company.
- 3. Retain damaged parts for clarification.
- 4. Check the scope of delivery by comparing your order to the shipping documents for correctness and completeness.

WARNING

Using a damaged or incomplete device

Risk of explosion in hazardous areas.

• Do not use damaged or incomplete devices.

1.5 Security information

Siemens provides products and solutions with industrial security functions that support the secure operation of plants, systems, machines, and networks.

In order to protect plants, systems, machines and networks against cyber threats, it is necessary to implement – and continuously maintain – a holistic, state-of-the-art industrial security concept. Siemens' products and solutions only form one element of such a concept.

Customer is responsible to prevent unauthorized access to its plants, systems, machines and networks. Systems, machines and components should only be connected to the enterprise network or the internet if and to the extent necessary and with appropriate security measures (e.g. use of firewalls and network segmentation) in place.

Additionally, Siemens' guidance on appropriate security measures should be taken into account. For more information about industrial security, please visit:

http://www.siemens.com/industrialsecurity.

Siemens' products and solutions undergo continuous development to make them more secure. Siemens strongly recommends to apply product updates as soon as available and to always use the latest product versions. Use of product versions that are no longer supported, and failure to apply latest updates may increase customer's exposure to cyber threats.

To stay informed about product updates, subscribe to the Siemens Industrial Security RSS Feed under

http://www.siemens.com/industrialsecurity.

1.6 Transportation and storage

To guarantee sufficient protection during transport and storage, observe the following:

- · Keep the original packaging for subsequent transportation.
- Devices/replacement parts should be returned in their original packaging.
- If the original packaging is no longer available, ensure that all shipments are properly packaged to provide sufficient protection during transport. Siemens cannot assume liability for any costs associated with transportation damages.

NOTICE

Insufficient protection during storage

The packaging only provides limited protection against moisture and infiltration.

Provide additional packaging as necessary.

Special conditions for storage and transportation of the device are listed in Technical specifications (Page 153).

1.7 Basic knowledge required

This manual requires basic knowledge of weighing technology. When used in the SIMATIC S7-1200, basic knowledge of the SIMATIC S7-1200 automation system and the TIA Portal are required.

1.8 Notes on warranty

The contents of this manual shall not become part of or modify any prior or existing agreement, commitment or legal relationship. The sales contract contains all obligations on the part of Siemens as well as the complete and solely applicable warranty conditions. Any statements regarding device versions described in the manual do not create new warranties or modify the existing warranty.

The content reflects the technical status at the time of publishing. Siemens reserves the right to make technical changes in the course of further development.

Introduction

1.8 Notes on warranty

2.1 General safety instructions

MARNING

Handling of the device/system by persons other than qualified personnel or ignoring the warning instructions can result in severe injuries or damages. This means only qualified personnel are permitted to handle this device/system.

Commissioning is absolutely prohibited until it has been ensured that the machine in which the component described here is to be installed fulfills the regulations/specifications of Machinery Directive 89/392/EEC.

Note

The specifications of the manual for the SIMATIC S7-1200 system apply to configuration, installation and commissioning in the SIMATIC environment. This chapter includes additional information on hardware configuration, installation and preparation for operation of the SIWAREX WP241.

The safety notes must be observed.

Note

The device was developed, manufactured, tested and documented in compliance with the relevant safety standards. The device does usually not pose any risks of material damage or personal injury.

2.1 General safety instructions

Description

3.1 Product overview

SIWAREX WP241 is a versatile and flexible weighing module that can be operated as a belt scale.

The electronic weighing system can be used in SIMATIC S7-1200 and uses all features of a modern automation system, such as integrated communication, operation and monitoring, the diagnostic system as well as the configuration tools in the TIA Portal.

Stand-alone mode without CPU is possible in addition.

3.2 Area of application

The electronic weighing system described here is the perfect solution where material flows are to be acquired and processed with the assistance of a belt scale. The SIWAREX WP241 is a very accurate electronic weighing system.

3.3 System integration in SIMATIC

The electronic weighing system described here is a technology module for SIMATIC S7-1200. It allows the user to configure all aspects of the automation solution, and weighing application, to his requirements. You can create optimal solutions for small and medium-sized plants by combining the suitable SIMATIC modules. You can create customized or industry-specific solutions in no time with the help of the configuration package available under the "Ready for use" application for SIMATIC.

3.4 Customer benefits

The electronic weighing system described here is characterized by decisive advantages:

- Uniform design technology and consistent communication in SIMATIC S7-1200
- Parameter assignment by means of HMI panel or PC
- Uniform configuration option in the SIMATIC TIA Portal
- Measuring of weight with a resolution of 1 million parts
- High measuring rate of 100/120 Hz (effective interference frequency suppression)
- Monitoring of a wide range of limits (material flow rate, speed, load)
- Flexible adaptation to varying requirements
- Easy adjustment of the scales using the SIWATOOL program even without Simatic knowhow

3.5 Scope of delivery

- Exact determination of speed with or without encoder
- Module replacement is possible without recalibrating the scales
- Use in Ex Zone 2 / ATEX approval
- Intrinsically safe load cell supply for Ex Zone 1 (SIWAREX IS option)
- Diagnostics functions

3.5 Scope of delivery

The scope of delivery only includes the SIWAREX WP241 weighing module.

Note

We recommend that you use the SIWAREX WP241 configuration package for configuring the SIWAREX WP241 electronic weighing system. The configuration package is not included in the scope of delivery of the module: \rightarrow Accessories (Page 163).

Application planning

4.1 Functions

The primary task of the electronic weighing system is the measurement and registration of the current weight value. The integration in SIMATIC gives you the option to process the weight value directly in the PLC (**P**rogrammabelLogic Controller).

The SIWAREX WP241 is calibrated at the factory. This allows for automatic calibration of the scales without the need for calibration weights and replacement of modules without the need for recalibrating the scales.

The Ethernet interface can be used to connect a PC for parameter assignment of the electronic weighing system or for connection to any automation system (Modbus TCP/IP).

The SIWAREX WP241 electronic weighing system can also be used in potentially explosive atmospheres (Zone 2). The load cells are supplied intrinsically safe in Zone 1 applications when you use the optional Ex interface SIWAREX IS.

The SIWAREX WP241 can also be used in stand-alone mode independent of the automation system. There are many configuration options in this case.

The user can select the enclosure as well as the Operator Panel. But the Operator Panel must support Modbus RTU or TCP/IP. This means you can implement your own operating philosophy.

The SIWAREX WP241 can be controlled remotely without its own operator panel on site. One Operator Panel can be used for several scales. The configuration options are almost unlimited in this case.

4.2 Parameter assignment options

4.2.1 Parameter assignment with the PC

You can set the scale parameters with the convenience of the familiar Windows interface by using the "SIWATOOL" PC parameter assignment software. The connection is made using the Ethernet port of the electronic weighing system and the standard network port of the PC.

You can use the program for commissioning the scale without any knowledge of automation technology. If service is required, the processes in the scale can be analyzed and tested independent of the automation system or operator panel using the PC. You can read out the diagnostic buffer from the SIWAREX module to assist you in the event analysis.

You can find a detailed description of commissioning the SIWAREX module with SIWATOOL at Industry Online Support. SIWAREX WP241 with SIWATOOL in Industry Online Support (https://support.industry.siemens.com/cs/ww/en/view/109474797)

The figure below illustrates the structure of the individual program windows.

4.2 Parameter assignment options

Malua	80	CANADEX	Process State (DR30) - Status 1-20mine I	0 192 168 0 21
Strukter WP21	kg/m (metric) 1% (metric) 0.01 0.01 0.01 0.0 10 10 10 10 10 10 10 10 10 10 10 10 10	kg/m (metric) vh (metric) 0.01 0.01 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	Wein zwo setting range Zero setting active Assessit zero tracking active Revise - compute line Rovise	Bet load < mmun limit Bet load > meanum limit - - Bet noning Totalans enabled Totalans enabled
Design speet (outle rempt) Speed correction / Beth loaded (% of design speed) Load factor for speed correction (% of nominal load) Pulses peth revolution Inhial zero calibration digits Calibration weight) Calibration weight) Calibration outgits that the himin Calibration query to the chain) Simulation mode Withmup timer (minute) Is (Correction Fattors (DBS)) Is (Correction Fattors (DS)) Is (Correction Fattors (DS))	1.0 100.0 30000 300000 30000 0.0 0.0 1000000 simulation not allowed 30	10 1000 1000 30000 50.0 0.0 0.0 1000000 simulation not allowed 30	64.44	4 t/h
	e j v j		,•	con loans Source Addints

Figure 4-1 SIWATOOL overview

SIWATOOL does not only offer support when you set the scale but also when you analyze the diagnostic buffer that can be saved after being read out of the module together with the parameters. The display of the current scale status can be configured.

You can switch between several languages in the program.

4.2.2 Parameter assignment with a SIMATIC Panel

All parameters can be assigned and the module put into operation using a SIMATIC HMI Panel connected to the S7-1200 CPU and the SIWAREX WP241 function and data blocks.

The Ready-for-Use software is included in the scope of delivery of the configuration package. This includes the STEP 7 program for the CPU and the HMI project for scale visualization. Further information on integration in the TIA Portal can be found in chapter \rightarrow Integration in SIMATIC S7-1200 (Page 141).

4.2 Parameter assignment options

4.2.3 Parameter assignment by means of the Modbus interface

Alternatively, the SIWAREX module can also be configured and operated directly over a SIMATIC Panel. The SIMATIC Panel communicates directly with the SIWAREX module over MODBUS TCP/IP in this case. The SIWAREX module behaves like a Modbus slave in this case. The scope of delivery of the configuration package includes a downloadable HMI software for a SIMATIC Panel TP700 Comfort. Additional AUTOHOTSPOT.

All SIMATIC HMI Comfort Panels can be used for direct Modbus communication. The use of SIMATIC Basic Panels 1st Generation is not possible. When using SIMATIC Basic Panels 2nd Generation, install the Communication Service Package (<u>https://support.industry.siemens.com/cs/ww/en/view/109739698</u>). A direct connection between a SIMATIC HMI Panel and SIWAREX WP over Modbus RTU has not been approved.

The parameters for the SIWAREX module can also be prepared in a third-party system and transmitted to the electronic weighing system by means of Modbus RTU or TCP/IP. A detailed description of the assignment of the holding registers can be found in section "Scale parameters and functions of the belt scale (Page 69)".

See also

Example projects available for free download (<u>https://support.industry.siemens.com/cs/ww/en/</u>ps/17798/dl)

4.2 Parameter assignment options

Installation

5.1 Installation guideline

When installing the SIMATIC components together with the electronic weighing system described here, the setup, installation and wiring guidelines for the SIMATIC S7-1200 must be observed (see system manual "SIMATIC S7 S7-1200 automation system", order no.: A5E02486681).

This manual describes additional installation and wiring aspects specific to the electronic weighing system.

5.2 EMC-compliant setup

5.2.1 Introduction

Overview

The electronic weighing system described here was developed for use in industrial environments and complies with high EMC requirements. Nevertheless, before installing your devices you should prepare an EMC plan and identify and take into consideration possible interference sources.

EMC

EMC (electromagnetic compatibility) describes the capability of electrical equipment to operate without errors in a given electromagnetic environment, without being subject to external influence and without influencing external devices in any way.

5.2.2 Possible effects of interference

Electromagnetic interferences can influence the electronic weighing system described here in various ways:

- Electromagnetic fields having a direct influence on the system
- Interferences transported by communication cables
- · Interferences having an effect via process cables
- · Interferences entering the system via the power supply and/or protective ground

Interferences can impair the fault-free functioning of the electronic weighing system.

5.2 EMC-compliant setup

5.2.3 Coupling mechanisms

Depending on the propagation medium (conducted or non-conducted) and the distance between the interference source and the device, interferences can enter the faulty device through four different coupling mechanisms:

- Electrical coupling
- Capacitive coupling
- Inductive coupling
- Radiation coupling

5.2.4 Five basic rules for securing EMC

Observe these five basic rules to secure EMC.

Rule 1: Large area grounding contact

- When installing the devices, make sure that the surfaces of inactive metal parts are properly bonded to chassis ground (see following sections).
- Bond all inactive metal parts to chassis ground, ensuring large area and low-impedance contact (large cross-sections).
- When using screw connections on varnished or anodized metal parts, support contact with special contact washers or remove the protective insulating finish on the points of contact.
- Wherever possible, avoid the use of aluminum parts for ground bonding. Aluminum oxidizes very easily and is therefore less suitable for ground bonding.
- Provide a central connection between chassis ground and the ground/protective conductor system.

Rule 2: Proper cable routing

- Organize your wiring system into cable groups (high-voltage/power supply/signal/ measurement/data cables).
- Always route high-voltage and data cables in separate ducts or in separate bundles.
- Install the measurement cables as close as possible to grounded surfaces (e.g. supporting beans, metal rails, steel cabinet walls).

Rule 3: Fixing the cable shielding

- Ensure proper fixation of the cable shielding.
- Always use shielded data cables. Always connect both ends of the data cable shielding to ground on a large area.
- Keep unshielded cable ends as short as possible.
- Always use metal/metalized connector housings only for shielded data cables.

Rule 4: Special EMC measures

- All inductors that are to be controlled should be connected with suppressors.
- For cabinet or enclosure lighting in the immediate range of your controller, use incandescent lamps or interference suppressed fluorescent lamps.

Rule 5: Homogeneous reference potential

- Create a homogeneous reference potential and ground all electrical equipment.
- Use sufficiently dimensioned equipotential bonding conductors if potential differences exist or are expected between your system components. Equipotential bonding is absolutely mandatory for applications in hazardous areas.

5.3 Mounting on the SIMATIC S7-1200

The electronic weighing system described here is a SIMATIC S7-1200 module and can be directly connected to the automation system's bus system. The 70 mm wide module has very low installation and cabling requirements.

The module is fitted on a mounting rail, and the bus connection made using the slide switch.

The load cells, power supply and serial interfaces are connected via the screw-type connectors.

Use of the WP241 in the SIMATIC TIA Portal is described in detail in chapter 11 of this manual: → Integration in SIMATIC S7-1200 (Page 141)

Installation

5.3 Mounting on the SIMATIC S7-1200

Connecting

6.1 Overview

All external connections (with the exception of the Ethernet interface) are made by means of the screw connectors (terminal block 1 to 4).

6.3 Connecting the load cells

6.2 24 V connection

The 24 V DC supply voltage is connected by means of the corresponding terminals on the electronic weighing system.

Table 6-1	Connection	of the	24 \	v supply

Labeling	Function
L +	+24 V voltage supply
М	Ground voltage supply
÷	Functional grounding (grounded DIN rail)

6.3 Connecting the load cells

Overview

Pickups can be connected to the SIWAREX WP241 electronic weighing system which are equipped with strain gauges (full bridge) and meet the following requirements.

- Identifier 1 4 mV/V
- A supply voltage of 5 V is permitted
- Maximum cable length between WP241 and junction box 1 000 m

The power supply for the load cells is 4.85 V.

The following condition must be satisfied in order to check the maximum possible number of load cells which can be connected to a WP241:

- Scale operation without Ex interface: (input resistance of load cell) / (number of load cells) > 40 Ohm
- Weighing mode with EX interface: (input resistance of load cell) / (number of load cells) > 50 Ohm

Connection with 4-wire or 6-wire system

The connection versions are shown in the following two figures.

Figure 6-2 Connection of DMS load cell with 4-wire system

6.3 Connecting the load cells

Figure 6-3 Connection of load cell with 6-wire system

Observe the following rules for connection of analog (DMS) load cells

- 1. The use of a junction box (SIWAREX JB junction box) is required when more than one load cell is connected (the load cells must be connected in parallel). If the distance of a load cell to the SIWAREX WP321 or the junction box is greater than the available length of the load cell connection cable, use the SIWAREX EB extension box.
- 2. The cable shield is always applied at the cable gland of the junction box (SIWAREX JB) or the extension box. If there is a risk of equipotential bonding through the cable shield, connect a equipotential equalization conductor parallel to the load cell cable.

- 3. Twisted wire pairs that are also shielded are required for the specified cables:
 - Sensor cable (+) and (-)
 - Measuring voltage cable (+) and (-)
 - Supply voltage cable (+) and (-)

Figure 6-4 Shielding in the screw gland

Use the cables listed in section Accessories (Page 163).

4. The shield must be applied to the ground in close proximity to the SIWAREX WP321. The maximum distance between the SIWAREX WP321 and the load cell is relevant when you use the recommended cables.

Labeling	Function	Connection pin
Sig-	Measurement cable load cell -	2
Sig+	Measurement cable load cell +	1
Sen-	Sensor cable load cell -	4
Sen+	Sensor cable load cell +	3
Exc-	Supply load cell -	6
Exc+	Supply load cell +	5

Connecting

6.3 Connecting the load cells

Rules

Observe the following rules when connecting analog (strain gauge) load cells:

The load cells fitted in the belt scale are connected in parallel in a junction box (e.g. SIWAREX JB). Use a well-shielded cable for the connection between junction box and SIWAREX WP241 (see SIWAREX cables \rightarrow Accessories (Page 163)).

- 1. The cable shield is always applied at the cable gland of the junction box (SIWAREX JB). If there is a risk of equipotential bonding through the cable shield, connect an equipotential bonding conductor parallel to the load cell cable.
- 2. Twisted wire pairs that are also shielded are required for the specified cables:
 - Sensor cable (+) and (-)
 - Measuring voltage cable (+) and (-)
 - Supply voltage cable (+) and (-)

We recommended that you use the cables listed in chapter \rightarrow Accessories (Page 163).

3. The shield must be connected to ground directly in the vicinity of the SIWAREX WP241. The maximum distance between the SIWAREX WP241 and the load cell applies when using the recommended cables (see SIWAREX cables → Accessories (Page 163)).

Labeling	Function
Sig-	Measurement cable load cell -
Sig+	Measurement cable load cell -
Sen-	Sensor cable load cell -
Sen+	Sensor cable load cell +
Exc-	Supply load cell -
Exc+	Supply load cell +

 Table 6-2
 Load cell connections on the module

6.3.1 Connection of an MLC / MBS / MUS / MCS / MSI / MMI belt scale to WP241

The following graphic clarifies the interfacing of all Siemens belt scale types to SIWAREX WP241. When using several MSI scales (MMI2 or MMI3) installed in sequence, all additional load cells are connected in parallel in the junction box as shown in the graphic.

All load cells must always be connected in parallel in the junction box. With 4-wire load cells, you must additionally set a jumper between EXC- and SEN- and between EXC+ and SEN+ in the junction box. With 6-wire load cells, the jumpers are omitted and all conductors of the same type are connected in parallel in the junction box and directly through to the SIWAREX.

Figure 6-6 Siemens belt scales on WP241

6.3 Connecting the load cells

6.3.2 Connection of any scales or load cells

Figure 6-7 Connection of 4-wire load cells to WP241

Figure 6-8 Connection of 6-wire load cells to WP241

6.4 Shield connection

Make sure you observe the correct design of the shield support for the shielded cables. It is the only way to ensure immunity of the system.

A cable is shielded to attenuate the effects of magnetic, electrical and electromagnetic interference on the cable. Interference currents on cable shielding are diverted to ground by conductive isolation rails. To avoid interference as a result of these currents, it is imperative to provide a low-impedance connection to the ground.

Use only cables with protective braided shield (see recommended cables of load cells in chapter Accessories (Page 163)). Shielding density must be at least 80%.

6.5 Connection of digital outputs (4 x DQ)

Figure 6-9 Shield connection element fitting (example)

6.5 Connection of digital outputs (4 x DQ)

Unknown assignment of digital outputs

The assignment of the digital outputs is not known at the time of connection. Digital outputs can be active immediately after turning on the power supply. This may damage parts of the system.

Do not create a connection with the digital outputs before you know the assignment of the digital outputs.

The electronic weighing system described here has four digital outputs. They are not permanently assigned to process values in the delivery state. Assignment of these digital outputs to functions as well as definition of the response in the event of a fault is carried out during commissioning by parameter assignment of data record 7. The 24 V power supply for the digital outputs is provided via terminals 3L+ and 3M with electrical isolation.

Table 6-3 Connection of the digital outputs

Labeling	Function
DQ.0	Digital output 0
DQ.1	Digital output 1
Labeling	Function
----------	--
DQ.2	Digital output 2
DQ.3	Digital output 3
DQ.3L+	+24 V DC power supply for digital outputs
DQ.3M	Ground of power supply for digital outputs

6.6 Connection of digital inputs (4 x DI)

Unknown assignment of digital inputs

If the assignment of the digital inputs is not known at the time of connection, this may damage parts of the system.

Do not create a connection with the digital inputs before you know the assignment.

The electronic weighing system described here has four digital inputs. The digital inputs are not permanently assigned to commands in the delivery state. Assignment of the digital inputs to commands is carried out during commissioning by parameter assignment of data record 7. The external 24 V switching signal is connected electrically isolated to the desired input, the associated ground to terminal 2M.

When using a speed sensor it is essential to connect it to digital input DI.0. In addition, the input must be defined as a speed sensor input in data record 7 (factory setting). Detailed wiring examples can be found in chapter \rightarrow Connection of a speed sensor (Page 39).

Labeling	Function
DI.0	Digital input 0 (input for speed sensor)
DI.1	Digital input 1
DI.2	Digital input 2
DI.3	Digital input 3
DI.2M	Reference ground potential of the digital inputs

Table 6-4 Connection of the digital inputs

6.8 Connection of RS485 serial interface

6.7 Connection of the analog output (1 x AQ)

Unknown assignment of the analog outputs

The assignment of the analog output is not known at the time of connection. The analog output can be active immediately after turning on the power supply. This may damage parts of the system.

• Do not create a connection with the analog output before you know the assignment.

The analog output is not permanently assigned to a process value in the delivery state. Assignment of the analog output to the process value as well as its response in the event of a fault is carried out during commissioning in data record 7. If a wire break occurs, the LED labeled "AQ" flashes red. The output can be configured as 0 to 20 mA or 4 to 20 mA output.

Figure 6-10 Analog output connection

6.8 Connection of RS485 serial interface

The following devices can be connected to the serial interface:

- Operator Panels or other HMI devices with RS485 and Modbus protocol RTU
- Communication partner with Modbus protocol RTU

Table 6-5 Connection of RS485 serial interface

Labeling	Function
EIA-485 T+	RS485 termination +
EIA-485 T-	RS485 termination -
EIA-485 D+'	RS485 data line +' for looping through of bus signal
EIA-485 D-'	RS485 data line -' for looping through of bus signal
EIA-485 D+	RS485 data line + for feeding in of bus signal
EIA-485 D-	RS485 data line - for feeding in of bus signal

If a SIWAREX WP241 module forms the termination of an RS485 network, insert wire jumpers between the D+' and T+ terminals and between the D-' and T- terminals for termination of the bus network.

6.9 Connection of the Ethernet interface

An RJ45 connector is used for the connection.

The following devices can be connected to the Ethernet interface:

- PC with SIWATOOL service and commissioning program
- · Operator panels or other HMI devices with Ethernet and Modbus protocol TCP/IP
- Communication partner with Modbus protocol TCP/IP

6.10 Connection of a speed sensor

If a speed sensor is connected to the WP241, this must always be made at digital input DI.0 of the module. This input is factory-configured for operation as a pulse counter. Check this setting in data record 7 during commissioning.

Connection of the various Siemens speed sensors is shown below. A wide range of pulse sensors can be used up to a clock frequency of 5 000 Hz. A level of at least +15 V DC is required for the High signal. The Low signal is reached at a voltage of +5 V DC. Detailed information on the various sensors can be obtained from the respective manual.

6.10.1 RBSS speed sensor on WP241

Figure 6-11 RBSS speed sensor on WP241

6.10.2 TASS speed sensor on WP241

The TASS speed sensor delivers 9,947 pulses/m or 3.03 pulses/ft. To use the remaining three digital inputs parallel to the TASS speed sensor, install an external pull-up resistor as shown in the figure.

Figure 6-12 TASS speed sensor on WP241 with pull-up resistor

Alternatively, you can connect the TASS speed sensor without a pull-up resistor. See figure below In this case, the three remaining digital inputs can no longer be used.

Figure 6-13 TASS speed sensor on WP241 without pull-up resistor

6.10.3 WS100 speed sensor on WP241

The WS100 speed sensor provides eight pulses per revolution. The required "Pulses per meter" parameter (DR3) must therefore be calculated based on the scope of the guide pulley on which the WS100 is mounted as follows:

• Pulse per meter = 8 / u

Or alternatively

- Pulse per meter = $8 / (\pi x d)$
- u = circumference of the guide pulley in meters (can be determined using a string)
- π = 3.1416
- d = diameter of guide pulley in meters

You can use the calculator integrated in WP241 (DR21 & DR4) for the calculations.

Figure 6-14 WS100 speed sensor on WP241

6.10.4 WS300 speed sensor on WP241

The WS300 speed sensor delivers either 32, 256, 1000 or 2000 pulses per revolution depending on the type. The required "Pulses per meter" parameter (DR3) must therefore be calculated based on the scope of the guide pulley on which the WS300 is mounted as follows:

• Pulse per meter = 32 / u or 256 / u or 1000 / u or 2000 / u

Or alternatively

- Pulse per meter = $32 / (\pi x d)$ or $256 / (\pi x d)$ or $1000 / (\pi x d)$ or $2000 / (\pi x d)$
- u = circumference of the guide pulley in meters (can be easily determined by using a string!)
- π = 3.1416
- d = diameter of guide pulley in meters

The calculator integrated in WP241 (DR21 & DR4) can be used for the calculations.

Figure 6-15 WS300 speed sensor on WP241

Connecting

6.10 Connection of a speed sensor

Commissioning

7.1 Introduction

Commissioning consists mainly of checking the mechanical scale structure, setting parameters, calibration, and verification of the envisaged functionality. A lot of helpful information concerning the correct mechanical design of a belt scale can be found in the respective manuals.

These manuals are available online as downloads \rightarrow Manuals for belt scales (<u>http://support.automation.siemens.com/WW/view/de/18235463/133300</u>).

7.2 Factory-set parameters

The electronic weighing system described here is provided with factory-set parameters. Parameters which can be entered in % or time are preset in such a way that they provide good results for most applications.

7.3 Commissioning tools

Commission the electronic weighing system using the following alternatives:

- Operator Panel
- SIWATOOL

The SIWATOOL program allows you to commission the scale without an Operator Panel and without an automation system. In the event of a fault, additional SIWATOOL diagnostics functions enable fast analysis of the cause.

SIWATOOL is included in the WP241 configuration package (see Commissioning SIWAREX WP241 with SIWATOOL V7 (<u>https://support.industry.siemens.com/cs/ww/en/view/</u>109474797)). A detailed guide is available for commissioning with SIWATOOL V7. See Accessories (Page 163).

7.4 Factory setting of the mode selector

Two DIP switches are located on the left of the Ethernet connector (accessible through the ventilation opening).

The left-hand switch ① currently has no function. The right-hand switch ② defines the operating environment.

Switch position	Operating environment
Up	Operation integrated in SIMATIC
Down	Stand-alone operation (without SIMATIC controller)

The factory setting is "Operation integrated in SIMATIC".

Note

If the switch is set to the down position while the SIWAREX module is in operation with SIMATIC, the SIWAREX module will not carry out a reset upon loss of power supply to the SIMATIC CPU.

7.5 Start-up with the operator panel and the Ready-for-Use software

The quick start is shown using the example of an operator panel of type TP700 Comfort connected directly to the WP241. The panel communicates directly with Modbus TCP/IP or alternatively via an S7-1200 CPU.

To carry out the start-up, select the item "1.0 Setup" in the main menu. You can conveniently set the most important parameters here for starting-up the scale. The remaining parameters are factory-set in such a way that they can be used in most cases without any changes.

Main Menu	
1.0 Setup	4.0 Totalizers
2.0 Diagnostics	
3.0 Language & Time	

Figure 7-1 Main menu

In the next step, select the item "1.1 Basic parameters" and then press the "Switch on service mode" button in the screen which subsequently appears. The square in the top right corner is then colored yellow (= Service mode ON). You can subsequently use the button with triangle at the bottom right to reach the submenu "1.1.1 Basic parameters 1 of 2".

Figure 7-2 Basic parameters 1 of 2

The description for the quick start is based on the factory settings of the parameters. Now make the desired settings in the input form shown above. Note that you must select metric or imperial units for commissioning of the scale. This setting can only be changed again following commissioning by loading the factory settings. A mixture of metric and imperial units for belt load and flow rate is not permissible. Further information on the individual parameters can be found in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69).

Once the parameters have been appropriately set for your system, confirm them using the save button (diskette symbol) and move on to the next input form using the button with triangle at the bottom right.

1.1.2 Basic parameters 2 of 2		Service Mode
Belt length (1 complete revolution)	30.000	m
Speed detection	Speed sensor on digital inpu	t DI.0 🔽
Nominal belt speed	1.000	m/s
Relt revolutions for calibration/zero catting	1	
Beit revolutions for calibration/zero setting	<u>.</u>	-
Warm up time	30	minutes
Simulation mode	Load and speed simulatio	n enable(<u>-</u>

Figure 7-3 Basic parameters 2 of 2

Enter your total belt length. Note that your result will be all the more accurate if you can enter the belt length exactly. Decide in the next step on a speed detection method matching your system. The number of belt revolutions is important for dynamic commands such as zeroing. If the parameter is set to 2, for example, the electronics averages the load cell signal over two complete revolutions and only then carries out the actual calibration/zero setting command. The "Warm-up time" parameter is specified in minutes. An information bit is then available in the scale status which remains TRUE for the defined time. The bit is for information only; it has no effect on other functions. It can be used, for example, to allow the belt to warm up before transportation of material is started. Using simulation mode you can activate the "Load simulation" and "Speed simulation" functions. Without this activation, the scale cannot be switched to the respective simulation mode.

7.5.1

When using a speed sensor, use the standard setting "Speed sensor on digital input DI.0" in the speed detection parameter.

Enter the remaining parameters appropriate to your application, and confirm them using the save button. Further information on the individual parameters can be found in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69). When using the speed sensor, the "Nominal belt speed" parameter is only used as a reference for the speed limits.

Use the "Door symbol" at the bottom left to return to the Setup menu. In the next step, calibrate your scale using the instructions and parameters under item "1.2 Calibration".

7.5.1.1 Specification of a pulse constant

The pulse constant of the connected speed sensor or pulse encoder is usually noted in the technical data sheet of the respective sensor. If "kg/m" was selected for the belt load, you must specify the pulse constant in "Pulses per meter". If the belt load is displayed in "lbs/ft", you must specify the pulse constant in "Pulses per foot".

If the sensor is mounted on the axis of a guide pulley, use the following equation to calculate the pulse constant:

Pulse constant per meter = (Pulses per revolution) / (π x d)

Pulses per revolution: see sensor data sheet

 $\pi = 3.1416$

d = diameter of guide pulley in meters

The inputs are completed using the save button (diskette symbol).

Figure 7-4 Specification of pulse constant

7.5.1.2 Pulse constant calculation

To calculate the pulse constant, use submenu "1.2.1.1 Pulse constant calculation".

Figure 7-5 Pulse constant calculation

For this procedure you require an optical marking on the belt, e.g. using chalk or adhesive tape. Start the measurement when the marking has passed a defined point. Stop the measurement as soon as the belt has carried out the defined number of revolutions and the marking has passed the defined point for the last time.

The determined values are displayed in the right-hand column underneath "New value". Import the values using the "Apply new constant" button. This procedure permits highly exact determination of any unknown pulse constants on the condition that the total belt length is specified exactly.

As an alternative to the belt marking and manual sending of commands, you can connect a belt revolution sensor (e.g. a proximity switch) to digital input DI.1. When assigning the parameters for the digital inputs, you must then assign the "Trigger belt revolution recording" function to DI.1. Pulses are then counted at input DI.1 according to the parameterized number of belt revolutions. The result of the measurement is output when the revolutions have been completed. Import the result using the "Apply new constant" button.

If the values have been applied successfully, the "Pulse / length unit" parameter underneath "New value" becomes zero.

7.5.2 Commissioning without speed sensor

You can define a known, constant speed or calculate the current belt speed. In addition, a speed can be defined externally using data record 19.

7.5.2.1 Specification of a known, constant belt speed

1.1.2 Basic parameters 2 of 2	Service Mode
Belt length (1 complete revolution)	30.000 m
Speed detection	Preset/Detect constant speed
Belt speed (belt empty)	1.000 m/s
Belt speed correction (belt loaded)	100.00 % of 1.000 m/s
Load factor for speed correction	100.00 % of 100.000 kg/m
Belt revolutions for calibration/zero setting	1
Warm up time	30 minutes
Simulation mode	Simulation disabled

Figure 7-6 Specification of a known, constant belt speed

In menu item 1.1.2 set the "Speed detection" parameter to "Preset/Detect constant speed". Enter the known, constant belt speed in the "Belt speed (belt empty)" parameter. Leave the two parameters "Belt speed correction (belt loaded)" und "Belt load factor for speed correction" at 100%.

Save all settings by clicking the diskette symbol.

Activate the specified speed using one of the three options by means of the external "Set "Belt is running"" command:

- Via a correspondingly parameterized digital input
- Via an external controller
- From the operator panel (menu 1.4.5)

You can reset the speed to zero again using the "Reset "Belt is running"" command.

7.5.2.2 Determination of current belt speed (belt empty)

In menu item 1.1.2 set the "Speed detection" parameter to "Preset/Detect constant speed". Subsequently move on to menu item 1.2.1.2 "Speed calibration - No sensor, Belt empty". The belt must have a clearly visible marking, e.g. using chalk or adhesive tape.

Figure 7-7 Speed calculation with empty belt

Execute the "Start calibration" command when the belt marking passes a defined point. Stop the calibration as soon as the belt has carried out the defined number of revolutions and the marking has passed the defined point for the last time. The belt speed is subsequently displayed in the "New value" column. You can import the belt speed using the "Apply new speed" button.

Activate the specified speed using one of the three options by means of the external "Set "Belt is running"" command:

- Via a correspondingly parameterized digital input
- Via an external controller
- From the operator panel (menu 1.4.5)

You can reset the speed to zero again using the "Reset "Belt is running"" command.

As an alternative to the belt marking and manual sending of commands, you can connect a belt revolution sensor (e.g. a proximity switch) to digital input DI.1. When assigning the parameters for the digital inputs, you must then assign the "Trigger belt revolution recording" function to DI.1. Pulses are then counted at input DI.1 according to the parameterized number of belt revolutions, and an exact trigger point is thus achieved.

7.5.2.3 Determination of current belt speed (belt loaded)

In addition to the speed calculation with empty belt, a further calculation can be carried out with the belt loaded. In this case the characteristic of the motor with load is recorded.

A percentage belt load factor and a percentage speed factor are determined. These two values together with the determined nominal speed (\rightarrow Determination of current belt speed (belt empty) (Page 52)) then form a characteristic.

Figure 7-8 Speed characteristic without sensor

Prerequisites for determination of the characteristic are:

- Speed calculation has been carried out with an empty belt
- Successful zero calibration
- Successful span calibration

If these conditions have been fulfilled, move on to menu item 1.2.1.3.

Figure 7-9 Speed detection (belt loaded)

Activate the procedure when the belt marking is passed by using the "Start calibration" command. Make sure that material is distributed uniformly on the belt at this time. In the optimum case, the belt load should be close to the nominal load during the measurement. Stop the calibration as soon as the belt has carried out the defined number of revolutions and the marking has passed the defined point for the last time.

The average belt load factor is subsequently output as a percentage, and the measured speed in % of the speed with the belt empty. Import the parameters by clicking on "Apply new speed".

As an alternative to the belt marking and manual sending of commands, you can connect a belt revolution sensor (e.g. a proximity switch) to digital input DI.1. When assigning the parameters for the digital inputs, you must then assign the "Trigger belt revolution recording" function to DI.1. Pulses are then counted at input DI.1 according to the parameterized number of belt revolutions, and an exact trigger point is thus achieved.

7.5.3 External specification of a speed

If the actual belt speed is available externally (e.g. in a CPU), you can send this to the scale using data record 19 (\rightarrow Scale parameters and functions of the belt scale (Page 69)). To do this, set the speed detection to "Speed from CPU (DS19)" in the "Basic parameters 2 of 2" in menu item 1.1.2. The "Nominal belt speed" is then only used as a reference for the speed limits.

As soon as data record 19 is sent with a content not equal to 0 to the electronics (from SIMATIC CPU or with Modbus TCP / RTU), this value is used as the current speed. The "Set "Belt is running"" and "Reset "Belt is running"" commands are not required. In order to stop the belt, write a value of 0 into data record 19 and send this to the electronics.

Following a power loss, a value of 0 is used automatically, and you must again send the current speed externally.

7.5.4 Zero calibration

You can determine the zero point following a successful speed calibration. Navigate to menu item 1.2.2.0.

Figure 7-10 Zero calibration

- 1. Make sure that the belt is running and empty.
- 2. Start the zero calibration using "Start calibration". A green display field "Zero calibration running" appears. The procedure is stopped automatically following the defined number of belt revolutions, and the new zero digits are displayed.
- 3. Import these using the "Apply new zero digits" button. Following importing of the new zero point, the actual belt load is displayed as 0.0 kg/m or 0.0 lbs/ft.

Subsequently move on in the calibration menu to item "1.2.3 Span calibration" \rightarrow Span calibration (Page 55).

7.5.5 Span calibration

There are four options for the span calibration:

- Using reference weights
- Using a test chain

- Using a material batch
- Automatically using entered load cell data

7.5.5.1 Span calibration by weight

Navigate to menu item 1.2.3.1.

1.2.3.1 Span calibration by weight Service Mode										
L 37.14 kg/m										
Calibration weight 2.700 kg Current span digits New span digits										
				120306		0				
Time elapsed	29.9	97	s	Deviation		+0.00 %				
Start calibrati	on		1	Abort		Apply new span digits				
						Belt is running				

Figure 7-11 Span calibration by weight

- 1. Enter the mass of the used calibration weight in the field "Calibration weight".
- 2. Attach this weight with the belt stationary or place it onto the scale.
- 3. Switch the belt on again and select "Start calibration". The procedure is automatically terminated following the set number of belt revolutions. The new span digits are then displayed in the right-hand column as well as the percentage deviation from the previously used calibration digits (if applicable).
- 4. Import these values using the "Apply new span digits" button. Commissioning has then been completed.

Additional parameter settings can also be made, for example:

- · Setting of limits for belt load, speed, and material flow rate
- Filter settings
- Parameterization of the inputs/outputs of your weighing module

Further information on these and all other parameters can be found in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69).

You can return to the main screen using the "Home" button (house symbol).

You can improve the results for your system even further following completion of the calibration or also during subsequent operation by means of a flow correction by material test (\rightarrow Determination of a correction factor (Page 61)).

7.5.5.2 Span calibration by test chain

In the case of a calibration by test chain, the calibration is not carried out using defined weights but by using a specific belt load which is placed onto the scale in the form of a test chain.

To do this, move on in the calibration menu to item "1.2.3.2 Span calibration by test chain".

Figure 7-12 Span calibration by test chain

- 1. Enter the used calibration load in the field "Calibration load".
- 2. Position the test chain on the belt such that it rests on the complete, effective belt length. Information on positioning of the test chain can be obtained from its enclosed instructions if applicable.
- 3. Start the calibration procedure using "Start calibration". The procedure is automatically terminated following the set number of belt revolutions. The new span digits are then displayed in the right-hand column as well as the percentage deviation from the previously used calibration digits (if applicable).
- 4. Import the newly determined digits using the "Apply new span digits" button. The belt load shown at the top of the screen corresponds to the specified calibration load following successful importing of the span digits. Commissioning has then been completed.

Additional parameter settings can also be made, for example:

- Setting of limits for belt load, speed, and material flow rate
- Filter settings
- · Parameterization of the inputs/outputs of your weighing module

Further information on these and all other parameters can be found in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69).

You can return to the main screen using the "Home" button (house symbol).

You can improve the results for your system even further following completion of the calibration or also during subsequent operation by means of a flow correction by material test (\rightarrow Determination of a correction factor (Page 61)).

7.5.5.3 Span by material batch

With this type of calibration, a previously or subsequently weighed amount of material is conveyed over the scale. The span is subsequently calculated according to the amount of material.

This requires a successful calibration of the speed and a zero calibration.

Navigate in the span calibration menu to item "1.2.3.3 Span by material batch".

Figure 7-13 Span by material batch

1. If you wish to convey a known amount of material, enter this in the "Conveyed amount of material" field.

Alternatively you can also enter the amount of material following conveyance.

2. Make sure that the belt is running and empty.

- 3. Start the calibration procedure using "Start calibration". Allow the material to be conveyed on the belt.
- 4. When the complete amount of material has passed the scale and the belt is empty again, terminate the procedure using "Stop calibration". Enter the amount of material in the "Conveyed amount of material" field if it has not yet been recorded. If needed, also weigh the conveyed amount of material on a separate scale.
- 5. Start the required calculations using the "Calculate new span digits" button. The calculated calibration weight and the calculated span digits are displayed.
- 6. Import the values using "Apply new span digits". Commissioning has then been completed.

Additional parameter settings can also be made, for example:

- Setting of limits for belt load, speed, and material flow rate
- Filter settings
- Parameterization of the inputs/outputs of your weighing module

Further information on these and all other parameters can be found in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69).

You can return to the main screen using the "Home" button (house symbol).

You can improve the results for your system even further following completion of the calibration or also during subsequent operation by means of a flow correction by material test (\rightarrow Determination of a correction factor (Page 61)).

7.5.5.4 Automatic span calibration

By entering the technical specifications of the used load cells, you can automatically carry out the span calibration without using weights or material.

Navigate in the span calibration menu to item "1.2.3.4 Automatic span by load cell data".

1.2.3.4 Automatic span by lo	ad cell data		Service Mode	e 📃
L 37.1	L <mark>4 k</mark> g	J/m		
Numb	er of load cells	1		
Nominal load o	f one load cell	100.000	kg	
Average of all characteristic values		2.0000	mV/V	
Interfering frequen	50 Hz	-		
Calculate & apply span digits	Calibration weig Calibration digi	ht (calculated ts (calculated	l) 0.000 l) 0	kg

Figure 7-14 Automatic span calibration

A prerequisite for this step is a successful zero calibration.

- 1. Enter the number of used load cells and the nominal load of one cell.
- Enter the average of all load cell characteristic values: If the exact characteristic values of the cells are unknown, you can enter rough values such as 1.0 mV/V, 2.0 mV, 3.0 mV/V or 4.0 mV/V.
- 3. Select the interfering frequency suppression. The interfering frequency suppression is used to effectively filter out interferences from the power supply network (50 Hz/60 Hz).
- 4. Calculate and import the span digits using "Calculate & apply span digits". The values are active immediately and need not be imported separately.
- If the belt of the scale has not been installed exactly horizontally, you must additionally enter the inclination angle of the belt in menu item 1.4.3. Commissioning has then been completed.

Additional parameter settings can also be made, for example:

- Setting of limits for belt load, speed, and material flow rate
- Filter settings
- Parameterization of the inputs/outputs of your weighing module

Further information on these and all other parameters can be found in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69).

You can return to the main screen using the "Home" button (house symbol).

You can improve the results for your system even further following completion of the calibration or also during subsequent operation by means of a flow correction by material test (\rightarrow Determination of a correction factor (Page 61)).

7.5.6 Determination of a correction factor

To improve the accuracy, you can specify a correction factor using a material test. Navigate in the menu to item "1.2.4 Flow correction by material test".

Figure 7-15 Flow correction by material test

- 1. Make sure that the belt is running and empty.
- 2. Start the material test using the "Start material test (reset totalizer 6)" button.
- 3. Load material onto the belt as uniformly as possible so that the belt load remains as constant as possible during the test. During conveyance of the material, observe the "Current load in %" value on the right of the screen.
- 4. Once the desired amount of material has been conveyed by the belt and the belt is then empty again, the total on the left of the screen remains constant. Determine the correction factor: divide the actually conveyed amount of material (either already known or determined by subsequent weighing on a separate scale) by the value of "Totalizer 6" determined during the test.

You can also use the integrated calculator for the calculation by selecting the next input form using the "Calculator" button. First enter the two values there in the input fields, and then read the result by clicking on the "Divide symbol".

- 5. Enter the determined correction factor in the "Correction factor 1" field.
- Additionally enter the observed value of the "Current load in %" in the input field next to "Belt load factor 1 (% of nominal belt load)".
- 7. Confirm and save your inputs by subsequently clicking on the diskette symbol. Your scale now uses this correction factor for the complete weighing range.

You can use several correction factors for different belt loads by using the SIWATOOL service and commissioning tool. It is then possible to determine an additional correction factor for a

7.6 Service with SIWATOOL software

further, higher belt load. A correction characteristic is then produced depending on the belt load.

7.5.7 Activating the pulse signal for a remote totalizer

WP241 offers the possibility to generate a 24 V DC pulse signal when a pre-defined amount of material is reached. This enables a remote totalizer or a PLC to detect the amount of material conveyed by counting these pulses. The pulse signal is defined by two parameters: "Material per pulse" and "pulse duration". You can set both parameters in the menu 1.5.3 or DR7.

Assign the "Remote totalizer" function to one of the four digital outputs in the menu 1.5.1 or DR7.

Example:

- 1. Define digital output DQ 3 as "External totalizer" in the menu 1.5.2.
- 2. Set the material per pulse in menu 1.5.3 or DR7 to 1.75 t.
- 3. Set the "Pulse duration" in menu 1.5.1 or DR7 to 2000 ms.

 \rightarrow After every 1.75 tons of moved material. the digital output DQ 3 is set to TRUE for 2 seconds (24 V DC).

7.6 Service with SIWATOOL software

You can use the SIWATOOL program to commission the scale independently of the SIMATIC automation system.

The program is included in the optional configuration package (7MH4960-4AK01).

Install the SIWATOOL program on your PC for commissioning.

A document for commissioning of the belt scale using SIWATOOL is also available in the Siemens Customer Support.

7.6 Service with SIWATOOL software

7.6.1 Windows and functions of SIWATOOL

<u>(</u> 1	2		3			4		
SIWATOOL - W7231 - Empty							E	
File Communic Joon View Tools ?	Language • 🕼	🖳 🚺 Module name	Display 🚰 Message		/			
-0- T R & . 4	• 🖻 •	••		_	SIM			
stwarex wp231	10		Actual values		31	ANEA		×
Avio Basic Parameters Scale name			R		69	7	ka	
Weight unit Letter for gross weight Restriction code Minimum weight (d)		Ng B for Gross none 20			05		NY	
Massimum weight Resolution IP Calibration		100.0 0.1			100.0 0.1			
In Section as Fall and Section Digits (DR4) Is Section California Fall and Section Digits (DR4) Is Section Control of Section Digits (DR4) Is Secti								
O Process Interfaces (DR7) O Assignment digital input 1 Assignment digital input 1		Service Mode on (1)			keine			
Assignment digtal input 3 Assignment digtal input 4 Filter digtal input		none 5: 3.2 ms			keine keine 5: 3,2 ms			
Assignment digital output 1 Assignment digital output 2 Assignment digital output 3		Output not active (FF) Output not active (FF) Output not active (FF)			Ausgang deaktiviert (Ausgang deaktiviert (Ausgang deaktiviert (255) 255) 255)		
Value for digital output by e Digital output 1 by error or		0: Off off	8	<	0: Aus AUS	2007		
dessages:								ŋ
7012 09 27 11 07 19 705 505 502 Tex. 0 etc.	de des	Message no 5104	Message (double click on message for m	cented	com/going	Modue T	Hdd mio 1	
2012 09 27 10 43 16 145 871 802 Ter	command error	5004	SIDA Action only nemated in service work	Leeded la	coming	Modue T	100	
2012.09.27 07.52 42 405 759.802 The Data	r command envir	5004	5004 Action only permitted in pervice mod	in .	coming	Modbur T	100	
2012.09.27 07:52:30 845.646.802 Thu Data (r command error	5004	5004 Action only permitted in service mod	le .	coming	Modbus T	100	—
				Online	B 65	67 kg	UF NUP	4 F.F.

 Control elements for SIWATOOL and oper- 3 ation of the scale

Offline values of the SIWAREX module

2 Parameter list of the SIWATOOL module ④

Online values of the connected SIWAREX module

Figure 7-16 Layout of the SIWATOOL user interface

Sending/receiving a data record is always carried out by right-clicking on the data record name in the "Value" column in the tree structure.

For example, if data record 3 is to be sent, right-click on "Calibration parameter (DR3)". A submenu then opens with the option to send the respective data record to the weighing module or read it from the module. All data records can only be sent to or read from the SIWAREX as complete packets. It is not possible to read or write individual parameters within a data record. Therefore the complete data record must initially be received for every change to parameters within it. The desired parameter can then be edited, and the data record returned. If the data record is not received, the danger exists that different offline parameters will be sent to the scale and overwrite previously active and intentionally defined parameters.

Commissioning

7.6 Service with SIWATOOL software

	Value
▲ SIWAREX WP241	
Commissioning	
▲ 🗹 Calibration P	arameter (DR3)
(i) Info	Send data record
Scale nam	ne Receive data record
Unit for h	elt load

Figure 7-17 Sending/receiving a data record with SIWATOOL V7

7.6.2 Offline parameter assignment

All scale parameters can be edited and saved without an electronic weighing system.

This reduces the setup time. You can thus prepare the parameters for several scales in your office, and subsequently transfer them to the electronic weighing system during setup.

Data from one scale currently in operation can be exported and used to set up another scale.

7.6.3 IP address for SIWAREX

The factory-set IP address is 192.168.0.21. This address is also preset in SIWATOOL. The connection to a SIWAREX module can be established immediately. The network card used must be configured for this network.

If the connection is to be established to a specific SIWAREX module, its IP address must be set in SIWATOOL. The setting is carried out with the menu item "Communication/Set Ethernet Configuration...".

If the IP address of a SIWAREX module is unknown, it can be determined using the additional program "Primary Setup Tool". The program is included in the SIWAREX configuration package.

During the setup, a new IP address can be assigned to the module using SIWATOOL.

The assignment of a new IP address to a SIWAREX module is necessary if several SIWAREX modules are present in one network.

The following ports are used by SIWAREX:

- SIWATOOL port: 23006
- MODBUS TCP/IP port: 502
- TFTP for firmware download port: 69

7.6.3.1 Entering a known SIWAREX IP address

To establish a connection to a SIWAREX module, enter the IP address in SIWATOOL. Under the menu item "Communication", select "Set Ethernet Configuration...". Enter the IP address of the SIWAREX module in the following window. To activate the IP address and establish a connection to the SIWAREX module, subsequently click on "Online".

7.6.3.2 Determining an unknown IP address

If the IP address of a connected SIWAREX module is unknown, it can be determined using the program "Primary Setup Tool". The program is included in the configuration package (Page 163).

Install the program "Primary Setup Tool". When started, the program can determine the Siemens devices present in the network.

The MAC (Media Access Control) address can be read on the front of the SIWAREX module. Every device has an MAC address which is unique worldwide.

The IP address can be determined from the identified MAC address. The Primary Setup Tool also allows the IP address of a SIWAREX module to be set/changed.

Additional information on the Primary Setup Tool can be found in the associated manual.

7.6.3.3 Setting up a network

Several SIWAREX modules can be connected together in a network via a switch. Via the network, you can use SIWATOOL to assign parameters to and start the various modules or connect a common Operator Panel.

7.6.4 Online parameter assignment

To switch to online mode, connect the PC to the SIWAREX module using an Ethernet cable. Set the IP address of the SIWAREX module in the communication menu.

You can change all parameters in the SIWAREX module in online mode. The message window shows the current contents of the message buffer of the SIWAREX module. The current process values are displayed in the "Online" column.

For test purposes, you can send various commands to the SIWAREX module. Differences between the online/offline data are marked in red by SIWATOOL. This affects both the associated data record and the individual parameter.

In order to archive data, all data can be exported from the SIWAREX module and saved as a file or printed.

7.6 Service with SIWATOOL software

Note

You can edit all data in the SIWAREX module in online mode. The changes are not automatically imported to the corresponding scale data block.

To download the data to the SIWAREX module, select the data record with a right mouse click and send it explicitly to the SIWAREX module.

Online parameter trends can be recorded and played back using the recorder function located at the top right-hand edge of SIWATOOL. You can use the "Configure recorder" button to select the data records to be recorded and to set the save parameters. The playback speed can be set using a slider.

7.6.5 Available help options

SIWATOOL offers various help options for operation:

Info card

You can select the "Info" item directly underneath the individual data records in the navigation tree. This info card explains how the data record influences the scale behavior.

- Tooltip If you move the mouse over a button or parameter, a corresponding help text is displayed.
- Help

Click on the menu option "Help" to call up the SIWATOOL help. The Help can be opened separately.

7.6.6 Entering parameters with SIWATOOL

There is a defined procedure for handling parameters. The current parameters in the SIWAREX module are displayed in the right-hand window, while the parameter values on the PC are displayed in the left-hand window. The new parameter value is entered first in the left-hand window. If several parameters of the data record are to be changed, they are entered consecutively. The data record is subsequently selected in the tree view and sent to the SIWAREX modules using the right mouse button "→ Send data record".

Parameters are always changed as a complete data record, rather than individually.

7.6.7 Recording scale traces

Scale traces can be recorded and exported using SIWATOOL. The recording is started and stopped using commands, and recorded traces can also be deleted. The trace recording cycle is set in data record DR7. A dialog window is called with the "Export trace data" button. The trace is displayed in this window as a table or graphic, and the data can be exported to csv or Excel and then processed further. The commands for starting and stopping are present in the "Trace commands" group (yellow memory card icon) in SIWATOOL.

e Communication View Tools ?											
		Ale dada									
	Language • Lingu	Module	name name Dis	ipiay =	messag	e.					
		•	Faktor: 1 X								
					-						
0≖ I X ⊴≤ •41•••	• 🗉 • 🛄 •										
Value	1	Export trace	data						States a		8
Automatic zero		Settings									
add tare			0			1000			[
Weight simulation allowed		Start numb	er: 0	End nur	nber:	1000	Delmiter		Export to File	Export to Exc	
Interated in SIMATIC PLC		Trace data	-								
Decimal point for process		ITace data	Diagram								
tare maximum (% of max.)		Trace	Date and time		Sign	Command	/data record	Gross process wei	Gross process weight 2	Tare process	
Zero limit minus by on (%	0	320	2012 10.01 06:5	9:37 275	0	0		109.25	112.838	0.0	
Zero limit plus by on (% of	1	321	2012 10:01 06:5	9:37 285	0	0		109.326	112.88	0.0	
Zero limit minus by on (%	0	322	2012 10.01 06:5	9:37 295	0	0		109.402	112.925	0.0	
Zero limit plus (% of max)		323	2012.10.01 06:5	9:37 305	0	0		109.477	112.973	0.0	
Standstill range (d)		324	2012 10:01 06:5	9:37 315	0	0		109.551	113.024	0.0	0
Standstill time (ms)		325	2012 10.01 06:5	9:37 325	0	0		109.625	113.079	0.0	
Waiting period (ms)		326	2012.10.01 06:5	9:37 335	0	0		109.699	113.135	0.0	
Frequency low pass filter 1		327	2012 10:01 06:5	9:37 345	0	0		109.772	113.192	0.0	
Order no low pass filter 1		328	2012 10.01 06:5	9:37 355	0	0		109.844	113.246	0.0	
Frequency low pass filter 2		329	2012.10.01 06:5	9:37 365	0	0		109.916	113.295	0.0	-
Order no low pass filter 1		330	2012.10.01 06:5	9:37 375	0	0		109.988	112.412	0.0	
Depth average filter		331	2012 10.01 06:5	9:37 385	0	0		110.059	110.786	0.0	
Autom Calibration Digits (DR4)		332	2012 10:01 06:5	0.37 405	0	0		110,129	108.825	0.0	
(i) Info		333	2012 10:01 06:5	0.37 400	0	0		110.199	100.000	0.0	
Calibration digits 0 (calculated	1 0	334	2012 10.01 06.5	0.37 410	0	0		110.200	103.634	0.0	
Calibration digits 1 (calculated	1 8	335	2012 10.01 06.5	0.37 425	0	0		110.555	95 747	0.0	
Calibration diaits 2 (calculated		330	2012 10.01 06.5	9-37 AAE	0	0		110.401	99.577	0.0	
	•	229	2012 10.01 06.5	0.37 445	0	0		110.526	97.977	0.0	
sages		339	2012 10:01 06:5	9-17 465	0	0		110 583	75 499	0.0	- 11
uning Harris	an Mar	340	2012 10:01 06:5	9.37 475	0	0		110.535	69.099	0.0	
name Message ()	pe mea	341	2012 10 01 06:5	9-37 485	0	0		110.68	63 343	0.0	
12/10/01/06/06/16/67/02/07/02/07 Mon Data or com	mand error 7007	2+2								~~	
12.10.01 06:02:07 620.721.237 Mon Data or com	mand error 7007	·								,	
12.10.01 06:01:52 863.023.237 Mon Data or com	mand error 7007										
12 10.01 06:01:39 279 667 237 Mon Data or com	mand error 7007	Refred	6							Close	
											-

All important measured values, messages and changes in status are recorded.

Figure 7-18 Trace export

7.6.8 Firmware update

New firmware versions can be transferred to the SIWAREX module using SIWATOOL. In order to transfer the firmware, the Windows firewall must be configured in such a way that SIWATOOL is registered as an approved program. The TFTP protocol is used for the transfer. Firewalls or other protection software may interfere with or prevent the transfer of data per TFTP protocol. In such cases, the respective protective mechanism must be temporarily deactivated for the duration of the update, or an alternative PC used.

The latest firmware version can be found under Industry Online Support.

Note

Following transfer of the new firmware, the parameters of the SIWAREX module are assigned default values

You should therefore export and save the original parameter values prior to the firmware update. Following the firmware update, the saved data can be converted by SIWATOOL to the new firmware version.

Saving existing parameters

- Export the current parameters Select the "Receive all data records" function from the menu under "Communication". The current parameter set is then transferred to SIWATOOL.
- Save the current data record in a file.

Transferring the new firmware version to the SIWAREX module

Note

During the firmware transfer, the SIWAREX module works to a limited extent with the old firmware version, and the new firmware is flashed in the background. For this reason, you must not switch off the module during the firmware transfer.

- 1. Set the SIMATIC CPU to "STOP".
- 2. Register with SIWATOOL on the SIWAREX module.
- 3. Call the firmware download using the function key
- 4. Select the current firmware file under "Firmware Download".
- 5. Click the "Start transfer" button.

Following the transfer, the SIWAREX module must be switched off and then on again. This activates the new firmware.

ile Communication View Tools ?		_		
📄 🔤 🔚 🧭 Online 🔯 Offline 🚺	🕑 Language 👻 🛄 📙 Modul	e name 📶 Display 📑 Me	ssage	
• • 🗉 🛛 4 🕨 😂 🥔	⊖ ──	factor: 1 X	2	
🦧 • <u>00</u> • 🛲 • 📒 •				
Value			PC	
SIWAREX WP241 Commissioning	Firmware update @ 192.168.0.21			8
▷ ✓ Calibration Parameter (DR3 ▷ ✓ Temporary Parameters (DR4) ▷ ✓ Correction Factors (DR5) ▷ ✓ Limits (DR6) ▷ ✓ Date and Time (DR8) ▷ ✓ Date and Time 2 (DR48) ▷ ✓ Date and Time 2 (DR48) ▷ ✓ Load Cells Parameter (DR12) ▷ ✓ Lethernet Parameter (DR12) ▷ ✓ RS485 Parameter (DR13) ▷ # Additional Parameters	Firmware Exsisting in module Selected for download File for download File name	7MH4960-2AA01 B.0.0	18	
Doserve Process State (DR30)			Start transfer	Cancel

Figure 7-19 Downloading the firmware with SIWATOOL

Scale parameters and functions of the belt scale

8.1 Parameters and functions

The SIWAREX WP241 electronic weighing system can be used to design a belt scale in accordance with OIML R50. Approval in accordance with MID will be available soon.

All parameters are set to default values in the factory. In the case of a previously used electronic weighing system, you can restore the configuration to factory settings using the "Load factory settings" command.

You can also create your own restore point. You can reload the saved configuration at a later point in time with the "Load restore point" command.

The factory-set parameters are provided with typical values so that the scale can be immediately calibrated following input of the rated data. The advantage of this solution is that you can decide which typical values are to be retained and to what extent the response of the scale has to be adapted.

All parameters are divided into data records (DR). The data records are organized in steps (tasks) which constitute a functional unit during commissioning or during the process. Data records can only be read or written as complete packages. Reading or writing of a single parameter within a data record is therefore not possible. It is therefore recommendable to proceed as follows before editing a parameter:

- 1. Read in the corresponding data record (to SIWATOOL or to the data block of the PLC)
- 2. Edit the desired parameter
- 3. Write the data record back into the weighing module

The scale functions influenced by the parameters are also described in the following parameter description.

The parameters of a given data record are initially displayed in an overview table. A description of their effect on the scale then follows.

When it receives new parameters, the SIWAREX module runs a validation check. In the event of a parameter assignment error, the complete data record is not applied (not saved) by the SIWAREX module and a data/operator error is reported.

8.2 DR 2 command code

DR 2 is a special data record only used to transfer commands to the SIWAREX module by the SIWATOOL PC program.

8.3 DR 3 Belt scale parameters

8.3 DR 3 Belt scale parameters

The belt scale parameters need to be checked and if necessary modified for all scales. The fundamental function of the scale is defined by specifying the parameters and carrying out the calibration.

You must activate "Service mode" for the module in order to carry out any changes to the data record:

- In SIWATOOL: in the command group "Service commands"
- From the CPU: using command code 1 (see chapter SIMATIC integration or Modbus integration)

Procedure

- Read in DR 3, check all parameters, and modify them if required
- Transfer the DR 3 data record from SIWATOOL/SIMATIC/Modbus to the scale
- Carry out parameterization or calibration of the belt speed
- Calibrate the scale
- Transfer the DR 3 data record from the scales to SIWATOOL

A special feature distinguishes the WP241 module from other SIWAREX modules.

Every calibration command which results in a change to a parameter, for example, during calibration of the zero point or with calibration weights, initially leads to an output of the result to DR 4. You can check the result and subsequently import it into the DR 3 using an apply command. The parameter becomes effective following importing into the DR3.

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data re- cord	USHORT	2	r	3	-	-	1000
Length	Data record length infor- mation	USHORT	2	r	120	-	-	1001
Application	Information on which ap- plication the DR belongs to	USHORT	2	r	104	-	-	1002
Version identifier	Information on the current data record version	USHORT	2	r	1	1	65635	1003
Scale name header	Maximum length and ac- tual length of string for scale name	UBYTE[2]	2	rw	12,12	-	-	1004
Scale name (Page 72)	Scale name specified by user	CHAR[12]	12	rw	" "	-	-	1005
Reserve		USHORT	2	rw	0	-	-	1011
Unit for belt load and belt speed (Page 72)	0 = kg/m + m/s 1 = lbs/foot + ft/s 2 = lbs/foot + ft/min	USHORT	2	rw	0	-	-	1012

Table 8-1 Assignment of data record 3

8.3 DR 3 Belt scale parameters

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Unit for flow rate (Page 73)	0=t/h, 1=kg/h, 2=T/h, 3=TL/h, 4=lbs/h	USHORT	2	rw	0	-	-	1013
Resolution of weight and belt load (Page 73)	Resolution (1*10**k, 2*10**k, 5*10**k]; k: -3 … 2)	FLOAT	4	rw	0.01	-	-	1014
Resolution of flow rate (Page 73)	Resolution (1*10**k, 2*10**k, 5*10**k]; k: -3 2)	FLOAT	4	rw	0.1			1016
Resolution of master totalizer (Page 73)	Resolution (1*10**k, 2*10**k, 5*10**k]; k: -3 … 2)	FLOAT	4	rw	0.1			1018
Design flow rate (Page 73)	Customer input according to rated data	FLOAT	4	rw	360			1020
Weigh length (Page 74)		FLOAT	4	rw	1			1022
Belt length (Page 74)	Is measured and entered by the user.	FLOAT	4	rw	30			1024
Number of belt revo- lutions (Page 74)	Number of belt revolutions relevant to measurement, specification applies to calibration and zero set- ting commands	USHORT	2	rw	1			1026
Speed detection (Page 74)	0: No sensor, speed is specified or determined.1: One sensor2: External specification of speed via DR19	USHORT	2	rw	1			1027
Design speed (Page 74)	Maximum speed with empty belt	FLOAT	4	Rw	1			1028
Speed correction if belt loaded (Page 74)	Only relevant if no sensor present. Percentage devi- ation in speed when belt is loaded (see next parame- ter)	FLOAT	4	rw	0.98			1030
Belt load factor for speed correction (Page 75)	Belt load in % of nominal load. Only relevant if no sensor is present (specified value or impor- ted from DR4)	FLOAT	4	rw	100			1032
Impulse constant speed sensor (Page 75)	Only relevant if a sensor present	FLOAT	4	rw	1000.0			1034
Reserve		LONG	4	rw	0			1036
Initial zero calibration digits (Page 75)	Calibration digits with empty belt	LONG	4	rw	500000			1038
Calibration weight (Page 75)	Specification in KG or LB (depending on selected unit for belt load)	FLOAT	4	rw	50			1040

8.3 DR 3 Belt scale parameters

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Calibration load (Page 75)	Value input, e.g. 35 kg/m for calibration by test chain	FLOAT	4	rw	0			1042
Calibration quantity (Page 75)	Value input in KG or LB (depending on selected unit for belt load)	FLOAT	4	rw	0			1044
Span calibration dig- its (Page 76)	ADC digits for test weight Value input or imported from DR4	LONG	4	rw	1000000			1046
Simulation mode (Page 76)	Simulation (is enabled or disabled via commands)	USHORT	2	rw	0			1048
	0: Simulation not permit- ted							
	1: Only weight simulation permitted, weight is impor- ted from DR16 if simula- tion mode is enabled							
	2: Only speed simulation permitted, speed is impor- ted from DR16 if simula- tion mode is enabled 3: Both permitted Weight and speed are im- ported from DR16 if simu- lation mode is enabled							
Warm-up timer (Page 76)	Status bit in DR30 "Warm- up timer running" remains TRUE for the specified time (minutes)	USHORT	2	rw	30			1049
Reserve		USHORT	0	rw	0			1050
Reserve		UBYTE[2]	2					1051
Reserve		CHAR[12]	12					1052
Reserve		USHORT						1058
Reserve		USHORT						

¹⁾ Parameter for calculation of calibration points

8.3.1 Scale name

You can select any name, but it may not exceed 12 characters. You can enter any designation.

8.3.2 Unit for belt load and belt speed

When setting parameters for the first time you must select between metric and imperial systems.

The following units can be selected for the belt load:

0 - kg/m + m/s (metric)
8.3 DR 3 Belt scale parameters

- 1 lbs/foot + ft/s (imperial)
- 2 Ibs/foot + ft/min (imperial)

When 0 is selected, the material flow rate can be specified in t/h or kg/h.

When 1 or 2 is selected, the material flow rate can be specified in T/h, TL/h or lbs/h.

8.3.3 Unit for flow rate

The following units can be selected for the material flow rate:

0 – t/h (metric)

- 1 kg/h (metric)
- 2 T/h (imperial)
- 3 TL/h (imperial)
- 4 lbs/h (imperial)

8.3.4 Resolution of weight and belt load

The resolution for the weight measurement and the belt load per length unit can be defined in accordance with the standard EN 45501 (1*10**k, 2*10**k, 5*10**k]; k: -3 ... 2) from 0.0001 to 50

8.3.5 Resolution of flow rate

The resolution for the material flow rate and totalizers 2 to 6 can be defined in accordance with the standard EN 45501 (1*10*k, 2*10*k, 5*10*k]; k: -3 ... 2) from 0.0001 to 50

8.3.6 Resolution of master totalizer

The resolution for the master totalizer (cannot be deleted) can be defined in accordance with the standard EN 45501 (1*10**k, 2*10**k, 5*10**k]; k: -3 ... 2) from 0.0001 to 50

8.3.7 Design flow rate

The design flow rate is entered during initial commissioning. It can be obtained from the data sheet for the belt scale. It corresponds to the maximum material flow rate (100%) for which the conveyor belt is designed.

The % values for the material flow rate limits refer to the rated flow rate.

8.3 DR 3 Belt scale parameters

8.3.8 Weigh length

In the case of a scale with a roller station, the weigh length corresponds to half the distance from the roller station to the adjacent rollers on the left and right which are located upstream and downstream of the roller station.

With two or more roller stations, the distance between the roller stations is added to this.

8.3.9 Belt length

The length of the conveyor belt is measured during commissioning, and entered. This is usually twice the distance between the axes of the deflection pulleys plus the single circumference of the pulley. The input is made in the length unit from the belt load.

8.3.10 Number of belt revolutions

At least one belt revolution is required for the calibration. You can increase the number of belt revolutions in order to increase the accuracy of the equipment.

8.3.11 Speed detection

There are three options for determining the current speed:

- 0 no speed sensor present. Specification of a constant belt speed or determination of it.
- 1 speed sensor at digital input DI.0
- 2 external specification of belt speed from CPU (via DR19)

8.3.12 Design speed

The design speed can be determined with the belt empty. To this end, the time for one or more belt revolutions is measured, and the speed determined from this.

8.3.13 Speed correction if belt loaded

If a speed sensor is not used (speed detection = 0, see Speed detection (Page 74)), a speed correction can be determined at a certain belt load factor (preferably the nominal load) in addition to the design speed. A load-dependent characteristic for the speed then results together with the design speed. This characteristic is determined by two working points: Design speed with empty belt and a speed factor correction with a certain belt load factor.

The specification is made in % of the design speed.

Using commands 72 (Start), 73 (Stop) and 86 (Apply), the point can be determined automatically during commissioning (with loaded belt) or during operation.

8.3 DR 3 Belt scale parameters

8.3.14 Belt load factor for speed correction

The associated belt load factor (in % of nominal load) is specified for determination of the speed correction (\rightarrow Speed correction if belt loaded (Page 74)).

You must observe the value in DR30 during the calculation and subsequently enter it.

8.3.15 Impulse constant speed sensor

If known, you can directly enter the pulse constant of the connected sensor. The input is made either in "Pulses per meter" or "Pulses per foot" depending on the selected unit. If the pulse constant is unknown, it can be calculated automatically by the SIWAREX WP241 using an exactly defined total belt length. Commands 70 and 71 are used for this purpose.

You will find more detailed information on using or determining the pulse constants in the section (Page 48).

8.3.16 Initial zero calibration digits

Following calibration of the scale's zero point, the digit value from the A/D converter is stored as the average value for the set number of belt revolutions. When zeroing the scale during subsequent operation, a check is made to establish whether the deviation from this original zero point does not exceed the defined limit.

8.3.17 Calibration weight

The calibration weight corresponds to the test weight used for the span calibration. With other calibration methods (test chain, amount of material, or automatic), the weight is determined internally by the SIWAREX module in accordance with the reverse calculation.

8.3.18 Calibration load

If a test chain is used to calibrate the scale, its belt load value can be entered.

8.3.19 Calibration quantity

In order to calibrate the belt scale by means of a material test, a previously or subsequently weighed amount of material can be used. The specification depends on the selected belt loading unit in kg or lb.

You can calibrate the scale using the commands 67 (Start), 68 (Stop), 69 (Calculate span calibration point), and 89 (Apply span calibration digits).

8.4 Calibration procedure

8.3.20 Span calibration digits

Following calibration of the loaded belt scale, the digit value from the A/D converter which corresponds to the calibration weight is stored as the average value for the set number of belt revolutions. The interval from the zero digits must be at least 40 000 digits.

Note

If the jumper is closed to protect data with verification capability, the parameter can no longer be changed.

8.3.21 Simulation mode

The material on the scale and/or the speed of the belt can be simulated for test purposes.

You must enable this functionality using the "Enable simulation" parameter. You specify the simulated input values via DR16. You can enable test mode at any time using the commands "Load simulation ON" (3) or "Speed simulation ON" (5), or disable test mode using the commands "Load simulation OFF" (4) or "Speed simulation OFF" (6).

8.3.22 Warm-up timer

Following switching-on of the electronic weighing system, this input indicates in the status area that the time has not yet expired ("Warm-up time running").

8.4 Calibration procedure

8.4.1 General information

Switch service mode on in order to carry out the calibration (service commands in SIWATOOL, or command code "1" from SIMATIC/Modbus).

Certain basic parameters must be entered prior to calibration of the belt scale. These include:

- Unit for the belt load
- Unit for the flow rate
- Design flow rate
- Weigh length
- Total length of conveyor belt
- Speed sensor (pulse sensor) yes/no
- Test weight or chain load if a chain is used for the calibration

8.4 Calibration procedure

Two measurements are important when commissioning the belt scale:

- The speed measurement
- The gravimetric weight measurement (or measurement of the belt load)

All results of the calibration are initially presented by the SIWAREX module in DR4. You can apply the results into the parameter set, or reject them. This guarantees that the individual calibration steps do not change the existing parameter set and become effective immediately.

When calibrating the scale, you can switch off the totalizer using command 652 "Stop totalizing". All totalizers apart from totalizer 6 are then stopped.

Carrying out the calibration

Prior to the calibration, the belt should be in operation for a minimum time (usually 30 minutes) in order to permit it to reach its rated operating conditions.

During initial commissioning, measurement of the speed is calibrated first. Calibration of the speed can be carried out for scales with or without a speed sensor. This is followed by calibration of the weight measurement – the span calibration.

8.4.2 Calibration of the speed

Procedure in three steps

Calibrate the speed using the following steps:

Step 1

Use a tape measure or length measuring device to determine the exact conveyor belt length. You can usually measure the distance between the axes of the deflection pulleys. The length is then twice the distance between the axes plus half the circumference of the deflection pulley and half the circumference of the drive pulley. Exact determination of the belt length is the basis for good accuracy of the belt scale.

Step 2

Make a temporary marking on the conveyor belt, e.g. using chalk or adhesive tape.

This marking is used to measure one belt revolution. The conveyor belt has run for a certain warm-up time and is empty. Once the marking has passed a defined point, start the measurement of the belt revolution using the command "Start speed/pulse detection" (70). Terminate the measurement when the point is passed again (if only one belt revolution is parameterized for the measurement) using the command "Stop speed/pulse detection" (71).

8.4 Calibration procedure

The following parameters are calculated by SIWAREX as a result of the measurement, and output in DR4 as a recommendation for acceptance:

- When using a speed sensor:
 - Design speed
 - Pulses per length unit
 - Pulses per belt revolution
- Without speed sensor:
 - Design speed

Using command 85 you can apply the determined (nominal) speed, using command 87 the determined pulse parameters.

Note

Starting and stopping of the belt measurement can be carried out exactly if an electric switching signal (+24 V) – for example from a proximity switch – is used to signal a belt revolution.

You can parameterize digital input DI.1 of the SIWAREX module as start/stop trigger (DR7 command "Trigger for belt revolution detection on DI" (75)) and use it to measure the belt revolution. The defined number of belt revolutions is recorded following enabling by the command "Enable belt revolution detection on DI (74)".

Step 3 (only for systems without speed sensor)

Following successful zero and span calibrations, you can additionally record and store a speed correction with loaded belt during operation (commands "Start speed measurement "belt loaded"" (72) and "Stop speed measurement "belt loaded"" (73)). A coarse load characteristic of the drive can be recorded in this manner. It is then put into effect with the command "Accept speed parameters "belt loaded" (86).

8.4.3 Specification of known speed parameters

Calibration of the speed as described above is always recommended. This guarantees maximum accuracy for the speed calculation and thus maximum accuracy of the complete system.

8.5 Calibration of weight measurement

If it is not possible to calculate the speed or pulse constant, you can also enter the data manually.

- When using a speed sensor at DI.0, you must enter the following parameters manually:
 - DR3 → design speed = maximum speed of belt
 - DR3 \rightarrow belt revolution pulses = total belt length x pulse constant of sensor
- When operating without a sensor, you must enter the following parameters manually:
 - DR3 → design speed = maximum speed of belt
- With an external speed value via DR19, you must enter the following parameters manually:
 - DR3 \rightarrow design speed = maximum speed of belt

8.5 Calibration of weight measurement

The incoming analog measured value from the load cells is converted by an analog-to-digital converter into a digital value ("Digits"). A weight is calculated using this digital value. All functions of the electronic weighing system use the weight value to calculate the material flow rate, totalizing, and the status.

The characteristic curve of the measuring system must be defined before the weight can be calculated from the digital value. The characteristic is defined by points 0 and 1. Working point "0" is defined by the dead weight of the empty scale (no load).

The ADC digits are subsequently determined for the scale loaded with a test weight.

8.5.1 Determination of zero point

The load cells return a voltage measurement to the electronic weighing system as a result of the weight of the scale itself, even if the belt is empty. Following analog-to-digital conversion of the signal, the zero point (displayed weight = 0) is assigned to the digital value (calibration digits for the zero point). The measurement is carried out with an empty, running, and warmed-up belt. At least one complete belt revolution is required. The zero point of the scale is determined more accurately if several belt revolutions are used.

The command "Start initial zero calibration" (60) is triggered with the empty belt. The zero point is then determined for the parameterized number of belt revolutions. The status display in DR30 indicates that the calibration is running.

The result is displayed in DR4. You can apply the result using the command "Apply initial zero calibration digits" (88). The zero point is then imported in DR3.

8.5 Calibration of weight measurement

8.5.2 Span calibration by weight

Carrying out the calibration

If the scale is loaded with a defined test weight (e.g. 50% of the measuring range), the test weight is assigned to the new digital value returned by the analog-to-digital converter.

Step 1

The belt is warmed-up and the zero point has been determined.

- 1. Stop the belt.
- 2. Enter a test weight appropriate to the measuring range in DR3 (e.g. 50% of the measuring range).
- 3. Attach this test weight to the scale or place it onto the scale.

Step 2

- 1. Switched the belt on again. The calibration weight is secured on the scale.
- 2. Start recording of the weight for the parameterized number of belt revolutions using the command "Start span calibration with test weight" (61). The status display in DR30 indicates that the calibration is running. The result is displayed in DR4.
- 3. Import the digits into DR3 using the command "Apply span calibration digits" (89). The characteristic curve has thus been determined. The scale can calculate the weight values for the complete load range.

8.5.3 Automatic span calibration with load cell data

Automatic scale calibration

The automatic scale calibration, as an alternative to calibration with test weight, permits very fast commissioning. However, the results are highly dependent on the correct mechanical scale construction and the entered parameters.

The best scale accuracy can be achieved by calibrating with test weights or a test chain. Following a certain period of operation, you can define further correction factors for the material flow rate by means of a material test.

Requirements

The following requirements must be fulfilled in order to achieve successful automatic calibration:

- Proper installation and alignment
- · Load cells involved are equally and evenly loaded
- There are no shunt circuits

8.5 Calibration of weight measurement

Step 1	The belt is warmed-up and the zero point has been determined. All relevant data has been entered in DR10 (load cell parameters) and sent to the scale.
Step 2	Start the calculation using the command "Start automatic span calibration" (63). The result is effective immediately and displayed in DR3 and DR4. Importing of the parameters to DR3 is omitted.
Step 3	If the belt scale has not been installed exactly horizontally, enter the inclination angle of the belt in data record DR15 and send this to the scale. The characteristic curve has thus been determined. The scale can calculate the weight values for the complete measuring range.

Span calibration by test chain

If the scale is loaded with a chain (e.g. 50% of the nominal load), the weight is assigned to the new digital value returned by the analog-to-digital converter.

Step 1

8.5.4

The belt is warmed-up and the zero point has been determined.

1. Stop the belt.

Span calibration by test chain

- 2. Enter a test chain corresponding to the measuring range in DR3 (e.g. 50% of the nominal load).
- 3. Place the test chain onto the scale.

Step 2

- 1. Switched the belt on. The test chain is positioned on the scale.
- 2. Start recording of the weight for the parameterized number of belt revolutions using the command "Start span calibration with test chain" (65). The status display in DR30 indicates that the calibration is running. The result is displayed in DR4.
- 3. Import the working point into DR3 using the command "Apply span calibration digits" (89). The characteristic curve has thus been determined. The scale can calculate the weight values for the complete load range.

8.6 DR 4 Temporary parameters

8.5.5 Span calibration with known material flow

Span calibration with known material flow

The material test is usually used to determine the correction factor of a calibrated scale. However, a known quantity of material can also be used to carry out a scale calibration. The calibration is based on transportation of a known quantity of material, and comprises the following steps:

Step 1

The belt is warmed-up and the zero point has been determined.

Step 2

- A specific quantity of material is now conveyed by the belt. Before the material reaches the scale, activate the command "Start span calibration with material batch" (67).
- 2. The material flow is recorded. The status display indicates that the calibration is running. When the belt is empty, terminate the calibration using the command "Stop span calibration with material batch" (68).
- 3. Enter the complete quantity of conveyed material before or after the calibration in DR3 in the parameter "Calibration quantity (span calibration with material batch)".

Step 3

- 1. Calculate the scale characteristic using the command "Calculate span calibration point after material batch" (69). The result is displayed in DR4.
- Import the working point into DR3 using the command "Apply span calibration digits" (89). The characteristic curve has thus been determined. The scale can calculate the weight values for the complete load range.

8.6 DR 4 Temporary parameters

Data record DR 4 temporarily displays the results of the calibration commands. You can decide if you wish to apply the results and transfer them to the parameter set in DR 3. The new calibration results become effective following importing into the parameter set. The temporary parameters are not saved powerfail-proof.

8.6 DR 4 Temporary parameters

This data record is not sent to the scales.

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record num- ber	Contains no. of data record	USHORT	2	r	4	-	-	1200
Length	Data record length information	USHORT	2	r	88	-	-	1201
Application	Information about which appli- cation the DR belongs to	USHORT	2	r	104	-	-	1202
Version identifier	Information about current data record version	USHORT	2	r	1	1	65635	1203
Vmax. Speed (belt empty)	Determination using the "Start/ Stop belt revolution detection" commands with empty belt Command for importing: "Ap-	FLOAT	4	r	0			1204
Speed correction if belt loaded	Only relevant if a sensor is not present, determination using the "Start/Stop belt revolution detection" commands with empty belt Command for importing: "Ap- ply speed parameters "belt loa-	FLOAT	4	r	0			1206
Belt load factor for the speed correc- tion	ded"" (86) Only relevant if a sensor is not present, determination using the "Start/Stop belt revolution detection" commands with empty belt Command for importing: "Ap-	FLOAT	4	r	0			1208
	ded"" (86)							
Impulse constant speed sensor	Impulses per length unit (length unit from belt load), Determination using the "Start/ Stop belt revolution detection" commands with empty belt	LONG	4	r	0			1210
	Command for importing: "Ap- ply pulse parameter" (87)							
Pulses per belt rev- olution	Pulses for one belt revolution, determination with empty belt using "Start/Stop belt revolu- tion detection" commands	LONG	4	r	0			1212
	Command for importing: "Ap- ply pulse parameter" (87)							
Pulses per second at nominal speed (Vmax)	Determination using the "Start/ Stop belt revolution detection" commands with empty belt	LONG	4	r	0			1214
	Command for importing: "Ap- ply pulse parameter" (87)							

Table 8-2 Assignment of data record 4

8.6 DR 4 Temporary parameters

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Reserve		LONG	4	r	0			1216
Reserve		LONG	4	r	0			1218
Reserve		LONG	4	r	0			1220
Initial zero calibra- tion digits	Measure mean value following calibration command "Start ini- tial zero calibration". Command for importing: "Ap- ply initial zero calibration digite"	LONG	4	r	0	0		1222
	(88)							
Deviation from old initial zero calibra- tion digits (%)	Is calculated following determi- nation of zero calibration digits	FLOAT	4	r	0			1224
Calibration weight (calculated)	Determine from the automatic calibration or from the weight calibration or from the load cal- ibration or from the amount of material	FLOAT	4	r	0			1226
	ply span calibration digits" (89)							
Calibration load (calculated)	Measure mean value	FLOAT	4	r	0			1228
Span calibration digits	Measure mean value following calibration commands	LONG	4	r	0	0		1230
	ply span calibration digits" (89)							
Deviation from old span calibration digits (%)	Is calculated following determi- nation of span calibration digits	FLOAT	4	r	0			1232
Nominal belt load (calculated)	Design flow rate / design speed	FLOAT	4	r	0			1234
Deviation from old nominal belt load (%)	Is calculated from the nominal power, nominal speed, and weigh length.	FLOAT	4	r	0			1236
Stop watch (Page 85)	Start/Stop via command or with zeroing or calibration com- mands	LONG	4	r	0			1238
Result calculator (Page 85)	Calculation in accordance with multiply a*b or divide a/b com- mand. a and b are specified in DR21	FLOAT	4	r	0			1240
Progress dynamic command (%) (Page 85)	Progress of a currently execu- ted dynamic command (e.g. calibration command or zero- ing) in percent.	FLOAT	4	r	0			1242

See also

Command lists (Page 135)

8.7 DR 5 Correction factors for material flow rate

8.6.1 Stop watch

The clock is reset when the stop watch is started, and the current time is displayed. The current time is also displayed during execution of a calibration command or when zeroing the scale.

The display is in milliseconds.

8.6.2 Result calculator

Data record DR 21 is used to enter digits for multiplication or division of two numbers. The result is displayed here following the calculation (commands 81 and 83).

8.6.3 Progress dynamic command (%)

Display of how far a currently active, dynamic command (e.g. calibration command or zeroing) has progressed. The display is in percent. 100 % = command is completed. The display is reset to zero by starting a new command.

8.7 DR 5 Correction factors for material flow rate

Data record DR 5 stores the correction factors from the material test. In legal trade operation, the data record is write-protected. The material test is used to determine the correction factor of a calibrated scale. With a material test, the conveyed amount of material is subsequently measured or is already known at the beginning of the test.

You can use e.g. totalizer 6 for this material test. In order to prevent the material conveyed during the test from being included in the balance, stop totalizing using command 652. All totalizers then stop except for totalizer 6. You can subsequently reset totalizer 6 using command 674 and use it for the test.

You can determine two different correction points with two different belt loads. A correction characteristic is then produced depending on the actual belt load. If only one correction point is to be used, set the "Belt load factor 2" parameter to 0 and the "Belt load factor 1" parameter to e.g. 40. With this setting, correction factor 1 applies to the complete working range of the scale. The influence of the belt speed is not taken into consideration for the correction factors.

Set the correction factors to a value of 1 prior to the test. If this is not possible, you must correct (multiply) the existing correction factor with the newly calculated factor.

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USH- ORT	2	r	5	-	-	1244
Length	Data record length information	USH- ORT	2	r	40	-	-	1245
Application	Information about which application the DR belongs to	USH- ORT	2	r	104	-	-	1246

Table 8-3 Assignment of data record 5

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Version identifier	Information about current data record version	USH- ORT	2	r	1	1	65635	1247
Belt load factor 1 (Page 86)	Belt load factor for correction point 1 (in % of nominal belt load)	FLOAT	4	rw	40			1248
Correction factors 1 and 2 (Page 86)	Correction factor with belt load factor 1	FLOAT	4	rw	1			1250
Reserve	Reserve	FLOAT	4	rw	0			1252
Reserve	Reserve	FLOAT	4	rw	0			1254
Reserve	Reserve	FLOAT	4	rw	0			1256
Reserve	Reserve	FLOAT	4	rw	0			1258
Belt load factor 2 (Page 86)	Belt load factor for correction point 2 (in % of nominal belt load)	FLOAT	4	rw	0			1260
Correction factors 1 and 2 (Page 86)	Correction factor with belt load factor 2	FLOAT	4	rw	1			1262

8.7 DR 5 Correction factors for material flow rate

8.7.1 Belt load factor 1

The average belt load resulting on the scale from the material test is entered in % of the nominal load.

Observe the percentage belt load during the test in SIWATOOL, on the touch panel or in the SIMATIC, and subsequently enter the value.

8.7.2 Belt load factor 2

The value to be entered must be larger than belt load factor 1.

Observe the belt load during the test in SIWATOOL, on the touch panel or in the SIMATIC, and enter the value.

8.7.3 Correction factors 1 and 2

The correction factors have an effect on the material flow rate display and thus also on the totalizer. They are calculated and entered following the material test. The amount recorded in totalizer 4 is compared with the actual amount. The ratio between the actual amount and the amount in totalizer 4 results in the correction factor.

Correction factor = (amount of material weighed previously or subsequently) / (amount totalized by scale)

Various limits are parameterized in data record DR 6. The factory-set parameters correspond to the typical settings.

Procedure

- Read the current parameters from the SIWAREX module (receive)
- Check all parameters and modify them as required
- Transfer the data record to the SIWAREX module (send)

Table 8-4Assignment of data record 6

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	6	-	-	1264
Length	Data record length information	USHORT	2	r	90	-	-	1265
Application	Information on which application the DR belongs to	USHORT	2	r	104	-	-	1266
Version identifi- er	Information on the current data re- cord version	USHORT	2	r	1	1	65635	1267
Negative and positive zero offset in % (Page 88)	Negative range of zero adjuster re- ferred to the originally calibrated zero point. Specification in % of maximum belt load	FLOAT	4	rw	1	0	100	1268
	Positive range of zero adjuster re- ferred to the originally calibrated zero point. Specification in % of maximum belt load	FLOAT	4	rw	3	0	100	1270
Reserve		FLOAT	4	rw	0	0		1272
Minimum flow rate (Page 88)	Min. flow rate in % of design flow rate (for status display)	FLOAT	4	rw	0	0	200	1274
Maximum flow rate (Page 89)	Max. permissible flow rate in % of rated flow rate (for status display)	FLOAT	4	rw	100	0	200	1276
Delay for flow rate limits (Page 89)	Delay for output of status display for flow rate (in ms)	LONG	4	rw	1	0		1278
Minimum belt speed (Page 89)	Min. belt speed for status display 'Minimum belt speed violated' in % of design speed	FLOAT	4	rw	10	0	100	1280
Maximum belt speed (Page 89)	Max. belt speed for status display 'Maximum belt speed violated' in % of design speed	FLOAT	4	rw	100	0	200	1282
Delay for belt speed limits (Page 89)	Delay for output of status display for belt speed (in ms)	LONG	4	rw	1	0		1284
Minimum belt load (Page 89)	Min. belt load for status display 'Mi- nimum belt load violated' in % of nominal belt load	FLOAT	4	rw	5	0	100	1286

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Maximum belt load (Page 89)	Max. belt load for status display 'Maximum belt load violated' in % of nominal belt load	FLOAT	4	rw	100	0	200	1288
Delay for belt load limits (Page 90)	Delay for output of status display for belt load (in ms)	LONG	4	rw	1	0		1290
Reserve		LONG	4	rw	1	0		1292
Medium load for totalizing (Page 90)	Min. belt load required to start total- izing. Specification in % of nominal belt load	FLOAT						
Reserve			4	rw	0	0		
Frequency low pass filter weight/belt load/belt speed (Page 90)	Low-pass filter - filtering of weight cut-off frequency 0: filter switched off Range fg: 0.05 50 Hz	FLOAT	4	rw	0.5	0	50	1298
Order no low pass filter (Page 91)	Filter number 2*(15)	USHORT	2	rw	4	1	5	1300
Number of sam- ples of the ana- log output aver- age value filter (Page 91)	Reserve	USHORT	2	rw	0	0	250	1301
Frequency low pass filter weight/belt load/belt speed (Page 90)	Low-pass filter - filtering of speed cut-off frequency 0: filter switched off fg: 0.05 50 Hz	FLOAT	4	rw	0	0	50	1302
Order no low pass filter (Page 91)	Filter number 2*(15)	SHORT	2	rw	4	1	5	1304
Reserve		FLOAT	4	rw	0	0	0	1305
Reserve		USHORT	2	rw	0	0	0	1307
Depth average filter flow rate (Page 91)	Depth of average filter for weight measurement (n x 10 ms)	USHORT	2	rw	0	0	0	1308

8.8.1 Negative and positive zero offset in %

Zeroing sets the current weight of the scale and the belt load to zero. The specification is made in % of the nominal belt load. The range refers to the original zero point of the last calibration.

8.8.2 Minimum flow rate

Dropping below the minimum flow rate is displayed in the status area of the scale. The specification is made in % of the design flow rate.

8.8.3 Maximum flow rate

Exceeding the maximum flow rate is displayed in the status area of the scale. The specification is made in % of the design flow rate.

8.8.4 Delay for flow rate limits

Reaching the maximum flow rate is displayed in the status area of the scale only following expiry of the delay. The specification is made in ms.

8.8.5 Minimum belt speed

Dropping below the minimum belt speed is displayed in the status area of the scale. The specification is made in % of the nominal belt speed which was specified during commissioning or calculated.

8.8.6 Maximum belt speed

Exceeding the maximum belt speed is displayed in the status area of the scale. The specification is made in % of the nominal belt speed which was specified during commissioning or calculated.

8.8.7 Delay for belt speed limits

Violation of the limits for the belt speed is delayed by the specified time. The specification is made in ms.

8.8.8 Minimum belt load

Dropping below the minimum belt load is displayed in the status area of the belt scale. The specification is made in % of the nominal belt load which was determined during commissioning.

8.8.9 Maximum belt load

Exceeding the maximum belt load is displayed in the status area of the belt scale. The specification is made in % of the nominal belt load which was determined during commissioning.

8.8.10 Delay for belt load limits

Violation of the limits for the belt load is delayed by the specified time. The specification is made in ms.

8.8.11 Medium load for totalizing

Totalizing is not carried out below this value. The specification is made in % of the belt load. If "0" is specified, totalizing is bidirectional.

8.8.12 Frequency low pass filter weight/belt load/belt speed

A critically damped low-pass filter is provided to suppress interferences. The diagram below shows the step response of the filter (f_g = 2 Hz). The entry "0" means that the filter is switched off. The cut-off frequency can be specified between 0.05 and 50.0 Hz.

Figure 8-1 Step response of the digital low-pass filter when $f_a = 2 \text{ Hz}$

The definition of the cut-off frequency is extremely important for suppressing interferences. Defining the cut-off frequency defines the "speed" of the scale's response to changes in the measured value. A value of 5 Hz, for example, results in a relatively rapid response to a change in weight; a value of 0.5 Hz makes the scale "slower".

8.8.13 Order no low pass filter

The number of the filter defines the effect of damping. The values 2, 4, 6, 8, and 10 can be set. The higher the selected order number, the higher the damping effect of the filter.

8.8.14 Depth average filter flow rate

The mean value filter is used to steady the weight against random interference. The weight is generated from the mean value of n (n = max. 250) weight values calculated by the weighing module every 10 ms. With n = 10, for example, 10 values are used to generate the mean value. The oldest value is discarded every 10 ms, and the newest value included in the calculation.

8.8.15 Number of samples of the analog output average value filter

The average value filter averages the signal of the analog output and thus balances the signal without dampening the source of the signal (e.g. flow rate, belt load, etc.).

8.9 DR 7 Process interfaces

Data record DR 7 contains the parameters for defining the properties of the available I/O modules (digital inputs, digital outputs, analog output, serial ports).

If a port is not used, the default value can be retained.

Procedure

- Change the parameters if necessary
- Transfer the data record to the scale

Table 8-5Assignment of data record 7

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	7	-	-	1309
Length	Data record length information	USHORT	2	r	64	-	-	1310
Application	Information on which application the DR belongs to	USHORT	2	r	104	-	-	1311
Version identifier	Information on the current data record version	USHORT	2	r	1	1	65635	1312

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Assign- ment digital input DI 0, 1, 2, 3 (Page 94)	Assignment for digital input .0 0: No command assigned 1 n: command number, is triggered at a rising edge (0->1 transition), 1304 pulse sensor	USHORT	2	rw	0	0	32767	1313
	Assignment digital input .1 0: No command assigned 1 n: command number, is triggered at a rising edge (0->1 transition)	USHORT	2	rw	0	0	32767	1314
	Assignment digital input .2 0: No command assigned 1 n: command number, is triggered at a rising edge (0->1 transition)	USHORT	2	rw	0	0	32767	1315
	Assignment digital input .3 0: No command assigned 1 n: command number, is triggered at a rising edge (0->1 transition)	USHORT	2	rw	0	0	32767	1316
Input filter- ing (hard- ware set- ting) (Page 95)	0: 0.2 ms 1: 0.2 ms 2: 0.4 ms 3: 0.8 ms 4: 1.6 ms 5: 3.2 ms 6: 6.4 ms 7: 12.8 ms	USHORT	2	rw	5	0	7	1317
Assign- ment digital output DQ 0, 1, 2, 3 (Page 95)	Assignment for digital output .0 0 31: Bit no. of the status flags from bytes 0 3 (DR 30), 33: data record 18 34: S7 I/O modules	USHORT	2	rw	0	0	3163	1318
	100-131: Bit no. of the status flags from bytes 0 3 from data record 30, but inverted							
	255: Output always disabled							
	1000-1031: Operating error							
	1100-1131: Operating error, inverted							
	2000-2031: Technological error							
	2100-2131: Lechnological error, inverted							
	3100-3163: Data of command error, inver- ted							
	Assignment digital output .1 (see output .0)	USHORT	2	rw	0	0	3163	1319
	Assignment digital output .2 (see output .0)	USHORT	2	rw	0	0	3163	1320
	Assignment digital output .3 (see output .0)	USHORT	2	rw	0	0	3163	1321

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Response of digital outputs to faults or SI- MATIC STOP (Page 96)	Response of digital outputs following module fault or CPU STOP: 0: Outputs are switched off 1: Outputs are not switched off, continue 2: The relevant substitute value is activa- ted 3: The outputs are switched on	USHORT	2	rw	0	0	3	1322
Substitute value for	Substitute value for DQ.0 following fault or SIMATIC CPU STOP	BIT	0	rw	0	0	1	1323.16
DQ 0, 1, 2, 3 following	Substitute value for DQ.1 following fault or SIMATIC CPU STOP	BIT	0	rw	0	0	1	1323.15
MATIC	Substitute value for DQ.2 following fault or SIMATIC CPU STOP	BIT	0	rw	0	0	1	1323.14
(Page 96)	Substitute value for DQ.3 following fault or SIMATIC CPU STOP	BIT	0	rw	0	0	1	1323.13
Bit 4	Reserve	BIT	0	rw	0	0	1	1323.12
Bit 5	Reserve	BIT	0	rw	0	0	1	1323.11
Bit 6	Reserve	BIT	0	rw	0	0	1	1323.10
Bit 7	Reserve	BIT	0	rw	0	0	1	1323.9
Bit 8	Reserve	BIT	0	rw	0	0	1	1323.8
Bit 9	Reserve	BIT	0	rw	0	0	1	1323.7
Bit 10	Reserve	BIT	0	rw	0	0	1	1323.6
Bit 11	Reserve	BIT	0	rw	0	0	1	1323.5
Bit 12	Reserve	BIT	0	rw	0	0	1	1323.4
Bit 13	Reserve	BIT	0	rw	0	0	1	1323.3
Bit 14	Reserve	BIT	0	rw	0	0	1	1323.2
Bit 15	Reserve	BIT	2	rw	0	0	1	1323.1
Analog out- put range (Page 97)	0: 0 20 mA 1: 4 20 mA	USHORT	2	rw	0	0	1	1324
Analog out- put source (Page 97)	Basis of analog value output: 0 = belt speed 1 = belt load 2 = flow rate 3 = ext. specification DS17 4 = ext. specification S7 interface	USHORT	2	rw	2	0	4	1325
Response of analog output to faults or SI- MATIC STOP (Page 97)	0: Switch off1: retain function2: Output configured output value3: Output maximum value (24 mA, NA-MUR)	USHORT	2	rw	0	0	3	1326
Start value for the ana- log output (Page 97)	Value at which 04 mA is to be output	FLOAT	4	rw	0	maxi- mum weight	maxi- mum weight	1327

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
End value for the ana- log output (Page 97)	Value at which 20 mA is to be output	FLOAT	4	rw	0	maxi- mum weight	maxi- mum weight	1329
Output val- ue follow- ing fault or SIMATIC STOP (Page 98)	Value to be output when the OutDis sig- nal is enabled (in mA)	FLOAT	4	rw	0	0	24	1331
Trace re- cording cy- cle (Page 98)	1: 10 ms 10: 100 ms 100: 1 s 1 000: 10 s	USHORT	2	rw	1	1	1000	1333
Trace stor- age meth- od (Page 98)	0: Trace recording runs as a circular buffer1: Trace is stopped when the trace memory is full	BIT	0	rw	0	0	1	1334.16
Bit 1	Reserve	BIT	0	rw	0	0	1	1334.15
Bit 2	Reserve	BIT	0	rw	0	0	1	1334.14
Bit 3	Reserve	BIT	0	rw	0	0	1	1334.13
Bit 4	Reserve	BIT	0	rw	0	0	1	1334.12
Bit 5	Reserve	BIT	0	rw	0	0	1	1334.11
Bit 6	Reserve	BIT	0	rw	0	0	1	1334.10
Bit 7	Reserve	BIT	1	rw	0	0	1	1334.9
Bit 8	Reserve	BIT	0	rw	0	0	1	1334.8
Bit 9	Reserve	BIT	0	rw	0	0	1	1334.7
Bit 10	Reserve	BIT	0	rw	0	0	1	1334.6
Bit 11	Reserve	BIT	0	rw	0	0	1	1334.5
Bit 12	Reserve	BIT	0	rw	0	0	1	1334.4
Bit 13	Reserve	BIT	0	rw	0	0	1	1334.3
Bit 14	Reserve	BIT	0	rw	0	0	1	1334.2
Bit 15	Reserve	BIT	1	rw	0	0	1	1334.1
Load per pulse	External totalizer - amount per pulse: output of pulses for external totalizer	REAL	4	rw	0	0		1335
(Page 98)	Pulse duration in ms (output of pulses for external totalizers)	LONG	4	rw	0	0		1337
Reserve		LONG	4	rw	0	0		1339

8.9.1 Assignment digital input DI 0, 1, 2, 3

A command trigger can be assigned to a digital input. The assignment is made with the command number: \rightarrow Command lists (Page 135).

Assignment input DI.0, 1, 2, 3:

Code	Assignment
0	Not assigned
n	Command code is triggered at a rising edge (0 -> 1 transition)
1304 (only DI .0)	The speed sensor is connected (up to approx. 5 kHz)
1303 (only DI .0)	Message to SIWAREX "Belt switched on"
75 (only DI .1)	Belt revolution sensor for calculation of belt for exact triggering of revolution time

8.9.2 Input filtering (hardware setting)

To ensure that the inputs do not respond too quickly to the signal change, a minimum signal pending time can be specified. The pending signal is not processed further until this time has elapsed.

The following values can be set:

Value	Signal pending period	Value	Signal pending period		
0	0.2 ms	4	1.6 ms		
1	0.2 ms	5	3.2 ms		
2	0.4 ms	6	6.4 ms		
3	0.8 ms	7	12.8 ms		

8.9.3 Assignment digital output DQ 0, 1, 2, 3

The digital outputs can be assigned different functions. The output of the scale status or the error messages as well as additional functions as listed in the following table are available for selection. This is done on the basis of the bit number.

Assignment output DQ.0, 1, 2, 3:

Value	Function of the digital output
255	Output is not active
0 31	Bit no. of the status flags from bytes 0 to 3 (DR 30)
100 131	Bit no. of the status flags from bytes 0 to 3 (DR 30), but inverted
33	Controlled via data record 18
34	Controlled via S7 I/O modules
1000-1031	Operating error
1100-1131	Operating error, inverted
2000-2031	Technological error
2100-2131	Technological error, inverted
3000-3063	Data or command error
3100-3163	Data/command error, inverted

8.9.4 Response of digital outputs to faults or SIMATIC STOP

This parameter allows you to define the response of the digital outputs following a fault of the SIWAREX module or SIMATIC STOP.

Value	Response
0	Outputs are switched off
1	Outputs are not switched off (continue)
2	The relevant substitute value is activated
3	Outputs are switched on

8.9.5 Substitute value for DQ 0, 1, 2, 3 following fault or SIMATIC STOP

The outputs are usually reset following a module fault (operating error) or SIMATIC CPU STOP. This response is the default setting.

If an output is to be set following a fault, this response is defined using this parameter. The "Response of digital outputs to fault or SIMATIC STOP" parameter must also be set to "Output substitute value".

The substitute value definition is then valid.

Examples

Table 8-6Bit 0 defines digital output 0 (DQ.0)

Value of bit 0	Value of DQ.0 following fault				
0	0				
1	1				

Table 8-7 Bit 1 defines digital output 1 (DQ.1)

Value of bit 1	Value of DQ.1 following fault				
0	0				
1	1				

NOTICE

Risk to the plant

If an output is set following a fault (operating error), this can pose a risk for the plant.

Ensure that the parameters are correctly set.

8.9.6 Analog output range

This parameter is used to define the range of the output current.

Value	Output current			
0	0 20 mA			
1	4 20 mA			

8.9.7 Analog output source

The analog output can be used for a range of purposes. This parameter defines the tag that controls the analog output.

Value	Basis for the analog output
0	Belt speed
1	Belt load
2	Material flow rate
3	External specification, DR 17 (Specified in mA)
4	Via SIMATIC S7 interface

8.9.8 Response of analog output to faults or SIMATIC STOP

This parameter defines the response of the analog output following a fault of the SIWAREX module or SIMATIC STOP.

Value	Response
0	Switch off
1	Retain function
2	Output configured output value, e.g. 3.5 mA
3	Output maximum value (24 mA, NAMUR)

8.9.9 Start value for the analog output

This parameter defines the specified value at which 0 or 4 mA is output. The value can be greater or less than the end value.

8.9.10 End value for the analog output

This parameter defines the specified value at which 20 mA is output. The value can be greater or less than the start value.

8.9.11 Output value following fault or SIMATIC STOP

The default settings set the analog output to the defined value following a module fault (operating error) or upon SIMATIC CPU STOP.

If the analog output is, for example, to be set to 3.5 mA following a fault, this is defined with this parameter. The current value to be output is entered.

NOTICE

System can be switched to unsafe state

If the analog output is to be set to a given value following a fault (operating error), you must ensure that this poses no danger.

8.9.12 Trace recording cycle

The trace function is used for the continuous recording of measured values. The recording rate is defined with the parameter.

Value	Response
1	Recording every 10 ms
10	Recording every 100 ms
100	Recording every second
1 000	Recording every 10 s

8.9.13 Trace storage method

This parameter is used to specify the response of the trace memory.

Value	Response
0	Trace recording runs as circulating memory
1	Trace is stopped when the trace memory is full

8.9.14 Load per pulse

By parameterizing the corresponding digital output you can use one of the digital outputs as a pulse sensor/quantity (see Assignment digital output DQ 0, 1, 2, 3 (Page 95)).

In addition you must specify a load per pulse and a pulse duration for the signal. If the material flow rate is displayed e.g. in t/h, you must specify the quantity per pulse in t, or with kg/h in kg. The pulse duration is defined in ms.

Make sure when setting the parameters that you only enter plausible combinations \rightarrow pulse duration > (amount per pulse / material flow rate)

8.10 DR 8 date and time

The weighing module has its own hardware clock. The current date and time are specified by or read from data record DR 8. The clock is buffered with a capacitor and can continue operating for up to approximately 70 hours without a supply voltage. If you are using the Modbus protocol, data record DR 48 must be used for the date and time.

Procedure

- Set the date and time
- Transfer the data record to the scale

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	8	-	-	1341
Length	Data record length information	USHORT	2	r	20	-	-	1342
Application	Information about which appli- cation the DR belongs to	USHORT	2	r	104	-	-	1343
Version identifier	Information about current data record version	USHORT	2	r	1	1	65635	1344
Date and time	SIMATIC DTL format	DTL	12	rw	DTL#197 0-01-01-0 0:00:00.0	-	-	1345

 Table 8-8
 Assignment of data record 8

8.11 DR 9 module information

No entries can be made in data record DR 9. This data record provides information on the inner workings of the SIWAREX module. This information is used to identify the module at the manufacturer plant (e.g. in the event of repairs). The entries in the data record are of no importance to the user for operation.

Table 8-9 Assignment of data record 9

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USH- ORT	2	r	9	-	-	1351
Length	Data record length information	USH- ORT	2	r	68	-	-	1352
Application	Information about which application the DR belongs to	USH- ORT	2	r	104	-	-	1353
Version identifier	Information about current data record version	USH- ORT	2	r	1	1	65635	1354
Order No header	Maximum and current string length for the order number	UBYTE[2]	2	r	16.16	-	-	1355
Order No.	Order number of the module 7MH	CHAR[1 6]	16	r	"7MH"	-	-	1356

Scale parameters and functions of the belt scale

8.12 DR 10 load cell parameters

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Serial number - header	String header	UBYTE[2]	2	r	12.12	-	-	1364
Serial number	Serial number " XXX00001"	CHAR[1 2]	12	r		-	-	1365
Firmware type - header	String header	UBYTE[2]	2	r	2.2	-	-	1371
Firmware type	Character V - Release B - Test etc.	CHAR[2]	2	r	'V '	-	-	1372
Firmware version - 1st position	Version 1.	USH- ORT	2	r	0	-	-	1373
Firmware version - 2nd position	Version 2.	USH- ORT	2	r	0	-	-	1374
Firmware version - 3rd position	Version 3.	USH- ORT	2	r	0	-	-	1375
Hardware version number	ES hardware version number (e.g. 03)	USH- ORT	2	r	1	-	-	1376
OS version header	String header	UBYTE[2]	2	r	1.1	-	-	1377
OS version (loader) - designation	Character V - Release B - Test etc.	CHAR[2]	2	r	'V '	-	-	1378
OS version (loader) - designation	e.g. version n	USH- ORT	2	r	'V '	-	-	1379
DRAM memory	Flash memory	USH- ORT	2	r	0	-	-	1380
Flash memory	MRAM memory	USH- ORT	2	r	0	-	-	1381
MRAM memory	Memory type	USH- ORT	2	r	0	-	-	1382
Reserve 1	0	FLOAT	4	r	0	-	-	1383

8.12 DR 10 load cell parameters

The parameters of the analog load cells must be checked prior to the automatic calibration and modified if necessary. Only the parameters identified by bold font and asterisk (*) need be entered.

Procedure

- Check the parameters and modify them as required
- Transfer the data record to the scale
- Calibrate the scale

8.12 DR 10 load cell parameters

Variable	Note	Туре	L	Rw	De- fault	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	10	-	-	1400
Length	Data record length information	USHORT	2	r	38	-	-	1401
Application	Information about which appli- cation the DR belongs to	USHORT	2	r	104	-	-	1402
Version iden- tifier	Information about current data record version	USHORT	2	r	1	1	65635	1403
Number of load cells (Page 101) ¹⁾	Number of analog load cells	USHORT	2	rw	1	1	6	1404
50/60 Hz tog- gling (Page 101)	50/60 Hz toggling	USHORT	2	rw	0	0	1	1405
Reserve 1	Reserve	USHORT	2	rw	0	0	0	1406
Load cell characteristic value (Page 102) ¹⁾	Characteristic value of the load cell (n) [mV/V], the mean value is used if there is more than one cell.	FLOAT	4	rw	2	> 0.1	10	1407
Rated load of a load cell (Page 102) ¹⁾	Rated load of a load cell	FLOAT	4	rw	60	-	-	1409
Reserve	Reserve	FLOAT	4	rw	0	-	-	1411
Reserve	Reserve	FLOAT	4	rw	0	-	-	1413
Reserve 2	Reserve	SHORT	2	rw	0	-	-	1415
Reserve 3	Reserve	USHORT	2	rw	0	-	-	1416
Reserve 4	Reserve	FLOAT	4	rw	0	-	-	1417

Table 8-10 Assignment of data record 10

¹⁾ Parameter for calculation of calibration points with theoretical calibration

8.12.1 Number of load cells

The number of load cells is required for automatic calibration.

8.12.2 50/60 Hz toggling

To improve the suppression of faults caused by the supply network, you can specify the network frequency for signal filtering.

8.13 DR 12 Ethernet parameters

8.12.3 Load cell characteristic value

The characteristic value of the load cell(s) is required to correctly interpret the output voltage from the load cell. The exact value can be entered if the measurement log for the load cell is available. The mean value of all characteristic values is used if there is more than one load cell.

Example

Characteristic value = 2.018 mV/V

8.12.4 Rated load of a load cell

The rated load of a load cell is required for checking the maximum weighing range of the scales. The rated load is entered in the specified units of weight.

8.13 DR 12 Ethernet parameters

To integrate the SIWAREX module into an Ethernet network, configure the Ethernet parameters.

Table 8-11 Assignment of data record 12

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	12	-	-	1500
Length	Data record length informa- tion	USHORT	2	r	110	-	-	1501
Application	Information on which appli- cation the DR belongs to	USHORT	2	r	104	-	-	1502
Version identifi- er	Information on the current data record version	USHORT	2	r	1	1	65635	1503
Device MAC ad-	Device MAC address 1	USHORT	2	r		0	FF	1504
dress	Device MAC address 2	USHORT	2	r		0	FF	1505
(Page 104)	Device MAC address 3	USHORT	2	r		0	FF	1506
	Device MAC address 4	USHORT	2	r		0	FF	1507
	Device MAC address 5	USHORT	2	r		0	FF	1508
	Device MAC address 6	USHORT	2	r		0	FF	1509
Port MAC ad-	Port MAC address 1	USHORT	2	r		0	FF	1510
dress	Port MAC address 2	USHORT	2	r		0	FF	1511
(Page 104)	Port MAC address 3	USHORT	2	r		0	FF	1512
	Port MAC address 4	USHORT	2	r		0	FF	1513
	Port MAC address 5	USHORT	2	r		0	FF	1514
	Port MAC address 6	USHORT	2	r		0	FF	1515

8.13 DR 12 Ethernet parameters

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
IP address	IP address x.n.n.n	USHORT	2	RW	192	0	255	1516
(Page 104)	IP address n.x.n.n	USHORT	2	RW	168	0	255	1517
	IP address n.n.x.n	USHORT	2	RW	0	0	255	1518
	IP address n.n.n.x	USHORT	2	RW	21	0	255	1519
Subnet mask	Subnet mask x.n.n.n	USHORT	2	RW	255	0	255	1520
(Page 104)	Subnet mask n.x.n.n	USHORT	2	RW	255	0	255	1521
	Subnet mask n.n.x.n	USHORT	2	RW	255	0	255	1522
	Subnet mask n.n.n.x	USHORT	2	RW	0	0	255	1523
Gateway	Gateway x.n.n.n	USHORT	2	RW	192	0	255	1524
(Page 105)	Gateway n.x.n.n	USHORT	2	RW	168	0	255	1525
	Gateway n.n.x.n	USHORT	2	RW	0	0	255	1526
	Gateway n.n.n.x	USHORT	2	RW	21	0	255	1527
Device name	Current device name header	UBYTE[2]	2	rw				1528
(Page 105)	Current device name	CHAR[32]	32	rw				1529
Byte swap for	0: Yes	SHORT	2	RW	0	0	1	1545.16
text fields (Page 105)	1: No							
(MODBUS TCP port 502)								
Byte swap for	0: Big endian (MSB first)	SHORT		RW	0	0	1	1545.15
(Page 105) (MODBUS TCP port 502)	1: Little endian (LSB first)							
Byte swap for	0: Big endian (MSB first)	SHORT		RW	0	0	1	1545.14
32-bit values (Page 105) (MODBUS TCP port 502)	1: Little endian (LSB first)							
Word swap for	0: Little endian (LSB first)	SHORT		RW	0	0	1	1545.13
32-bit values (Page 105) (MODBUS TCP port 502)	1: Big endian (MSB first)							
Bit 4	Reserve	SHORT		RW	0	0	1	1545.12
Bit 5	Reserve	SHORT		RW	0	0	1	1545.11
Bit 6	Reserve	SHORT		RW	0	0	1	1545.10
Deactivate	0: Port is active	SHORT		RW	0	0	1	1545.09
MODBUS TCP port 503 (Page 105)	1: Port is deactivated							
Byte swap for	0: Yes	SHORT	2	RW	0	0	1	1545.8
text fields (Page 105) (MODBUS TCP port 503)	1: No							

8.13 DR 12 Ethernet parameters

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Byte swap for 16-bit values (Page 105) (MODBUS TCP port 503)	0: Big endian (MSB first) 1: Little endian (LSB first)	SHORT	2	RW	0	0	1	1545.7
Byte swap for 32-bit values (Page 105) (MODBUS TCP port 503)	0: Big endian (MSB first) 1: Little endian (LSB first)	SHORT	2	RW	0	0	1	1545.6
Word swap for 32-bit values (Page 105) (MODBUS TCP port 503)	0: Little endian (LSB first) 1: Big endian (MSB first)	SHORT	2	RW	0	0	1	1545.5
Bit 4	Reserve	SHORT	2	RW	0	0	1	1545.4
Bit 5	Reserve	SHORT	2	RW	0	0	1	1545.3
Bit 6	Reserve	SHORT	2	RW	0	0	1	1545.2
Deactivate MODBUS TCP port 503 (Page 105)	0: Port is active 1: Port is deactivated	SHORT	2	RW	0	0	1	1545.1
Reserve 2	Reserve	FLOAT	4	r	0	-	-	1546
Reserve 3	Reserve	FLOAT	4	r	0	-	-	1548

8.13.1 Device MAC address

Each SIWAREX module has a unique MAC address. This MAC address cannot be changed by the user.

8.13.2 Port MAC address

Each SIWAREX module has a unique MAC port address. This MAC address cannot be changed by the user.

8.13.3 IP address

Assign the IP address using the Primary Setup Tool, SIWATOOL, or via SIMATIC (see section "IP address for SIWAREX (Page 64)").

8.13.4 Subnet mask

Assign the subnet mask of your network.

8.14 DR 13 RS485 parameters

8.13.5 Gateway

If a gateway is used between the SIWAREX WP241 and the communication partner, enter the gateway address here.

If a gateway is not present, enter the IP address of the SIWAREX module.

8.13.6 Device name

This parameter can be used to assign a name to the weighing module in the Ethernet network. The length of the name is limited to 32 characters. Empty spaces must be filled by "x".

8.13.7 Byte/Word swap options

Defines the format used for transfer over the Ethernet port (MODBUS TCP IP).

8.14 DR 13 RS485 parameters

The parameters which define the response of the RS485 interface are specified in data record DR 13. If the interface is not used, the default values can be retained.

Procedure

- Check the parameters and modify them as required.
- Transfer the data record to the scale.

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	13	-	-	1558
Length	Data record length information	USHORT	2	r	24	-	-	1559
Application	Information on which application the data record belongs to	USHORT	2	r	104	-	-	1560
Version identifi- er	Information on the current data re- cord version	USHORT	2	r	1	1	65635	1561
RS485 protocol (Page 106)	0: No protocol 1: MODBUS RTU	USHORT	2	rw	1	0	2	1562
RS485 baud rate (Page 107)	2: 9 600 bps 3: 19 200 bps 4: 38 400 bps 5: 57 600 bps 6:115 000 bps	USHORT	2	rw	3	0	6	1563
RS485 charac- ter parity (Page 107)	Character parity 0: Even 1: Odd	BIT	0	rw	0	0	1	1564.16

Table 8-12 Assignment of data record 13

8.14 DR 13 RS485 parameters

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
RS485 number of data bits (Page 107)	Number of data bits per character 0: 7 data bits 1: 8 data bits	BIT	0	rw	0	0	1	1564.15
RS485 number of stop bits (Page 107)	Number of stop bits 0: 1 stop bit 1: 2 stop bits	BIT	0	rw	0	0	1	1564.14
Bit 3	Reserve	BIT	0	rw	0	0	1	1564.13
Bit 4	Reserve	BIT	0	rw	0	0	1	1564.12
Bit 5	Reserve	BIT	0	rw	0	0	1	1564.11
Bit 6	Reserve	BIT	0	rw	0	0	1	1564.10
Bit 7	Reserve	BIT	0	rw	0	0	1	1564.9
Byte swap for text fields (Page 108)	0: Yes 1: No	BIT	0	rw	0	0	1	1564.8
Byte swap for 16-bit values (Page 108)	0: Big endian (MSB first) 1: Little endian (LSB first)	BIT	0	rw	0	0	1	1564.7
Byte swap for 32-bit values (Page 108)	0: Big endian (MSB first) 1: Little endian (LSB first)	BIT	0	rw	0	0	1	1564.6
Word swap for 32-bit values (Page 108)	0: Little endian (LSB first) 1: Big endian (MSB first)	BIT	0	rw	0	0	1	1564.5
Bit 12	Reserve	BIT	0	rw	0	0	1	1564.4
Bit 13	Reserve	BIT	0	rw	0	0	1	1564.3
Bit 14	Reserve	BIT	0	rw	0	0	1	1564.2
Bit 15	Reserve	BIT	2	rw	0	0	1	1564.1
RS485 Modbus address (Page 107)	MODBUS address	USHORT	2	rw	20	1	255	1565
Reserve		SHORT	2	rw	0	-	-	1566
Modbus RTU response delay (Page 108)	Delay time for response with MOD- BUS RTU in ms (RS485)	USHORT	2	rw	0	-	-	1567
Reserve	Reserve	FLOAT	4	rw	0	-	-	1568

8.14.1 RS485 protocol

This parameter defines the protocol for communication via the RS485 interface.

Value	Protocol
0	No communication/protocol
1	Modbus RTU

8.14 DR 13 RS485 parameters

8.14.2 RS485 baud rate

This parameter defines the baud rate for the RS485 interface.

Value	Baud rate
2	9 600 bps
3	19 200 bps
4	38 400 bps
5	57 600 bps
6	115 000 bps

8.14.3 RS485 character parity

This parameter defines the character parity for the RS485 interface.

Value	Character parity
0	Even (for digital load cells from Mettler-Toledo)
1	Odd (for digital load cells from Wipotec)

8.14.4 RS485 number of data bits

This parameter defines the number of data bits for the RS485 interface.

Value	Data bits
0	7 (for digital load cells from Mettler Toledo)
1	8 (for digital load cells from Wipotec)

8.14.5 RS485 number of stop bits

This parameter defines the number of stop bits for the RS485 interface.

Value	Stop bits
0	1 (for digital load cells)
1	2

8.14.6 RS485 Modbus address

This parameter defines the Modbus address (1 to 230) for communication via the RS485 interface with the Modbus protocol.

8.15 DR 15 belt angle

8.14.7 Modbus RTU response delay

This parameter defines the delay of a response to a data request by the Modbus RTU master (in ms).

8.14.8 Byte/Word swap options

Defines the format used for transfer over the Ethernet port (MODBUS TCP IP).

8.15 DR 15 belt angle

Data recorder DR 15 is used for an external specification.

Procedure

- Enter the actual inclination angle of the conveyor belt.
- Transfer the data record to the scale.

Table 8-13	Assignment of data record 1	5
------------	-----------------------------	---

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record num- ber	Contains no. of data record	USHORT	2	r	15	-	-	1570
Length	Data record length information	USHORT	2	r	16	-	-	1571
Application	Information about which appli- cation the DR belongs to	USHORT	2	r	104	-	-	1572
Version identifier	Information about current data record version	USHORT	2	r	1	1	65635	1573
Current belt angle (Page 108)	Angle of inclination	FLOAT	4	rw	0	0	60	1574
Reserve 1	Reserve	SHORT	2	rw	0	0	-	1576

8.15.1 Current belt angle

Input of the angle is provided for belt scales where the inclination of the belt can be changed during operation. Calculation of the current belt load is corrected by entering the current angle.

The input is unnecessary if the inclination is always constant: the influence of the constant angle is compensated or automatically taken into consideration during the calibration with weights or test chain.

If the scale is automatically calibrated using the load cell parameters and if the scale is not installed exactly horizontally, you must subsequently enter the inclination angle of the belt. The input is made in degrees.
8.16 DR 16 Simulation (belt speed and belt load)

8.16 DR 16 Simulation (belt speed and belt load)

The belt load and belt speed can be simulated using an input via data record DR 16. The SIWAREX module must first be released for simulation mode in DR 3 and then activated with command 3 or 5 or deactivated with command 4 or 6.

Procedure

- Release simulation mode in DR 3
- Send command no. 3 and/or 5 to the SIWAREX module
- Enter the belt load and/or speed to be simulated
- Transfer the data record to the SIWAREX module

Table 8-14 Assignment of data record 16

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	16	-	-	1578
Length	Data record length information	USHORT	2	r	20	-	-	1579
Application	Information about which appli- cation the data record belongs to	USHORT	2	r	104	-	-	1580
Version iden- tifier	Information about current da- ta record version	USHORT	2	r	1	1	65635	1581
Value for belt load simula- tion (Page 109)		FLOAT	4	rw	0	-	-	1582
Value for belt speed simu- lation (Page 109)		SHORT	2	rw	0	0	-	1584
Reserve	Reserve	USHORT	2	rw	0	0	-	1586
Reserve		USHORT	2	rw	0	0	-	1587

8.16.1 Value for belt load simulation

Only use values for the belt load which are within the measuring range of the scale. The word "TEST" is displayed on the main display during simulation and a status bit is set.

8.16.2 Value for belt speed simulation

Only use values for simulation of the belt speed which are within the speed range of the belt. The word "TEST" is displayed on the main display during simulation and a status bit is set.

8.18 DR 18 Control digital output

8.17 DR 17 Control analog output

If data record DR 17 is configured as the source for the analog output (see Analog output source (Page 97)), specifying a control output sends a corresponding output current at the analog output.

Procedure

- In data record DR 7, check that "Control by DR17" has been configured as the source for the analog output
- Check the analog output configuration (see Analog output source (Page 97))
- Enter a value in data record DR 17
- Transfer the data record to the scale

Table 8-15 Assignment of data record 17

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	17	-	-	1588
Length	Data record length information	USHORT	2	r	16	-	-	1589
Application	Information about which applica- tion the data record belongs to	USHORT	2	r	104	-	-	1590
Version iden- tifier	Information about current data re- cord version	USHORT	2	r	1	1	65635	1591
Analog out- put specifica- tion (Page 110)	Value which is to be output (only relevant if source is "External specification", see DR 7)	FLOAT	4	rw	0	-	-	1592
Reserve 1	Reserve	SHORT	2	rw	0	0	-	1594
Reserve 2	Reserve	USHORT	2	rw	0	0	-	1595

8.17.1 Analog output specification

The value to be entered must be between the start value (Page 97) and the end value (Page 97) of the analog output.

8.18 DR 18 Control digital output

If a digital output is defined in data record DR 7 for control with data record DR 18 (see Assignment digital output DQ 0, 1, 2, 3 (Page 95)), you can control this output with data record DR 18. Transfer is always for all four digital outputs. Only outputs which are configured for control by DR 18 (see DR 7 Process interfaces (Page 91)) are enabled or disabled in accordance with the content of data record DR 18.

8.18 DR 18 Control digital output

Procedure

- Check or adapt the desired parameter settings of the digital outputs in data record 7
- Define the value for digital output DQ,0, 1, 2, 3
- Transfer the data record to the scale

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data re- cord	USHORT	2	r	18	-	-	1596
Length	Data record length infor- mation	USHORT	2	r	12	-	-	1597
Application	Information about which application the DR be- longs to	USHORT	2	r	104	-	-	1598
Version iden- tifier	Information about cur- rent data record version	USHORT	2	r	1	1	65635	1599
Definition for digital output DQ.0, 1, 2, 3 (Page 112)	Definition for digital out- put 0=1 -> DQ0 output enabled (only applies if output is assigned code 21, see DR 7)	BIT	0	rw	0	0	1	1600.16
	Definition for digital out- put 1=1 -> DQ1 output enabled (only applies if output is assigned code 21, see DR 7)	BIT	0	rw	0	0	1	1600.15
	Definition for digital out- put 2=1 -> DQ2 output enabled (only applies if output is assigned code 21, see DR 7)	BIT	0	rw	0	0	1	1600.14
	Definition for digital out- put 3=1 -> DQ3 output enabled (only applies if output is assigned code 21, see DR 7)	BIT	0	rw	0	0	1	1600.13
Bit 4	Reserve	BIT	0	rw	0	0	1	1600.12
Bit 5	Reserve	BIT	0	rw	0	0	1	1600.11
Bit 6	Reserve	BIT	0	rw	0	0	1	1600.10
Bit 7	Reserve	BIT	0	rw	0	0	1	1600.9
Bit 8	Reserve	BIT	0	rw	0	0	1	1600.8
Bit 9	Reserve	BIT	0	rw	0	0	1	1600.7
Bit 10	Reserve	BIT	0	rw	0	0	1	1600.6
Bit 11	Reserve	BIT	0	rw	0	0	1	1600.5

Table 8-16 Assignment of data record 18

8.19 DR 19 External speed

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Bit 12	Reserve	BIT	0	rw	0	0	1	1600.4
Bit 13	Reserve	BIT	0	rw	0	0	1	1600.3
Bit 14	Reserve	BIT	0	rw	0	0	1	1600.2
Bit 15	Reserve	BIT	2	rw	0	0	1	1600.1
Reserve 1	Reserve	USHORT	2	rw	0	-	-	1601

8.18.1 Definition for digital output DQ.0, 1, 2, 3

Digital outputs 0 to 3 can be controlled using data record 18 with this parameter. This function can be used for commissioning purposes, for example.

8.19 DR 19 External speed

If the SIWAREX module is not to determine the belt speed because the current speed is available externally, e.g. in a controller, it can be passed on to the SIWAREX via DR 19. The current material flow rate can then be calculated.

Procedure

- Enter a value in data record DR 19
- Transfer the data record to the scale

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Regis- ter
Data record number	Contains no. of data record	USHORT	2	r	19	-	-	1602
Length	Data record length information	USHORT	2	r	16	-	-	1603
Application	Information about which application the da- ta record belongs to	USHORT	2	r	104	-	-	1604
Version identifier	Information about current data record version	USHORT	2	r	1	1	65635	1605
External speed val- ue	The externally determined speed can be sent to the scale.	FLOAT	4	rw	0	-	-	1606
Reserve 1	Reserve	SHORT	2	rw	0	0	-	1608
Reserve 2	Reserve	USHORT	2	rw	0	0	-	1609

Table 8-17 Assignment of data record 19

8.20 DR 20 Message configuration

You can suppress technological messages in data record DR 20. If you set the value for an individual message to "0", this message is no longer generated as if it did not exist. We recommend that you do not suppress messages.

NOTICE

Suppressing a message

Suppressing messages could mean that a fault in the belt scale is not recognized.

Procedure

- Define the value for a message to be suppressed to 0
- Transfer the data record to the scale

Table 8-18Assignment of data record 20

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data re- cord	USHORT	2	r	20	-	-	3000
Length	Data record length infor- mation	USHORT	2	r	12	-	-	3001
Application	Information about which application the data re- cord belongs to	USHORT	2	r	104	-	-	3002
Version identifier	Information about current data record version	USHORT	2	r	1	1	255	3003
2000 Technology error		BIT	2	rw	1	-	-	3004.16
Reserve		BIT	0	rw	1	-	-	3004.15
2002 Trace error		BIT	0	rw	1	-	-	3004.14
2003 Zeroing aborted		BIT	0	rw	1	-	-	3004.13
3001 Totalizer error		BIT	0	rw	1	-	-	3004.12
2004 Trace memory full		BIT	0	rw	1	-	-	3004.11
3002 Calibration procedure interrupted		BIT	0	rw	1	-	-	3004.10
Reserve		BIT	0	rw	1	-	-	3004.9
Reserve		BIT	0	rw	1	-	-	3004.8
Reserve		BIT	0	rw	1	-	-	3004.7
Reserve		BIT	0	rw	1	-	-	3004.6
Reserve		BIT	0	rw	1	-	-	3004.5
Reserve		BIT		rw	1	-	-	3004.4
Reserve		BIT		rw	1	-	-	3004.3
Reserve		BIT		rw	1	-	-	3004.2
Reserve		BIT		rw	1	-	-	3004.1
Reserve		USHORT		rw		-	-	3005.16

8.21 DR 21 Calculator

The SIWAREX module is equipped with a stop watch (see DR 4 Temporary parameters (Page 82)) and a mini calculator to support important activities during commissioning.

Procedure

- Enter the numbers A and B into data record DR 21
- Transfer the data record to the scale
- Trigger the desired activation function using a command (81 for multiplication A x B, 83 for division A/B)
- The result is displayed in DR 4

Table 8-19 Assignment of data record 21

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	21	-		
Length	Data record length information	USHORT	2	r	20	-		
Application	Information about which application the da- ta record belongs to	USHORT	2	r	104	-		
Version identifier	Information about current data record ver- sion	USHORT	2	r	1	1		
Number a		FLOAT	4	w	0	-		
Number b		FLOAT	4	w	0	-		
Reserve 2	Reserve	USHORT	2	w	0	0		

8.22 DR 30 Process state

Current states and process values in the scales can be monitored using process values and advanced process values from data record DR 31. Monitoring selected data during commissioning is extremely useful as it helps you to optimize parameters.

Procedure

- Read data record DR 30 cyclically or on a time-triggered basis
- Display/analyze the required tags

It is not always necessary to cyclically read data record DR 30. The most important process variables are already cyclically transferred via the SIMATIC I/O interface.

For Modbus communication with a Modbus master, data record DR 30 (a registry area is read) must be polled to provide the current data on the status of the scale.

Table 8-20 Assignment of data record 30

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	30	-	-	3000
Length	Data record length information	USHORT	2	r	68	-	-	3001

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Application	Information on which application the data record belongs to	USHORT	2	r	104	-	-	3002
Version identifier	Information on the current data record version	USHORT	2	r	1	1	255	3003
Within zero offset range	Set if belt load within zero set- ting range	BIT	2	r	0	-	-	3004.16
Zero offset procedure active	Set if automatic zeroing is switched on	BIT	0	r	0	-	-	3004.15
Zero tracking active	Set if automatic zero tracking is enabled	BIT	0	r	0	-	-	3004.14
Min. belt load for total- izing	Set if minimum belt load for to- talizing (DR6) is violated. Total- izing not carried out if TRUE.	BIT	0	r	0	-	-	3004.13
Max. material flow rate exceeded	Set if maximum material flow rate is exceeded	BIT	0	r	0	-	-	3004.12
Min. load for totalizing	Set if min. is load available.	BIT	0	r	0	-	-	3004.11
Min. belt speed viola- ted	Set if minimum belt speed is vio- lated	BIT	0	r	0	-	-	3004.10
Max. belt speed excee- ded	Set if maximum belt speed is exceeded	BIT	0	r	0	-	-	3004.9
Min. belt load violated	Set if min. belt load is violated	BIT	0	r	0	-	-	3004.8
Max. belt load excee- ded	Set when max. belt load is ex- ceeded	BIT	0	r	0	-	-	3004.7
Reserve	Not used	BIT	0	r	0	-	-	3004.6
Reserve	Not used	BIT	0	r	0	-	-	3004.5
Belt is running	Set if belt is running		0	r	0			3004.4
Totalizing active	Set if totalizing is running	BIT	0	r	0			3004.3
Totalizing enabled	Set if totalizing is enabled	BIT	0	r	0			3004.2
Totalizing fault	Set if totalizing is faulty (when changing to service mode)	BIT	0	r	0			3004.1
Pulse output active (see Load per pulse (Page 98))	Signal for quantity per pulse	BIT	0	r	0			3005.16
Reserve	Not used	BIT	0	r	0			3005.15
Simulation mode weight enabled	Simulation mode for weight is enabled	BIT	0	r	0			3005.14
Belt speed simulation active	Simulation mode for weight is enabled	BIT	0	r	0			3005.13
Stop watch active	Set if stop watch has been star- ted per command (e.g. calibra- tion command)	BIT	0	r	0	-	-	3005.12
Time buffering failed	Set if buffering of the time in RTC has failed. Deleted after time is set.	BIT	0	r	0	-	-	3005.11
Trace active	Set if trace is running	BIT	0	r	0	-	-	3005.10
Command error at dig- it. input	Set with synchronization error by command to digital input	BIT	0	r	0	-	-	3005.9

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Calibrated	Module is calibrated (calibration of weight measurement and speed)	BIT	0	r	0	-	-	3005.8
Service mode	Service mode active	BIT	0	r	0	-	-	3005.7
Calibration command is running	Set if calibration procedure has been triggered	BIT	0	r	0	-	-	3005.6
Write protection	Write-protect switch is enabled	BIT	0	r	0	-	-	3005.5
Analog output disrup- ted	Analog output fault	BIT	0	r	0	-	-	3005.4
Warm-up timer is run- ning	Warm-up time following power- up is running	BIT	0	r	0	-	-	3005.3
Startup	Startup or restore to recovery point has occurred, deleted after 5 seconds	BIT	0	r	0	-	-	3005.2
Fault	Fault present	BIT	0	r	0	-	-	3005.1
1000	Group message "Operating er- ror" present	BIT	0	r	0	-	-	3006.16
Reserve		BIT	0	r	0	-	-	3006.15
1104	Undervoltage	BIT	0	r	0	-	-	3006.14
1105	Load high	BIT	0	r	0	-	-	3006.12
1106	Underload	BIT	0	r	0	-	-	3006.11
1002	RAM error	BIT	0	r	0	-	-	3006.10
1102	ADC error	BIT	0	r	0	-	-	3006.9
1005		BIT	0	r	0	-	-	3006.8
1003	Checksum error data	BIT	0	r	0	-	-	3006.7
Reserve	Reserve	BIT	0	r	0	-	-	3006.6
1004	Checksum error program	BIT	0	r	0	-	-	3006.5
Reserve		BIT	0	r	0	-	-	3006.4
1001	Watchdog	BIT	0	r	0	-	-	3006.3
1007		BIT	0	r	0	-	-	3006.2
Reserve		BIT	0	r	0	-	-	3006.1
2000	Group message "Technological error" present	BIT	0	0	0	-	-	3007.16
Reserve	Reserve	BIT	0	r	0	-	-	3007.15
2002	Trace not possible since a task is still active	BIT	0	r	0	-	-	3007.14
2003	Zeroing not possible	BIT	0	r	0	-	-	3007.13
3001	Fault during totalizing	BIT	0	r	0	-	-	3007.12
2004	Trace memory full	BIT	0	r	0	-	-	3007.11
3002	Calibration aborted	BIT	0	r	0	-	-	3007.10
Current weight (Page 117)		FLOAT	4	r	0	-	-	3008
Current belt load (Page 117)	Current belt load in weight unit per length unit	FLOAT	4	r	0	-	-	3010
Current belt load in % (Page 117)	Current belt load in % of nominal belt load	FLOAT	4	r	0	-	-	3012

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Current flow rate (Page 117)	Current material flow rate per hour	FLOAT	4	r	0	-	-	3014
Current flow rate in % (Page 117)	Current material flow rate in % of nominal flow rate	FLOAT	4	r	0	-	-	3016
Current speed (Page 118)	Current speed per second	FLOAT	4	r	0	-	-	3018
Current speed in % (Page 118)	Current speed in % of design speed	FLOAT	4	r	0	-	-	3020
Current master totaliz- er (S1) (Page 118)	Current master totalizer (total operating time)	DOUBLE	8	r	0	-	-	3022
Current main totalizer (S2) (Page 118)	Current main totalizer	FLOAT	4	r	0	-	-	3026
Reserve		FLOAT	4	r	0	-	-	3028
Refresh counter for process values (Page 118)	Cycle counter incremented by 1 if weight values have been changed	USHORT	2	r	0	-	-	3030
Reserve 1	Reserve	SHORT	2	r	0	-	-	3031
Reserve 3	Reserve	FLOAT	4	r	0	-	-	3032

8.22.1 Current weight

The current material weight of the loaded belt resting on the scale. The output is made in the selected weight unit from the belt load.

8.22.2 Current belt load

The current material weight of the loaded belt acting on one unit of the weigh length.

8.22.3 Current belt load in %

Current belt load in % of nominal belt load

8.22.4 Current flow rate

The current material flow rate (belt load x speed).

8.22.5 Current flow rate in %

The current material flow rate (belt load x speed) in % of the nominal flow rate.

8.23 DR 31 Process state extended

8.22.6 Current speed

The current speed used to calculate the material flow rate. The output is made as length per second.

8.22.7 Current speed in %

The current speed used to calculate the material flow rate. The output is made in % of the maximum speed.

8.22.8 Current master totalizer (S1)

The total material flow is summed after the start-up and switching-off of service mode. Resetting the total is only possible using the "Load factory settings" command.

8.22.9 Current main totalizer (S2)

The material flow is saved in a powerfail-proof memory. It can be deleted using the "Log and delete" command.

8.22.10 Refresh counter for process values

Measured values are calculated every 10 ms in the SIWAREX module. A counter is incremented by 1 each time. Once the counter reaches the value 65536, it starts again from zero. The counter can be used as a time stamp for data record DR 30.

8.23 DR 31 Process state extended

Current states and process values in the scales can be monitored using advanced process values and process values (DR 30). This data is not required for standard operation of the scales.

Monitoring selected data during trial operation is extremely useful as it helps you to optimize parameters.

Procedure

- Read data record DR 31
- Display/analyze the required tags

8.23 DR 31 Process state extended

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	31	-	-	3300
Length	Data record length information	USHORT	2	r	54	-	-	3301
Application	Information on which application the data record belongs to	USHORT	2	r	104	-	-	3302
Version identifi- er	Information on the current data re- cord version	USHORT	2	r	1	1	65635	3303
Unfiltered digit value (Page 120)	Unfiltered digit value from A/D con- verter	LONG	4	r	0	-	-	3304
Filtered digit value (Page 120)	Filtered digit value from A/D con- verter	LONG	4	r	0	-	-	3306
Current load cell signal (mV) (Page 120)	Actual input voltage in mV calcula- ted from the input digits	LONG	4	r	0	-	-	3308
Current analog output (mA) (Page 120)	Actual current to be output in mA at the analog output	USHORT	2	r	0	0	65535	3310
Pulses per belt revolution (Page 120)	Pulses per belt revolution	LONG	4	r	0	0		3312
Reserve		FLOAT	4	r	0	0		3314
Pulses per sec- ond at nominal speed (Page 121)	Determined using command "Start belt revolution detection"	FLOAT	4	r	0			3316
Pulses per sec- ond (Page 121)		USHORT	2	r	0	0	65535	3318
Reserve	Reserve	USHORT	2	r	0	0	65535	3319
Reserve	Reserve	USHORT	2	r	0	0	65535	3320
Reserve	Reserve	USHORT	2	r	0	0	65535	3321
Current status of input .0	Current status of input .0	BIT	0	r	0	0	1	3322.16
Current status of input .1	Current status of input .0	BIT	0	r	0	0	1	3322.15
Current status of input .2	Current status of input .0	BIT	0	r	0	0	1	3322.14
Current status of input .3	Current status of input .0	BIT	0	r	0	0	1	3322.13
Bit 4	Reserve	BIT	0	r	0	0	1	3322.12
Bit 5	Reserve	BIT	0	r	0	0	1	3322.11
Bit 6	Position of DIP switch 1	BIT	0	r	0	0	1	3322.10
Bit 7	Position of DIP switch 2	BIT	0	r	0	0	1	3322.9
Current status of output .0	Current status of output .0	BIT	0	r	0	0	1	3322.8

Table 8-21 Assignment of data record 31

Scale parameters and functions of the belt scale

8.23 DR 31 Process state extended

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Current status of output .1	Current status of output .1	BIT	0	r	0	0	1	3322.7
Current status of output .2	Current status of output .2	BIT	0	r	0	0	1	3322.6
Current status of output .3	Current status of output .3	BIT	0	r	0	0	1	3322.5
Reserve		BIT	0	r	0	0	1	3322.4
Reserve		BIT	0	r	0	0	1	3322.3
Reserve		BIT	0	r	0	0	1	3322.2
Reserve		BIT	2	r	0	0	1	3322.1
Nominal boat load (Page 121)	Is imported from DR 4 if the param- eters have been imported from DR 4 into DR 3.	FLOAT	4	r	0	0		3323
Refresh coun- ter for process values (Page 121)	Cycle counter incremented by 1 if weight values have been changed	USHORT	2	r	0	-	-	3325
Reserve		USHORT	2	r	0	-	-	3326

8.23.1 Unfiltered digit value

The unfiltered digit value (measurement of weight) is the internal measured value immediately before filtering.

8.23.2 Filtered digit value

The filtered digit value (measurement of weight) is the internal measured value immediately after filtering.

8.23.3 Current load cell signal (mV)

The current input voltage of the load cell(s) in mV.

8.23.4 Current analog output (mA)

The actual value of the current (in mA) which is output at the analog output.

8.23.5 Pulses per belt revolution

Number of sensor pulses per belt revolution.

8.24 DR 32 display of data and operator errors

8.23.6 Pulses per second at nominal speed

This parameter is determined during the belt calculation and indicates how many impulses are output per second by the pulse sensor at the design speed.

8.23.7 Pulses per second

Current integer value of impulses per second.

8.23.8 Nominal boat load

The nominal belt load is entered during initial commissioning. It is the basis for generating limits (DR 6), and is calculated from design flow rate / design speed.

8.23.9 Refresh counter for process values

Measured values are calculated every 10 ms in the SIWAREX module. A counter is incremented by 1 each time. Once the counter reaches the value 65536, it starts again from zero. The counter can be used as a time stamp for data record DR 31.

8.24 DR 32 display of data and operator errors

Data record DR 32 is used for Modbus communication with a Modbus master. If a function which is used to write to the holding register is completed with an error, the data or command error reported can be read from data record DR 32. Messages are displayed for at least three seconds and do not need to be acknowledged in the SIWAREX module.

At successful completion of a function for writing to the SIWAREX register, data record DR 32 does not have to be polled.

Variable	Note	Туре	L	Rw	Default	Min.	Max	Regis- ter
Data record num- ber	Contains no. of data record	USHORT	2	r	32	-	-	3500
Length	Data record length information	USHORT	2	r	28	-	-	3501
Application	Information on which application the data record belongs to	USHORT	2	r	104	-	-	3502
Version identifier	Information on the current data record version	USHORT	2	r	1	1	656 35	3503
5000	Data or command error exists	BIT		r	0	0	1	3504.16
5001	Command code or data record unknown	BIT		r	0	0	1	3504.15

Table 8-22 Assignment of data record 32

Scale parameters and functions of the belt scale

8.24 DR 32 display of data and operator errors

Variable	Note	Туре	L	Rw	Default	Min.	Max	Regis- ter
5002	Command or data change not possible be- cause write protection is active	BIT		r	0	0	1	3504.14
5003	Leaving calibration mode not possible	BIT		r	0	0	1	3504.13
5004	Command or data transmission only avail- able in service mode	BIT		r	0	0	1	3504.12
5005	Command or data transmission not possible because service mode is active	BIT		r	0	0	1	3504.11
5006	Command or data transmission not possible because BUSY	BIT		r	0	0	1	3504.10
5007	Command or data transmission not possible because module is faulty or ODIS is active	BIT		r	0	0	1	3504.9
Reserve		BIT		r	0	0	1	3504.8
5008	Command not possible since memory is full (concerns the trace function)	BIT		r	0	0	1	3504.7
5101	Command is not permissible in this operat- ing state	BIT		r	0	0	1	3504.6
Reserve		BIT		r	0	0	1	3504.5
5104	Command not possible because range is exceeded	BIT		r	0	0	1	3504.4
5105	Load cell parameter not plausible	BIT		r	0	0	1	3504.3
Reserve		BIT		r	0	0	1	3504.2
5107	Shifting characteristic not possible	BIT		r	0	0	1	3504.1
5199	Error in command to DI	BIT		r	0	0	1	3505.11
Reserve		BIT		r	0	0	1	3505.5
6003	Command cannot be executed since a sim- ilar command is already active	BIT		r	0	0	1	3505.4
6004	Command not possible because no dynam- ic procedure is active.	BIT		r	0	0	1	3505.3
7000	Permitted number range violated	BIT		r	0	0	1	3506.16
Reserve		BIT		r	0	0	1	3506.15
7001	Regulation code unknown	BIT		r	0	0	1	3506.14
7002	Specifications of string lengths not plausi- ble	BIT		r	0	0	1	3506.13
7003	Specification of date / time not plausible	BIT		r	0	0	1	3506.12
7004	Assignment of digital inputs/outputs incor- rect	BIT		r	0	0	1	3506.11
7006	Command only possible in test field	BIT		r	0	0	1	3506.10
7007	The calibration weights or calibration digits are not plausible	BIT		r	0	0	1	3506.9
7008	Zeroing parameter not plausible	BIT		r	0	0	1	3506.8
Reserve		BIT		r	0	0	1	3506.7
7010	Scale interval / rounding not plausible	BIT		r	0	0	1	3506.6
7011	Filter parameter not plausible	BIT		r	0	0	1	3506.5
Reserve		BIT		r	0	0	1	3506.4

8.24 DR 32 display of data and operator errors

Variable	Note	Туре	L	Rw	Default	Min.	Max	Regis- ter
Reserve		BIT		r	0	0	1	3506.3
Reserve		BIT		r	0	0	1	3506.2
7016	Parameter assignment of analog output not plausible	BIT		r	0	0	1	3506.1
7017	MAC address cannot be changed	BIT		r	0	0	1	3607.16
7018	Error in IP mask	BIT		r	0	0	1	3607.15
7019	RS485 parameter error	BIT		r	0	0	1	3607.14
7020	Speed parameter or sensor parameter not plausible	BIT		r	0	-	-	3507.13
7021	Selection of unit not plausible	BIT		r	0	-	-	3507.12
Reserve		USHORT	2	r	0	-	-	3508
Modbus RTU error code (Page 123)	Synchronous error code for communica- tion at the Modbus RS485 interface	USHORT	2	r	0	-	-	3509
Modbus Ethernet error code (Page 123)	Synchronous error code for communica- tion at the Modbus Ethernet interface	USHORT	2	r	0	-	-	3510
SIWATOOL error code (Page 124)	Synchronous error code for communica- tion at the SIWATOOL interface	USHORT	2	r	0	-	-	3511
Error code follow- ing commands at digital input (Page 124)	Synchronous error code caused by com- mand at the DIs	USHORT	2	r	0	-	-	3512
Reserve		USHORT	2	r	0	-	-	3513

8.24.1 Data and operator errors, bytes 0 to 7

Messages are represented by bits in this area. A set bit means that the corresponding message is activated. The message bit is set following a data or operator error and automatically reset approximately 3 seconds later.

Message bits are analyzed by the operator panel message system.

8.24.2 Modbus RTU error code

The error code is displayed here of the error which was triggered last as a result of a command at the Modbus RTU interface.

8.24.3 Modbus Ethernet error code

The error code is displayed here of the error which was triggered last as a result of a command at the Modbus Ethernet interface.

8.25 DR 33 Totalizers

8.24.4 SIWATOOL error code

The error code is displayed here of the error which was triggered last as a result of a command at the SIWATOOL interface.

8.24.5 Error code following commands at digital input

The error code is displayed here of the error which was triggered last as a result of a command via the digital input.

8.25 DR 33 Totalizers

Data record DR 33 contains the actual values of the totalizers.

Totalizing becomes active when the minimum belt load for the totalizer (parameter in DR6) has been exceeded. Command 652 can be used to stop all totalizers except S6. Command 651 starts totalizing again.

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Regis- ter
Data record number	Contains no. of data record	USHORT	2	r	33	-		3514
Length	Data record length information	USHORT	2	r	44	-		3515
Application	Information about which application the da- ta record belongs to	USHORT	2	r	104	-		3516
Version identifier	Information about current data record ver- sion	USHORT	2	r	1			3517
Current master to- talizer (S1) (Page 125)	Master totalizer (S1) since commissioning of the scale	DOUBLE	8	r	0			3518
Current main total- izer (S2) (Page 125)	Current main totalizer (S2)	FLOAT	4	r	0			3522
Reserve	-	FLOAT	4	r	0			3524
Totalizer 3 (S3), to-	Totalizer S3	FLOAT	4	r	0			3526
talizer 4 (S4), total-	Totalizer S4	FLOAT	4	r	0			3528
Izer 5 (S5) (Page 125)	Totalizer S5	FLOAT	4	r	0			3530
Totalizer 6 (S6) (Page 125)	Totalizer S6	FLOAT	4	r	0			3532
Reserve	-	FLOAT	4	r	0			3534

Table 8-23 Assignment of data record 33

8.25.1 Current master totalizer (S1)

This totalizer contains the total of conveyed material since commissioning of the scale. The master totalizer can only be reset by loading the factory settings.

8.25.2 Current main totalizer (S2)

The totalizer contains the quantity of material transported since the last memory reset. The operating total must be logged in the case of trade scales requiring verification (available soon). You can reset the total using command 670.

8.25.3 Totalizer 3 (S3), totalizer 4 (S4), totalizer 5 (S5)

The totalizers respond like the main totalizer S2. In the case of trade scales requiring verification, these totals can be reset without logging.

You can reset the totals individually to 0 using the following commands:

- S3 using command 671
- S4 using command 672
- S5 using command 673

8.25.4 Totalizer 6 (S6)

A special property of totalizer 6 is that it remains active even following the command "Stop totalizing (652)", and therefore indicates the total amount. You can therefore carry out material tests or calibrate the scale, for example, without recording the "transported material" (calibration weight, test chain) into the balance.

You can reset the total S6 using command 674.

8.26 DR 34 ASCII main display value

The ASCII display value corresponds to the value on the scale's main display. The content can be controlled using display commands.

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	34	-	-	4000
Length	Data record length information	USHORT	2	r	26	-	-	4001
Application	Information about which appli- cation the DR belongs to	USHORT	2	r	104	-	-	4002
Version identifier	Information about current data record version	USHORT	2	r	1	1	65635	4003

Table 8-24 Assignment of data record 34

8.27 DR 38 Process state extended

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
ASCII dis- play string header	Maximum length and actual length of string	UBYTE[2]	2	r	16.2	-	-	4004
Content of main dis- play as AS- CII string (Page 126)	For display of the material flow rate, belt load, speed, totals	CHAR[16]	16	r	" "	-	-	4005

8.26.1 Content of main display as ASCII string

Commands are used to toggle the display.

The following values can be displayed in belt scale applications:

Value	Command
Material flow rate	710
Weight	715
Flow rate in %	735
Belt load	740
Belt load in %	745
Speed	760
Speed in %	765
Accumulated total	771
Main total	772
Totalizer S3	773
Totalizer S4	774
Totalizer S5	775
Totalizer S6	776
Official calibration	801
Serial number	871
Firmware version	875

8.27 DR 38 Process state extended

The data record contains scale-specific parameters.

Procedure

- Read data record DR 38
- Display/analyze the required tags

8.28 DR 48 Date and time 2

Variable	Note	Туре	L	Rw	Default	Min.	Max.	Register
Data record number	Contains no. of data record	USHORT	2	r	38	-	-	4500
Length	Data record length informa- tion	USHORT	2	r	64	-	-	4501
Application	Information about which application the data record belongs to	USHORT	2	r	104	-	-	4502
Version identifier	Information about current data record version	USHORT	2	r	1	1	65635	4503
Counter zeroing	Number of implemented zeroing procedures, re- cording of manual and au- tomatic zeroing proce- dures (is reset when load- ing the factory settings)	ULONG	4	r	0			4504
Counter initial zero calibration	Number of implemented in- itial zero calibration proce- dures (is reset when load- ing the factory settings)	ULONG	4	r	0			4506
Counter span calibration	Number of implemented span calibration proce- dures (is reset when load- ing the factory settings)	ULONG	4	r	0			4508
Drag indicator (belt load)	Maximum belt load that has occurred	FLOAT	4	r	0			4510
Reserve		LONG	4	r	0			4512
Current initial zero offset (belt load)	Current deviation from orig- inal zero (when loaded)	FLOAT	4	r	0			4514
Current initial zero offset (in % of nominal load)	Current deviation from orig- inal zero (in % of nominal load)	FLOAT	4	r	0			4516
Reserve		FLOAT	4	r	0			4518
Reserve		LONG	4	r	0			4520
Reserve		LONG	4	r	0			4522
Reserve		LONG	4	r	0			4524
Reserve	3xLONG	LONG	12		0			4526

Table 8-25	Assignment of data record 38	3
10010 0 20	/ looigrinnent of data record oc	'

8.28 DR 48 Date and time 2

The SIWAREX module has its own hardware clock. You can set and read the current date and time using data record DR 48. The clock is buffered with a capacitor and continues to operate for up to approximately 70 hours without a supply voltage. If you are not using the Modbus protocol, data record DR 8 is used for the date and time.

Procedure

- Set the date and time
- Transfer the data record to the SIWAREX module

8.28 DR 48 Date and time 2

Table 8-26	Assignment of data record 48
	Assignment of uata record to

Variable	Note	Туре	L	Rw	De- fault	Min.	Max.	Register
Data record number	Contains no. of data record	USH- ORT	2	r	48	-	-	6960
Length	Data record length information	USH- ORT	2	r	24	-	-	6961
Application	Information about which application the data record belongs to	USH- ORT	2	r	104	-	-	6962
Version identifier	Information about current data record version	USH- ORT	2	r	1	1	65635	6963
Year	Year	USH- ORT	2	rw	2012	2012	2010	6964
Month	Month	USH- ORT	2	rw	1	1	12	6965
Day	Day in month	USH- ORT	2	rw	1	1	31	6966
Hour	Hour	USH- ORT	2	rw	0	0	23	6967
Minute	Minute	USH- ORT	2	rw	0	0	59	6968
Second	Second	USH- ORT	2	rw	0	0	59	6969
Millisecond	Millisecond	USH- ORT	2	rw	0	0	999	6970
Day of the week	Day of the week	USH- ORT	2	rw	1	1	7	6971

Messages

9.1 Message types

The messages in the electronic weighing system described here are divided into three types.

System status messages

System status messages can be generated spontaneously at any time by an unexpected event. They include internal and external hardware problems which can occur spontaneously during weighing.

Data and operating errors

The data and operating errors are always a response to a command due to a plausibility check.

These are data errors if a plausibility error has been detected in a data packet which was sent to the module and receipt of the packet has been rejected by the module.

These are operating errors if the module cannot execute the sent command in its current operating state.

Technology errors

Technology errors occur spontaneously due to the process flow of a weighing.

Status bits, on the other hand, are not messages. The status displays describe the status of the scale during normal operation and can be monitored or evaluated at any time.

9.2 Message paths

You can read out the messages using different paths. You define the path for forwarding and processing of messages during configuration.

The messages are processed for two basic purposes:

- · For display on an Operator Panel for the operator
- For linking in the control software to control specific reactions in the process.

The following message paths are possible:

- Output of the message buffer to the SIWATOOL program (takes place automatically)
- Output by means of function block as bit field in Scale data block
- Output by means of data records DR 30 and DR 32 in case of communication with a Modbus master

9.3 Evaluating messages with the help of SIWATOOL

The electronic weighing system has a message buffer that can hold up to 80 entries. If the number of messages in the message buffer exceeds 80, the oldest entry is overwritten. The message buffer can be read out at any time with the help of SIWATOOL (menu item "Read out all data records") and saved together with the scale parameters. This facilitates the detection, analysis and correction of errors in the system.

9.4 Detecting messages with the help of FB SIWA

All messages of the SIWAREX module can be completely detected and processed in the controller with the help of the SIWAREX WP241 function block. The messages can be evaluated directly in a signaling system by means of a bit signaling area in the scale data block. The message texts are stored in the signaling system. The message text is output when a bit becomes "1".

9.5 Message list

The message list is an overview of all messages that the SIWAREX module can generate. A message can be quickly identified by the message code (number).

9.5.1 System status message list

Operating errors (code 1000 to 1999) sorted by code no.	Error code	Description and remedy
1000 Operational error exists	1000	Group message, at least one operating error exists.
1001 Watchdog	1001	Watchdog, error is displayed for at least 10 seconds. A serious error has occurred in the function of SIWAREX, e.g. program error, severe electromagnetic influence on device, etc.
		Contact the SIWAREX Support if the error occurs multiple times.
1002 RAM error	1002	RAM error. An error has occurred in the memory; the memory content is no longer correct. The module must be switched off. If the error occurs again, SIWAREX is defective.
1003 Checksum incorrect parameter	1003	Checksum error at parameter. Critical error because the parameters are no longer safe.
1004 Checksum incorrect program	1004	Checksum error program code. Critical error because the pro- gram is no longer safe.
1006 logbook error	1006	Error when writing/deleting,or logbook full
1102 ADU error	1102	AD converter error when reading in the measured value. If the error occurs again, make sure that the EMC recommendations are observed (chapter EMC-compliant setup (Page 23)).
1104 Undervoltage	1104	Undervoltage at sensor cables
1105 Overload	1105	Overload of scale (ca. 110%)
1106 Underload	1106	Underload of scale (ca10%)

Operating errors (code 1000 to 1999) sorted by code no.	Error code	Description and remedy
1107 Legal trade display failure	1107	The SecureDisplay legal trade display no longer communi- cates with the module
1110 Digital load cell - no communication	1110	No communication with digital load cell

9.5.2 Technology error message list

Technology error (code 2000 to 4999)	Error code	Description and remedy
2000 Technology error	2000	Group message, at least one technology error exists
2002 Trace error	2002	The set recording rate for trace function cannot be processed. Set a slower recording rate.
2003 Zeroing aborted	2003	The zeroing procedure has been canceled. Possible causes: viola- tion of zeroing limits.
2004 Trace memory full	2004	The trace recording has been cancelled. Possible causes: trace memory full and not declared as ring memory.
2096 Recovery point created	2096	A new recovery point was generated with the command "Create recovery parameter (51)".
2097 Recovery point created	2097	The internal restore point was loaded with the command "Load re- covery parameter (31)".
2098 Standard parameters loaded	2098	The factory settings were loaded with the command "Load factory settings (11)".
2099 Factory settings loaded	2099	The standard parameters were loaded with the command "Load standard parameters (12)".
3001 Totalizer error	3001	Fault occurred during totalizing.
3002 Calibration procedure interrupted	3002	Current calibration procedure has been aborted. Possible causes: non-plausible values have been determined during the command.

9.5.3 Data and operating errors message list

Data and operating errors (code 5000 to 8999)	Error code	Description and remedy
5000 Data and operating error exists	5000	Group error, a bit is set in the data and operating error bits
5001 Command code or data record un- known	5001	Command code or data record is not known with current application
5002 Command or data change not possible because write protection is active	5002	The command or changing of data is not possible due to write protection. The data record was rejected.
5003 Cannot exit service mode	5003	Cannot exit calibration mode; calibration incomplete
5004 Command or data transmission only available in service mode	5004	Activation of service mode is required to execute command or transmit data
5006 Command or data transmission not possible because of BUSY	5006	Command can currently not be executed because module is BUSY (data record or command transmission already active,)

Messages

9.5 Message list

Data and operating errors (code 5000 to 8999)	Error code	Description and remedy
5007 Command or data transmission not possible because module is faulty or SI- MATIC CPU stop	5007	Command can currently not be executed because of a problem or SIMATIC CPU stop
5104 Command not possible because range is exceeded	5104	Command (e.g. set to zero, tare, calibrate command) cannot be executed because the permitted range has been exceeded. The ranges are defined in DR 3.
5105 Load cell parameters not plausible	5105	Load cell parameters in data record DR 10 are not plausible (number, support points, load specifications, etc.).
5108 ID does not exist	5108	Requested logbook ID not present in memory.
5199 Error in command to DI	5199	Processing of a command triggered at the DIs is not possible. The cause can be determined in data record DR 32.
6002 Logging not possible because weight is too small	6002	Logging is not possible because the limits for the minimum weight or maximum weight were not observed.
6003 Command cannot be executed since a dynamic procedure is already active	6003	Desired command cannot be executed since a dynamic com- mand (calibration, zeroing) is already being executed.
6004 Command cannot be executed since a dynamic procedure is not active	6004	Desired command cannot be executed since a dynamic com- mand is not currently being executed.
7000 Permitted number range violated	7000	The permitted number range, such as for weight values, was violated.
7001 Regulation code not known	7001	Regulation code for application requiring official calibration not known.
7002 Specifications of string lengths not plausible	7002	The string header in a specified string variable is not plausible.
7003 Specification of date / time not plausible	7003	Specifications for date and time are not plausible.
7004 Assignment of DIs/DQs incorrect	7004	An error occurred while assigning the digital inputs or digital outputs.
7006 Reserved	7006	Reserved
7007 The calibration weights or calibration digits are not plausible	7007	Specifications for calibration weights or digits in data record DR 3 are incorrect (minimum distance, reversal of incline).
7008 Zeroing parameters are not plausible	7008	The specifications for zeroing (data record DR 3) are not plausible.
7010 Scale interval / rounding	7010	Scale interval or selection for rounding to decimal places is not plausible.
7011 Filter parameters	7011	Specification of filter parameters is not plausible.
7013 Interface assignment for calibratable HMI not plausible	7013	The assignment of the interface to the calibratable HMI is in- correct.
7014 Specified time not plausible	7014	Specified time value is not plausible or may be signaled in con- nection with additional errors
7016 Parameter assignment of analog out- put not plausible	7016	The parameters for the analog output (data record DR 7) are not plausible.
7017 MAC address cannot be changed	7017	
7018 Error in IP mask	7018	The specified IP addresses (DR12) are not plausible.
7019 RS485 parameter error	7019	The specified RS485 interface parameters (DR13) are not plausible.

Data and operating errors (code 5000 to 8999)	Error code	Description and remedy
7020 Speed parameter or sensor parame- ter not plausible	7020	The speed parameter or sensor parameter in DR3 is not plau- sible.
7021 Units are not plausible	7021	The selected units are not plausible (mixing of metric and imperial parameters).

9.5.4 Messages by LEDs on the module

The LEDs on the front of the SIWAREX module signal the following status and error messages.

Item	Color	Labeling	Function
Line 1			
LED 0	Red	DIAG	System fault
	Green		Ready
	Green		Service mode is switched on
	Flashing		
LED 1	Yellow	↓ ¹ ↓	Material flow rate > Max. material flow rate
LED 2	Yellow		Belt load > Max. belt load
LED 3	Yellow	<	Speed > Max. speed
LED 4	Green	Q	Belt is running
LED 5	Green	> MIN	Minimum belt load for totalizing exceeded
LED 6	Red	S	Totalizing fault
LED 7	Yellow	P	Parameter input blocked (write protection)
LED 8			Not used
LED 9	Green	LC	Load cell(s) OK
	Red		Load cell(s) faulty
LED 10			Not used
LED 11			Not used
LED 12			Not used
LED 13			Not used
LED 14			Not used
LED 15			Not used
LED 16	Green	AQ	Analog output active
	Red		Analog output error
Line 2			
LED 1	Green	LINK	LAN connection exists
LED 2	Yellow	Rx/Tx	LAN communication active

Messages

9.5 Message list

Item	Color	Labeling	Function
LED 3			Not used
LED 4			Not used
LED 5	Green	DI.0	Digital input 0 active
LED 6	Green	DI.1	Digital input 1 active
LED 7	Green	DI.2	Digital input 2 active
LED 8	Green	DI.3	Digital input 3 active
LED 9			Not used
LED 10			Not used
LED 11	Yellow	Rx/Tx	RS485 communication active
LED 12			Not used
LED 13	Green	DQ.0	Digital output 0 active
LED 14	Green	DQ.1	Digital output 1 active
LED 15	Green	DQ.2	Digital output 2 active
LED 16	Green	DQ.3	Digital output 3 active

10.1 Overview

The commands for the electronic weighing system described here can be transmitted by several interfaces:

- by the Operator Panel via the controller to the SIWAREX module
- by the Operator Panel directly to the SIWAREX module
- by SIWATOOL directly to the SIWAREX module
- by the digital inputs after corresponding assignment in data record DR 7

A data or command error is signaled if a command cannot be executed or if the sent data record is rejected.

Detailed descriptions of the commands can be found in the following command lists:

- → Table 10-1 Commands 1 ... 99: Service commands (Page 136)
- → Table 10-2 Commands 450 ... 499: Trace commands (Page 138)

 \rightarrow Table 10-3 Commands 700 ... 899: HMI display switchover (DR34 – ASCII display) (Page 138)

- → Table 10-4 Commands 1000 ... : Basic functions for weighing commands (Page 138)
- → Table 10-5 Data record commands of SIWAREX WP241 (Page 139)
- → Table 10-6 Totalizing commands of SIWAREX WP241 (Page 139)

See also

Command lists (Page 135)

10.2 Command lists

The commands for the electronic weighing system described here can be transmitted by several interfaces:

- From the operator panel via the controller to the SIWAREX module
- From the operator panel directly to the SIWAREX module
- From SIWATOOL direct to the SIWAREX module
- Via the digital inputs after corresponding assignment in data record DR 7

10.2 Command lists

A data or command error is signaled if a command cannot be executed or if the sent data record is rejected.

Command code	Command	Description
1	Service mode On	Turn on service mode
2	Service mode Off	Turn off service mode
3	Load simulation ON	Turn on test mode. The simulation value from data record 16 is used instead of the measured value as the belt load value. The simulation must first be released in DR 3.
4	Load simulation OFF	Switch off test mode for belt load.
5	Speed simulation ON	Turn on test mode. The simulation value from data record 16 is used instead of the measured value as the belt speed. The simulation must first be released in DR 3.
6	Speed simulation OFF	Switch off test mode for speed.
11	Load factory setting	The command resets the SIWAREX to the "ex works" status. During this process:
		 All parameters and saved data (including protocol memory, all totalizers (including master totalizer), and logbook) as well as the restore point are loaded with the default values
		All message buffers (diagnostic buffer, trace memory, etc.) are reset
12	Load standard parameters	Like "Load factory settings" (command code 11), but interface settings for Ether- net and Modbus RTU are not reset to the factory setting.
31	Load restore point	All parameters saved in the restore point are activated.
51	Create restore point	Saves the parameters of the restore point to the memory.
60	Start initial zero calibration	Start initial zero calibration. The zero point of the scale characteristic is deter- mined for the parameterized number of belt revolutions. The result is initially entered in DR 4 and can then be imported into DR 3 using command 88.
61	Start span calibration with test weight	Start of span calibration with a test weight. The weight value is specified in data record 3. The span of the scale characteristic is determined for the parameter- ized number of belt revolutions. The result is initially entered in DR 4 and can then be imported into DR 3 using command 89.
63	Start automatic span cali- bration	Following a successful zero calibration, command 63 and the load cell data from DR 10 can be used to calculate the span. If the belt has not been installed horizontally, the angle must be subsequently entered in DR 15. The result is directly imported into DR 3 and DR 4 and is therefore immediately active.
65	Start span calibration by test chain	Start of span calibration with a test chain. The load value is specified in data record 3. The span of the scale characteristic is determined for the parameter- ized number of belt revolutions. The result is initially entered in DR 4 and can then be imported into DR 3 using command 89.
67	Start span calibration using material batch	Command 67 must be sent before the material defined in data record 3 reaches the measuring point.
68	Stop span calibration using material batch	Command 68 must be sent after the material defined in data record 3 has com- pletely passed the measuring point.
69	Calculate span calibration point after material batch	Command 69 can be used after the commands 67 and 68 to calculate the span calibration point. The result is initially entered in DR 4 and can then be imported into DR 3 using command 89.

 Table 10-1
 Commands 1 ... 99: Service commands

10.2 Command lists

Command code	Command	Description
70	Start speed/pulse detection	The command is used in the case of belt scales without speed sensor to start determination of the belt speed, or in the case of belt scales with speed sensor to start calculation of the pulse constants. The basis in each case is an exactly specified belt length in DR 3. The command should be sent at the moment when a belt marking passes a defined point.
71	Stop speed/pulse detection	The command is used in the case of belt scales without speed sensor to stop detection of belt speed, or in the case of belt scales with speed sensor to stop calculation of the pulse constants. The command should be sent at the moment when a belt marking passes a defined point. The result is initially entered in DR 4 and can then be imported into DR 3 using command 85. Observe the specified number of belt revolutions in DR 3!
72	Start speed measurement "belt loaded"	The command can be used in the case of belt scales without speed sensor in order to start the speed detection with the belt loaded (preferably with nominal belt load). The command should be sent at the moment when a belt marking passes a defined point.
73	Stop speed measurement "belt loaded"	The command can be used in the case of belt scales without speed sensor in order to stop the speed detection with the belt loaded (preferably with nominal belt load). The command should be sent at the moment when a belt marking passes a defined point. The result (speed and average belt load in percent) is initially entered in DR 4 and can then be imported into DR 3 using command 86. Observe the specified number of belt revolutions in DR 3!
74	Enable belt revolution de- tection on DI.1	If a proximity switch is used to detect the belt revolutions (digital input DI.1 must be parameterized for this purpose in DR 7), detection of the switch signal must first be released using command 74. Totalizing is then stopped, and the module waits for the switch signal at the digital input in order to start the belt revolution detection. The module then expects pulses from the switch at DI.1. For example, 3 pulses are expected if 3 belt revolutions were specified in DR 3. Detection of the belt revolution is complete following the third pulse. The result is initially entered in DR 4 and can then be imported into DR 3 using command 85.
79	Abort running calibration/ zeroing/belt detection/ speed detection	All generated dynamic commands are aborted.
81	Multiply a x b	The numbers A and B from DR 21 are multiplied together. The result is entered in DR 4.
83	Divide a / b	The numbers A and B from DR 21 are divided by each other. The result is entered in DR 4.
85	Apply (nominal) speed	The nominal speed determined by the commands 70/71 is copied from DR 4 to DR 3.
86	Apply speed parameters "belt loaded"	The result of the commands 72/73 is copied from DR 4 to DR 3.
87	Apply pulse parameter	The pulse parameters determined by the commands 70/71 are copied from DR 4 to DR 3. The command is only used for belt scales with speed sensor.
88	Apply initial zero calibration digits	The result of command 60 is copied from DR 4 to DR 3.
89	Apply span calibration dig- its	The result of commands 61, 63, 65 or 69 is copied from DR 4 to DR 3.

10.2 Command lists

Command code	Command	Description
451	Trace ON	Start trace recording
452	Trace OFF	Stop trace recording
453	Single trace element	Create single trace (current state)
454	Reset trace memory	Delete trace recording memory

Table 10-2 Commands 450 ... 499: Trace commands

Table 10-3 Commands 700 ... 899: HMI display switchover (DR34 – ASCII display)

Command code	Command	Description
704	Increased resolution total S6	After issuing the command, the total S6 is displayed for 5 seconds in high resolution. In this way, a correction factor can be calculated with the highest possible accuracy.
715	Display weight	Displays the weight currently present on the scale
735	Flow rate in %	Displays the current flow rate in % of the design flow rate from DR 3
736	Show uncorrected flow rate	Shows the flow rate without correction factor (DR 5). This way the currently corrected flow rate can be compared with the uncorrected (=original) flow rate.
740	Belt load	Displays the current belt load
745	Belt load in %	Displays the current belt load in % of the nominal belt load from DR 31
760	Speed	Displays the current belt speed
765	Speed in %	Displays the current belt speed in % of the design speed from DR 3
771	Master totalizer S1	Displays the current master totalizer
772	Main totalizer S2	Displays the current main totalizer
773	Total S3	Displays the current totalizer S3
774	Total S4	Displays the current totalizer S4
775	Total S5	Displays the current totalizer S5
776	Total S6	Shows the current totalizer S6
801	Display calibration regula- tions	Displays the entered calibration regulations
810	Show information for re- store point	Shows for five seconds when the restore point was created (format "RP DD:MM:YY HH:MM").
871	Serial number	Displays the serial number of the module
875	Display SIWAREX FW ver- sion	Displays the firmware version of the module

 Table 10-4
 Commands 1000 ... : Basic functions for weighing commands

Command code	Command	Description
1001	Start zeroing	Starts the zeroing procedure
1002	Abort zeroing	Aborts the zeroing procedure
1003	Activate automatic zero tracking	Activates the automatic zero tracking

10.2 Command lists

Command code	Command	Description
1004	Deactivate automatic zero tracking	Deactivates the automatic zero tracking
1301	Set "Belt is running"	Informs the module that the belt is running and the speed entered in DR 3 can be used. Only relevant for systems without speed sensor. A digital input can also be used or parameterized for this. If the speed is sent to the module via DR 19, this command is not necessary either!
1302	Reset "Belt is running"	Informs the module that the belt is stationary. The speed is set to 0. Only relevant for systems without speed sensor. A digital input can also be used or parameterized for this. If the speed is sent to the module via DR19, this command is not necessary either!

Table 10-5	Data record commands	of	SIWAREX WP241
	Data record commands	UI.	

Command code	Command	Description
2000 + X	Reading of a data record, X corresponds to the data record number.	Starts the zeroing procedure Example: Data record 3 transmitted by SIWAREX module to the SIMATIC CPU \rightarrow 2000 + 3 = command code 2003
4000 + X	Writing of a data record, X corresponds to the data record number.	Aborts the zeroing procedure. Example: Data record 3 transmitted by SIMATIC CPU to the SIWAREX module \rightarrow 4000 + 3 = command code 4003
7001	Read all data	Read all data from the SIWAREX to the CPU
7002	Write all data	Write all data from the CPU to the SIWAREX (service mode has to be turned on)

Table 10-6 Totalizing commands of SIWAREX WP241

Command code	Command	Description
651	Start totalizing	Starts the totalizing. In the basic state, totalizing of the module is always active and must be specifically deactivated by the user (command 652).
652	Stop totalizing	Stops all totalizers except totalizer S6. Can be used for (material) tests which should not be included in the total balance.
670	Reset main totalizer S2	Resets the main totalizer to 0
671	Reset totalizer S3	Resets totalizer 3 to 0
672	Reset totalizer S4	Resets totalizer 4 to 0
673	Reset totalizer S5	Resets totalizer S5 to 0
674	Reset totalizer S6	Resets totalizer S6 to 0
675	Reset totalizers S3S6	Simultaneously resets totalizers S3 to S6 to 0

10.2 Command lists

Communication

11.1 Integration in SIMATIC S7-1200

11.1.1 General information

A SIWAREX WP241 occupies 32 bytes each in the I/O areas of the CPU. The maximum number of SIWAREX WP241 weighing modules is defined as follows:

S7-1212 CPU \rightarrow up to two WP241 weighing modules S7-1214 CPU \rightarrow up to eight WP241 weighing modules S7-1215 CPU \rightarrow up to eight WP241 weighing modules S7-1217 CPU \rightarrow up to eight WP241 weighing modules

Additionally observe the memory requirements for the respective function block calls.

	FB with DS communication (FB241 "WP241PR")
Read weight and status	YES
Send commands	YES
Send parameters	YES
Main memory requirements in CPU	16 000 byte + n x 2 020 byte
Load memory requirements in CPU	202 000 byte + n x 53 000 byte

Table 11-1 Memory requirements of the function block

n = number of WP241 modules

The function block described above including HMI configuring can be downloaded as a predefined example project ("Ready-for-use") from the Siemens Customer Support.

The latest firmware version for the weighing module can also be downloaded from the Customer Support.

11.1.2 Operation on S7-1200 failsafe controllers

As of firmware V3.1.0, operation on SIMATIC S7-1200 failsafe controllers is possible.

11.1.3 Creating the hardware configuration

Starting with TIA Portal V13, the SIWAREX WP241 is integrated as standard in the hardware profile as an S7-1200 technology module.

For TIA Portal V12 SP1, an HSP is available as download from the Siemens Customer Support.

Communication

11.1 Integration in SIMATIC S7-1200

The module can be positioned directly next to the S7-1200 CPU using drag and drop.

Figure 11-2 Configuration with S7-1212 CPU

TIA Portal automatically assigns a separate I/O start address and a HW ID for every SIWAREX present in the project. These two parameters are relevant for calling the function block, and can be obtained from the properties of the respective module.

11.1 Integration in SIMATIC S7-1200

SIWAREX WP241 [Module]		Reperties
General IO tags Texts General I/O addresses		
Parameter Input addresses		
Hardware id Si	tart address: 68	
	nd address: 99	
Pro	cess image: Cyclic Pl	
• Output addresses	3	
Si	tart address: 68	
6	ind address: 99	
Pro	cess image: Cyclic Pl	•

Figure 11-3 Start address of module in TIA Portal

SIWAREX WP241 [Module]		September 2015	
IO tags	Texts		
	Hardware identifier		
er	Hardware identifier		
sses			
e identifier	Hardware identifier: 271		
	P241 [Module IO tags er sses identifier	P241 [Module] IO tags Texts Hardware identifier Hardware identifier sses identifier Hardware identifier. 271	

Figure 11-4 HW ID of module in TIA Portal

Diagnostic interrupts can be optionally enabled or deactivated in the module properties.

11.1.4 Calling of function block

This description is based on use of the WP241PR block with data record communication and the following data:

- Start address SIWAREX WP241: 68 (see → Creating the hardware configuration (Page 141))
- HW ID SIWAREX WP241: 271 (see → Creating the hardware configuration (Page 141))
- Instance data block number of SIWAREX WP241 function block: DB241

The function block can be integrated at the desired position in the user program using drag and drop. Calling of the FB must be carried out cyclically in the control program.

Communication

11.1 Integration in SIMATIC S7-1200

Figure 11-5 Calling of WP241PR block in user program

Function block parameter	Description
ADDR	Start address WP241 (see \rightarrow Creating the hardware configuration (Page 141))
HW_ID	HW ID WP241 (see \rightarrow Creating the hardware configuration (Page 141))
DB_NO	Number of FB-internal instance DB
LIFEBIT	Optional status bit can be used to monitor commu- nication

The generated instance DB (DB241 in this case) contains all data records of the WP241 as well as all parameters required to exchange data between CPU and weighing module.

A separate FB call must be made in the user program for each weighing module. In this manner, each scale receives its own instance DB which provides the respective scale parameters. The input and output parameters of the FB must be matched to the respective WP241 for each call.

11.1.5 Working with the function block

Data records in SIWAREX weighing modules

All parameters in SIWAREX weighing modules are structured in data records. These data records must be considered as connected packages and can only be respectively read into the CPU or written to the SIWAREX as complete packages. Reading or writing of a single parameter within a data record is not possible. You can find a description of all data records and their parameters in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69).

Reading and writing of data records is carried out using special command codes which can be sent with three command mailboxes handled according to priority within the instance DB:
11.1 Integration in SIMATIC S7-1200

-							
11		•	•	s_CMD1	Struct	456.0	
12			•	i_CMD_CODE	Int	0.0	0
13			•	bo_CMD_TRIGGER	Bool	2.0	false
14			•	bo_CMD_InProgress	Bool	2.1	false
15			•	bo_CMD_FinishedOK	Bool	2.2	false
16			•	bo_CMD_FinishedError	Bool	2.3	false
17	-00	•	•	s_CMD2	Struct	460.0	
18			•	i_CMD_CODE	Int	0.0	0
19			•	bo_CMD_TRIGGER	Bool	2.0	false
20			•	bo_CMD_InProgress	Bool	2.1	false
21			•	bo_CMD_FinishedOK	Bool	2.2	false
22	-00		•	bo_CMD_FinishedError	Bool	2.3	false
23		•	•	s_CMD3	Struct	464.0	
24	-00		•	i_CMD_CODE	Int	0.0	0
25			•	bo_CMD_TRIGGER	Bool	2.0	false
26			•	bo_CMD_InProgress	Bool	2.1	false
27			•	bo_CMD_FinishedOK	Bool	2.2	false
28			•	bo_CMD_FinishedError	Bool	2.3	false

Figure 11-6 CMD command mailboxes

As shown in the graphics, a command mailbox always consists of a command code (Int) and four bits (Bool). A command is set by entering the desired command code in the "i_CMD_CODE" parameter and setting the respective command trigger "bo_CMD_TRIGGER". The status bits "bo_CMD_InProgress" (command being processed), "bo_CMD_FinishedOk" (command finished without errors) and "bo_CMD_FinishedError" (command rejected or finished with error) can be evaluated in the user program.

In addition, the three command mailboxes are managed and processed according to priority. CMD1 has the highest priority, CMD3 has the lowest priority. If all three command mailboxes are triggered simultaneously by the user program, for example, the function block initially processes CMD1, then CMD2, and finally CMD3. Cyclic triggering of command mailbox 3 is also interrupted by intermediate sending of a command in mailbox 2 or 1 for processing of the respective command.

Note

Cyclic triggering of the CMD1 command mailbox makes it impossible to send commands in mailbox 2 or 3.

A summary of all existing command codes can be found in chapter \rightarrow Command lists (Page 135).

The following equation for generation of a corresponding command code applies to the reading of data records from the SIWAREX to the data block:

Command code = 2000 + X (X = desired data record number)

The following equation for generation of a corresponding command code applies to the writing of data records from the data block to the SIWAREX:

Command code = 4000 + X (X = desired data record number)

11.1 Integration in SIMATIC S7-1200

Example

The following example clarifies the actions with command mailboxes and data records:

"Calibration weight" is to be set to a value of 60.5 by the CPU. Since "Calibration weight" is a parameter of data record 3 (see chapter \rightarrow Scale parameters and functions of the belt scale (Page 69)), service mode must first be activated. This is possible using command code "1" (see chapter \rightarrow Command lists (Page 135)).

The variable "i_CMD_CODE" must therefore be assigned the value "1" and the associated "bo_CMD_TRIGGER" set to TRUE. Subsequently, the module is directly in service mode (DIAG LED flashes green):

i_CMD_CODE = 1

bo_CMD_TRIGGER = TRUE

Since only complete data records can be read or written, it is recommendable to now read data record 3 into the CPU. This is carried out using command code 2003 (see chapter \rightarrow Command lists (Page 135)):

i_CMD_CODE = 2003

bo_CMD_TRIGGER = TRUE

All current data from data record 3 are now present in the data block. The calibration weight is then set as desired to a value of 60.5:

CALIBRATION_WEIGHT = 60.5

The modified data record 3 must now be written into the SIWAREX again. This is carried out using command code 4003 (see chapter \rightarrow Command lists (Page 135)):

i_CMD_CODE = 4003

bo_CMD_TRIGGER = TRUE

The new calibration weight is now present in the SIWAREX and can be used. Service mode for the module should subsequently be switched off again using command "2".

This procedure for reading and writing data records or parameters is identical for all data records.

11.1.6 I/O interface of function block

The following scale parameters are available cyclically in the data block in the controller without special reading of data records or can be sent to the scale without sending of data records:

Parameter (read)	Meaning	
SCALE_STATUS_1 (UINT)	Bytes 0 & 1 of the scale status (see data record 30)	
SCALE_STATUS_2 (UINT)	Bytes 2 & 3 of the scale status (see data record 30)	
FLOW_RATE (REAL)	Current flow rate	
MAIN_TOTALIZER_S2 (REAL)	Current main totalizer (S2)	
OPERATION_ERRORS	Operating error according to Message list (Page 130)	

Table 11-2 I/O data of function block

Parameter (read)	Meaning
TECHNOLOGICAL_ERRORS	Technological messages according to Message list (Page 130)
DATA_CMD_ERROR_1	Data/command error according to Message list (Page 130)
DATA_CMD_ERROR_2	Data/command error according to Message list (Page 130)
DATA_CMD_ERROR_3	Data/command error according to Message list (Page 130)
DATA_CMD_ERROR_4	Data/command error according to Message list (Page 130)
Parameter (write)	
ANA_OUTPUT (REAL)	Specification for analog output if this has assigned "S7 inter- face" as the source in data record 7.
DIGIT_OUTPUT (UINT)	Specifications for digital outputs if these have been assigned as function "S7 interface" in data record 7.

11.1.7 Error codes of function block

 Table 11-3
 Statuses/errors when working with the function block

Error bit	Error description	
bo_AppIIDError	Address module does not match the function block	
bo_AppIIDDRError	Data record does not match the inserted module	
bo_SFBError	Runtime error during transmission of data record	
bo_RdPerError	Reading of I/O data failed	
bo_LifeBitError	SIWAREX no longer responds	
bo_StartUpError	Command was sent although StartUp is still TRUE	
bo_WrongFW	Data record version does not match the firmware	
bo_InvalidCMD	An invalid command code was sent	
bo_DataOperationError	Synchronous data operation error has occurred	
bo_StartUp	Startup synchronization of module running	
bo_InvalidHW_ID	An invalid hardware ID was created at the function block call ("HW_ID" input).	

Note

If execution of the function block is faulty, the variables shown do not correspond to the actual status in the module.

11.2 Communication via Modbus

11.2 Communication via Modbus

11.2.1 General information

The current process values and parameters can be exchanged via the RS485 interface with Modbus RTU or the Ethernet interface with Modbus TCP/IP. It is possible to use both interfaces simultaneously for the communication.

SIWAREX WP241 supports two Modbus TCP/IP partners as of firmware version V1.2.0. It must be noted here that partner A establishes the connection over port 502 and partner B over port 503. The port numbers cannot be changed. All future register accesses, etc. are completely identical for both ports.

Note

The SIWAREX WP241 is designed for use in secure (closed) networks and does not have any protection against unauthorized data traffic.

The following chapters describe the specifications for handling communication. The following functions can be executed:

- Export parameters from the electronic weighing system
- Write parameters
- Export current process values
- Monitor messages

11.2.2 Principle of data transmission

This description is valid for communication via Modbus RTU and Modbus TCP/IP.

The standardized MODBUS protocol is used for communication. The master function is always in the connected communication partner, while the SIWAREX module is always the slave.

Data transfer is bidirectional. The master function is always in the connected module which "controls" the communication with corresponding requests to the respective SIWAREX module address. The SIWAREX module is always the slave and responds to the requests of the master, provided that the address matches, with a response frame.

Each Modbus partner has its own address. The SIWAREX module has the default address 1. This address can be changed as a parameter (e.g. in SIWATOOL). This address is without significance if the Ethernet interface is used because the connection is based on the IP address.

If the RS485 interface is used, the following character frame is valid:

Start bit	1
Number of data bits	8
Parity	Even
Stop bit	1

11.2 Communication via Modbus

The following baud rates can be set:

- 9 600 bps
- 19 200 bps (default setting)
- 38 400 bps
- 57 600 bps
- 115 000 bps

Functions which can be used by the master are listed below. The structure and contents of the registers are shown in chapter "Scale parameters and functions of the belt scale (Page 69)".

Service	Function code	Usage
Read Holding Registers	03	Read one or more 16-bit parameter registers
Write Single Register	06	Write a single parameter register
Write Multiple Registers	16	Write multiple registers

If a request of the master is answered by the SIWAREX module (slave), the SIWAREX module sends a response frame with or without errors. In the case of a response without error message, the response frame contains the received function code; in the case of errors, the highest bit of the function code is set. This corresponds to the Modbus standard. Afterwards, the master requests the data record DR 32 to check which process-related data or command errors exist.

11.2.3 Data record concept

The register assignment is an image of the data records. The chapter \rightarrow Scale parameters and functions of the belt scale (Page 69) describes the data records, variables and functions, including the register addresses. The data records are always checked as complete data packets for plausibility. For this reason, you must follow a specific procedure to change individual parameters.

11.2.4 Command mailboxes

Corresponding command codes must be sent in order to execute commands and to read and write data records in the Modbus buffer memories. These are described in more detail in chapter \rightarrow Command lists (Page 135). The following tables list the Modbus registers used to process these commands:

Variable	Note	Туре	Modbus registers
CMD1_CODE	Code of command to be executed	USHORT	910
CMD1_TRIGGER	Trigger for starting the command	USHORT	911
CMD1_STATUS	0=job running; 1=job finished (1 cycle)	USHORT	912
CMD1_QUIT	0=no error; <>0=error code	USHORT	913

Table 11-4 Command mailbox 1: Highest priority

Communication

11.2 Communication via Modbus

Variable	Note	Туре	Modbus registers
CMD2_CODE	Code of command to be executed	USHORT	920
CMD2_TRIGGER	Trigger for starting the command	USHORT	921
CMD2_STATUS	0=job running; 1=job finished (1 cycle)	USHORT	922
CMD2_QUIT	0=no error; <>0=error code	USHORT	923

Table 11-5 Command mailbox 2: Medium priority

Table 11-6Command mailbox 3: Low priority

Variable	Note	Туре	Modbus registers
CMD3_CODE	Code of command to be executed	USHORT	930
CMD3_TRIGGER	Trigger for starting the command	USHORT	931
CMD3_STATUS	0=job running; 1=job finished (1 cycle)	USHORT	932
CMD3_QUIT	0=no error; <>0=error code	USHORT	933

11.2.5 Reading registers

The method for reading registers depends on whether they belong to the writable data records (DR 3 to DR 29) or can only be read as current values (DR 30 to DR 34).

If you wish to read the registers from the data records DR 3 to DR 29, you must first export these as a complete data record to the internal output buffer.

All Modbus registers of the individual parameters can be found in chapter \rightarrow Scale parameters and functions of the belt scale (Page 69).

Example

A parameter is to be read from data record 3 (DR 3).

- First, write register CMD3_CODE with 2003 (2000 plus the number of the data record = read data record).
- Then write CMD3_TRIGGER with "1". The DR3 is then updated in the Modbus buffer memory.
- It is now possible to read one or more registers with the corresponding variable(s). The data consistency of the registers read at this time is guaranteed.

You can find all further command numbers in chapter \rightarrow Command lists (Page 135).

Example

A current measured value is to be read out from DR 30.

 \Rightarrow The register can be directly requested because its contents are automatically refreshed in the SIWAREX module at the specified measuring rate of 100 Hz and are always available up-to-date.

11.2.6 Writing registers

If you wish to write registers from the data records DR 3 to DR 29, you must first export the corresponding data record to the internal output buffer using an appropriate command. Individual registers can then be written. The complete data record must subsequently be written internally using an appropriate command. A plausibility check of the complete data record is carried out in the process.

Example

A parameter from DR 3 is to be written.

- First, write register CMD3_CODE with 2003 (2000 plus the number of the data record).
- Then write CMD3_TRIGGER with "1". The DR 3 is then updated in the Modbus memory.
- You can now write or change one or more registers with the corresponding variable. If you wish to transfer the written/changed registers to the scale, it is necessary to write the complete data record:
- First, write register CMD3_CODE with 4003 (4000 plus the number of the data record = write data record).
- Then write CMD3_TRIGGER with "1".
- The data record is then transferred to the process memory in the SIWAREX module. All registers of the data record are checked for plausibility in the process.

If the plausibility check fails, the complete data record is not written and a message is output to the user (from the area of data/operator errors).

You can find all further command numbers in chapter → Command lists (Page 135).

In addition, an online document is available for working with SIWAREX WP231 and Modbus \rightarrow Modbus communication of WP231 (<u>http://support.automation.siemens.com/WW/view/de/77913998</u>).

This document can also be applied when using a SIWAREX WP241 since the identification mechanisms are identical.

11.2 Communication via Modbus

Technical specifications

24 V power supply

Note

A protective extra-low voltage (to EN 60204-1) is to be ensured by system power supply.

Rated voltage	24 V DC	
Static low / high limits	19.2 V DC / 28.8 V DC	
Dynamic low / high limits	18.5 V DC / 30.2 V DC	
Non-periodic overvoltages	35 V DC for 500 ms with a recovery time of 50 s	
Maximum current consumption	200 mA with 24 V DC	
Typical power loss of the module	4.5 W	

Power supply from SIMATIC S7 backplane bus

Current consumption from S7-1200 backplane bus Typically 3 mA

12.1 Analog load cell interface connection

Error limit to DIN1319-1 at 20 °C +10 K	≤ 0.05% v.E.¹)	
Accuracy according to OIML R76	Class	III and IV
	 Resolution (d=e) 	3000d
	 Error percentage pi 	0.4
	 Step voltage 	0.5 µV/e
Accuracy delivery state ²⁾	Тур. 0.1% v.Е.	
Sampling rate	100 Hz	
Input signal resolution	± 4 000 000	
Measuring range	± 4 mV/V	
Maximum cable length between junction	1 000 m (3 280 ft)	
Common mode voltage range	0 V to 5 V	
DMS supply ³⁾	4.85 V DC ±2 %	
Short-circuit and overload protection	yes	
Connection	6-wire	

12.1 Analog load cell interface connection

Sensor voltage monitoring	≤ 0.3 V	
Min. DMS input resistance	Without Exi interface SIWAREX IS	40 Ω
	With Exi Interface SIWAREX IS	50 Ω
min. DMS output resistance	4 100 Ω	
Temperature coefficient range	≤ ± 5 ppm/K v. E.	
Temperature coefficient zero point	≤ ± 0.1 μV/K	
Linearity error	≤ 0.002 %	
Measured value filtering		Low pass
Electrical isolation	500 V AC	
50 Hz / 60 Hz noise suppression CMRF	> 80 dB	
Input resistance	Signal cable	Typ. 5*10 ⁶ Ω
	Sensor cable	Typ. 5*10 ⁶ Ω

Relative accuracy! (Absolute accuracy is only achieved by calibration on-site with calibration standard)
 ²⁾ Accuracy for module replacement or theoretical Calibration decisive
 ³⁾Value valid at sensor; voltage drops on cables are compensated up to 5 V

Analog output

The set replacement value is output in case of a fault or SIMATIC CPU stop.

Error limit according to DIN 1319-1 of full-scale value at 20 °C +10 K	0 20 mA: ≤ 0.5 % 4 20 mA: ≤ 0.3 %
Refresh rate	10 ms
Resolution	16-bit
Measuring ranges	0 mA to 20 mA
	4 mA to 20 mA
Max. output current	24 mA
Error signal (if configured (FW))	22 mA
Max. load	600 Ω
Temperature coefficient range	≤ ± 25 ppm/K v. E.
Temperature coefficient zero point	typ. ± 0.3 μΑ/Κ
Linearity error	≤ 0.05 %
Electrical isolation	500 V AC
Cable length	max. 100 m, twisted and shielded

12.2 Digital inputs (DI*)

Figure 12-1 Current ranges for signal level to Namur recommendation NE43

Digital outputs (DQ)

The set value is output at the digital output in case of a fault or SIMATIC CPU stop.

A freewheeling diode has to be installed at the consumer with inductive loads at the digital output.

Quantity	4 (high-side switch)
Supply voltage range	19.2 V DC to 28.8 V DC
Max. output current per output	0.5 A (ohmic load)
Max. total current for all outputs	2.0 A
Refresh rate (FW)	100
Switching delay	Typ. 25 μs turn on
	Typ. 150 μs turn off
RDSON	< 0.25 Ω
Short-circuit proof	Yes
Electrical isolation	500 V AC
Cable length (meter)	Max. 500 m shielded, 150 m unshielded

12.2 Digital inputs (DI*)

Table 12-1 Digital input DI.0 (speed sensor input) as of hardware version 1

Rated voltage	24 V DC (+20% / -10%)
Supply voltage range	Max. 26.5 V DC
Power consumption at 24 V DC	7 mA
Voltage surge	35 V DC for 0.5 s
Logical signal level 1 (min)	9 V DC @ 2.5 mA
Logical signal level 0 (max)	4 V DC @ 1.0 mA
Sampling rate (FW)	10 ms
Filtering	0.2, 0.4, 0.8, 1.6, 3.2, 6.4 oder 12.8 ms
Electrical isolation	500 V DC
Max. cable length	300 m

12.2 Digital inputs (DI*)

Table 12-2 Digital inputs DI.1 to DI.3

Rated voltage	24 V DC
Supply voltage range	Max. 30 V DC
Power consumption at 24 V DC	4 mA
Voltage surge	35 V DC for 0.5 s
Logical signal level 1 (min)	15 V DC at 2.5 mA
Logical signal level 0 (max)	5 V DC at 1.0 mA
Sampling rate (FW)	10 ms
Filtering	0.2, 0.4, 0.8, 1.6, 3.2, 6.4 and 12.8 ms
Electrical isolation	500 V DC

* This table applies for all digital inputs up to hardware version 1

Real-time clock

Accuracy at 25 °C	± 60 s/month
Buffered period	Typ. 10 days at 25 °C min. 6 days at 40 °C

RS485 interface

Standard	EIA-485
Baud rate	up to 115 kbps*
Data bits	7 or 8
Parity	even odd none
Stop bits	1 or 2
Terminating resistors (can be activated)	390 Ω / 220 Ω / 390 Ω
Electrical isolation	500 V AC
Transfer protocol	ASCII for remote display from Siebert and Mod- bus RTU)
Cable length	≤ 115 kbps max. 1 000 m
	(fieldbus cable 2-wire, shielded, e.g. 6XV1830-0EH10)

Ethernet

Standard	IEEE 802.3
Transmission rate	10/100 Mbps (determined automatically)
Electrical isolation	1 500 V AC
Transfer protocol	TCP/IP, Modbus TCP (see /1/)
Autonegotiation	Yes
Auto MDI-X	Yes

12.2 Digital inputs (DI*)

Cable lengths • Cat-5e UTP cable (unshielded)	Max. 50 m	
	Cat-5e SF/UTP cable (shielded)	Max. 100 m

Dimensions and weights

Dimensions W x H x D	70 x 100 x 75 mm
Weight	300 g

Mechanical requirements and data

Testing	Standards	Test values
Vibrational load during op-	IEC 61131-2	5 to 8.4 Hz: 3.5 mm out.
eration	IEC 60068-2-6	8.4 to 150 Hz: 9.8 m/s² (=1G)
	Test Fc	0 cycles per axis
		1 octave / min.
Shock load during opera-	IEC 61131-2	150 m/s ² (approx. 15 g), half sine
tion	IEC 60068-2-27	Duration: 11 ms
	Test Ea	Quantity: 3 each per axis
		in negative and positive direction
Vibration load during	IEC 60068-2-6	5 to 8.4 Hz: 3.5 mm out.
transport	Test Fc	8.4 Hz 500 Hz: 9.8 m/s ²
		10 cycles per axis
		1 octave / min.
Shock load during trans-	IEC 60068-2-27:	• 250 m/s ² (25G), half sine
port	Test Ea	Duration: 6ms
		• Quantity: 1 000 each per axis
		• in negative and positive direction
Free fall	IEC 61131-2	• For devices < 10 kg:
		In product packaging:
	IEC 60068-2-31:	300 mm drop height
	Test Ec, procedure 1	In shipping package:
		1.0 m drop height
		 per 5 attempts

12.3 Electrical, EMC and climatic requirements

12.3 Electrical, EMC and climatic requirements

Electrical protection and safety requirements

Fulfilled requirement	Standards	Comments
Safety regulations	IEC 61010-1 IEC 61131-2; UL 508 CSA C22.2 No.142	
Protection class	IEC 61140	Module is operated with protective extra- low voltage. The protective conductor connection serves only a functional earth to dissipate interference currents
IP degree of protection	IP20 in accordance with IEC 60529	 Protection against contact with standard probe
		 Protection against solid bodies with diameters in excess of 12.5 mm
		No special protection against water
Air gaps and creepage dis-	IEC 60664	Overvoltage category II
tances	IEC 61131-2	Pollution degree 2
	UL 508	PCB material IIIa
CSA C22.2 No. 145 EN 50156-1	CSA C22.2 No. 145 EN 50156-1	Conductor path distance 0.5 mm
Isolation stability IEC 61131-2 CSA C22.2, No. 142 UL508	IEC 61131-2 CSA C22.2, No. 142	Ethernet port: 1500 V AC (shield and signals)
	UL508	Additional electrical circuits: Test voltage: 500 V AC or 707 V DC
		Test duration: ≥ 1 minute Short circuit current: ≥ 5 mA

12.3 Electrical, EMC and climatic requirements

Electromagnetic compatibility

Comments	Standard	Limits
Emission of radio interferen- ces (electromagnetic fields)	Class A industrial environ- ment: EN 61000-6-4 IEC/CISPR 16-2-3: 2008	 30 230 MHz, 40 dB (μV/m) Q 230 1000 MHz, 47 dB (μV/m) Q
Emission on power supply cables 24 V	Class A: Industrial environ- ment: EN 61000-6-4 IEC/CISPR 16-2-1: 2010; EN 55016-2-1: 2009	Class A: Industrial environment • 0.15 0.5 MHz, 79 dB (μV) Q • 0.15 0.5 MHz, 66 dB (μV) M • 0.5 30 MHz, 73 dB (μV) Q • 0.5 30 MHz, 60 dB (μV) M
Emission conducted Ether- net	EN 61000-6-4	0.15 0.5 MHz: • 53 dB (μA) to 43 dB (μA) Q • 40 dB (μA) – 30 dB (μA) M 0.5 30 MHz: • 43 dB (μA) Q / 30 dB (μA) M

Table 12-3 Requirements: Interference emission in industrial area in accordance with EN 61000-6-4

Table 12-4 Requirements: Interference immunity in industrial area in accordance with EN 61000-6-2

Comments	Standard	Severity class
Burst pulses on power sup- ply cables	EN45501 OIML R76	1 kV
Burst pulses on data and sig- nal cables	EN 61000-4-4 NAMUR NE21 EN 61326	2 kV
Electrostatic discharge (ESD)	EN 61000-4-2 NAMUR NE21 EN 61326 EN45501 OIML R76	6 kV direct/indirect
Electrostatic air discharge (ESD)	EN 61000-4-2 NAMUR NE21 EN 61326 EN 45501 OIML R76	8 kV
Surge on power supply ca- bles	EN 61000-4-5 IEC 61131-2 NAMUR NE21 EN 61326	1 kV symmetric2 kV asymmetric
Surge on data and signal ca- bles	EN 61000-4-5 IEC 61131-2 NAMUR NE21 EN 61326	 1 kV symmetric¹⁾ 2 kV asymmetric

12.3 Electrical, EMC and climatic requirements

Comments	Standard	Severity class
HF irradiation amplitude modulated	IEC61000-4-3 NAMUR NE21 OIML R76 EN 45501*3	 80 2000 MHz: 12 V/m Mod.: 80% AM with 1 kHz Note:
		In the ranges 87 108 MHz, 174 230 MHz and 470 790 MHz: 3 V/m
HF irradiation, cell phone fre- quencies	IEC 61000-4-3	 900 MHz (± 5 MHz) 1.89 Ghz (± 10 MHz) 10 V/m
HF voltage on data, signal and power supply cables 0.15 to 80 MHz	IEC 61000-4-6 NAMUR NE21 EN 61326 OIML R76	 10 kHz to 80 MHz: 10 Veff Mod.: 80% AM with 1 kHz

¹⁾ Not applicable for shielded cables and symmetric ports

* An external protection element has to be installed to meet the requirement (e.g.: Blitzductor VT AD24V, Dehn&Söhne)

NOTICE

Radio interference is possible

This is a device of class A. The device may cause radio interference in residential areas. Implement appropriate measures (e.g.: use in 8MC cabinets) to prevent radio interference.

Ambient conditions

The use of SIWAREX WP is intended under the following conditions in SIMATIC S7-1200. Additionally observe the operating conditions of the S7-1200 system.

Table 12-5	Operating conditions in accordance with IEC 60721
------------	---

Mode	IEC 60721-3-3	
	• Class 3M3, 3K3, stationary use, weather-proofed	
Storage/transport	IEC 60721-3-2	
	Class 2K4 without precipitation	

Table 12-6	Climatic requirements
------------	-----------------------

Comments		Ambient conditions	Application areas
Operating temperature:	Horizontal installa- tion in S7-1200	-10 +55 °C	
-	Vertical installation in S7-1200	-10 +40 °C	
	Operation with ver- ification capability	-10 +40 °C	
Storage and transport temperature		- 40 +70 °C	

12.4 Approvals

Comments		Ambient conditions	Application areas
Relative humidity		5 95 %	No condensation; corre- sponds to relative humidity (RH) stress level 2 to DIN IEC 61131-2
Contaminant concentration		SO ₂ : < 0.5 ppm	RH < 60%, no condensation
		H ₂ S: < 0.1 ppm;	
Atmospheric pressure	Operation	IEC 60068-2-13	1080 795 hPa (operation) (-1000 +2000 m above sea level)
	Transport and stor- age	IEC 60068-2-13	1080 660 hPa (storage) (-1000 +3500 m above sea level)

Mean Time Between Failure (MTBF)

The MTBF calculation results in the following value:

Table 12-7 MTBF

Electronic Weighing System	MTBF in years
SIWAREX WP231/WP241/WP251	59 years @TA = 40 °C

12.4 Approvals

NOTICE

Safety guidelines for applications in hazardous areas

For applications in hazardous areas, read the safety instructions in the document "Product Information - Use of SIWAREX Modules in a Zone 2 Hazardous Area (<u>http://support.automation.siemens.com/WW/Ilisapi.dll?aktprim=100&lang=en&referer=%2fWW</u>%2f&func=cslib.cssearch&nodeid0=4000024&viewreg=WW&siteid=csius&extranet=standard&groupid=4000002&objaction=cssearch&content=adsearch%2Fadsearch%2Easpx)".

Note

The current approvals for SIWAREX WP241 can be found on the module rating plate.

CE	→ CE approval (<u>https://support.industry.siemens.com/cs/ww/de/</u> view/102423675/en)	
	→ cULus approval (<u>http://support.automation.siemens.com/WW/</u> <u>view/de/74442065</u>)	

12.4 Approvals

Ex	→ Ex approval (<u>http://support.automation.siemens.com/WW/view/</u> <u>de/81803667</u>)
	→ KCC approval
EAC	→ EAC certificate (<u>https://support.industry.siemens.com/cs/ww/de/</u> view/109476219/en)
	→ Tick mark for Australia and New Zealand
ROHS	→ The modules are RoHS-compliant according to EU Directive 2016/65/EU

Accessories

Ordering data	
Description	Order No.
SIWAREX WP241 configuration package	7MH4960-4AK01
• SIWATOOL program for adjustment of scales during commissioning	
 Software "Ready for use" This contains the SIMATIC S7 blocks for operation in SIMATIC S7-1200 and a project for SIMATIC Operator Panel TP700 	
 Manuals in several languages 	
SIWAREX WP241 manual in various languages	Free download from the Internet WP241 manuals (http://support.automation.siemens.com/WW/ view/de/64722267/133300)
SIWAREX WP241 "Ready for use"	Free download from the Internet "Ready for use" (http://support.automation.siemens.com/WW/ view/de/64722267/133100)
Ethernet patch cable CAT5	
To connect the SIWAREX to a PC (SIWATOOL), SIMATIC CPU, panel, etc.	
SIWAREX JB junction box	7MH4 710-1BA
For parallel connection of load cells	
SIWAREX EB extension box	7MH4 710-2AA
For extending load cell cables	
Ex interface, type SIWAREX IS	
With ATEX approval for intrinsically-safe connec- tion of load cells, including manual, suitable for the load cell groups SIWAREX CS, U, M, FTA, P, WP231, WP321, and WP241	
• With short-circuit current < 199 mA DC	7MH4 710-5BA
• With short-circuit current < 137 mA DC	7MH4 710-5CA
Cable (optional)	
Cable Li2Y 1 x 2 x 0.75 ST + 2 x (2 x 0.34 ST) - CY	7MH4 702-8AG
• To connect SIWAREX CS, U, M, P, A, WP231, WP321, and WP241 to the junction box (JB), extension box (EB) or Ex interface (Ex-I) or between two JBs, for fixed laying	
Occasional bending is possible	
• 10.8 mm outer diameter	
 For ambient temperature -20 to +70 °C 	

Or	Ordering data		
Description		Order No.	
Ca Cì	able Li2Y 1 x 2 x 0.75 ST + 2 x (2 x 0.34 ST) - 7, blue sheath	7MH4 702-8AF	
•	To connect junction box (JB) or extension box (EB) in hazardous area and Ex interface (Ex-I), for fixed laying		
•	Occasional bending is possible, blue PVC insulating sheath, approx. 10.8 mm outer diameter		
•	For ambient temperature -20 to +70 °C		
DI	N rail grounding terminals for load cell cable	6ES5728-8MA11	

Appendix

A.1 Technical support

Technical Support

If this documentation does not provide complete answers to any technical questions you may have, contact Technical Support at:

- Support request (<u>http://www.siemens.com/automation/support-request</u>)
- More information about our Technical Support is available at Technical support (<u>http://www.siemens.com/automation/csi/service</u>)

Internet Service & Support

In addition to our documentation, Siemens provides a comprehensive support solution at:

Service&Support (<u>http://www.siemens.com/automation/service&support</u>)

Personal contact

If you have additional questions about the device, please contact your Siemens personal contact at:

Partner (<u>http://www.automation.siemens.com/partner</u>)

In order to find the contact for your product, select under 'All Products and Branches' the path 'Automation Technology > Sensor Systems'.

Documentation

You can find documentation on various products and systems at:

 Instructions and manuals Instructions and manuals (<u>https://support.industry.siemens.com/</u> <u>cs/ww/en/ps/17781/man</u>)

See also

Process instrumentation catalog (http://www.siemens.com/processinstrumentation/catalogs)

SIWAREX support

- E-mail (mailto:hotline.siwarex@siemens.com)
- Phone: +49 (721) 595-2811 CET 8:00 to 17:00

Appendix

A.1 Technical support

ESD guidelines

B.1 ESD Guidelines

Definition of ESD

All electronic modules are equipped with large-scale integrated ICs or components. Due to their design, these electronic elements are highly sensitive to overvoltage, and thus to any electrostatic discharge.

The electrostatic sensitive components/modules are commonly referred to as ESD devices. This is also the international abbreviation for such devices.

ESD modules are identified by the following symbol:

NOTICE

ESD devices can be destroyed by voltages well below the threshold of human perception. These static voltages develop when you touch a component or electrical connection of a device without having drained the static charges present on your body. The electrostatic discharge current may lead to latent failure of a module, that is, this damage may not be significant immediately, but in operation may cause malfunction.

Electrostatic charging

Anyone who is not connected to the electrical potential of their surroundings can be electrostatically charged.

The figure below shows the maximum electrostatic voltage which may build up on a person coming into contact with the materials indicated. These values correspond to IEC 801-2 specifications.

B.1 ESD Guidelines

Figure B-1 Electrostatic voltages which an operator can be subjected to

Basic protective measures against electrostatic discharge

- Ensure good equipotential bonding: When handling electrostatic sensitive devices, ensure that your body, the workplace and packaging are grounded. This prevents electrostatic charge.
- Avoid direct contact:

As a general rule, only touch electrostatic sensitive devices when this is unavoidable (e.g. during maintenance work). Handle the modules without touching any chip pins or PCB traces. In this way, the discharged energy can not affect the sensitive devices. Discharge your body before you start taking any measurements on a module. Do so by touching grounded metallic parts. Always use grounded measuring instruments.

List of abbreviations

C.1 List of abbreviations

ASCII	American Standard Code for Information Interchange
В	Gross weight
CPU	Central processor, in this case SIMATIC CPU
DB	Data block
FB	SIMATIC S7 function block
НМІ	Human machine interface (e.g. SIMATIC Operator Panel)
HW	Hardware
NAWI	Non-automatic weighing instrument
NAW	Non-automatic scales
OIML	Organisation Internationale de Metrologie Legale
OP	Operator Panel (SIMATIC)
PC	Personal computer
рТ	Preset tare (predefined tare weight with manual taring)
RAM	Random access memory
PLC	Programmable logic controller
STEP 7	Programming device software for SIMATIC S7
Т	Tare weight
ТМ	Technology module
TP	Touch Panel (SIMATIC)
UDT	Universal Data Type (S7)
WRP	Write protection
LC	Load cell(s)
NR	Numerical range

List of abbreviations

C.1 List of abbreviations

Index

С

Connections, 27 Customer Support Hotline, 165

D

Documentation Edition, 11

Ε

Electrical, 158 protection requirement, 158 ESD guidelines, 167

G

Guidelines ESD guidelines, 167

Η

History, 11 Hotline, 165

I

Internet, 165

Μ

MTBF, 161

Ρ

protection requirement Electrical, 158

R

Reliability, 161

S

safety requirement, 158 Electrical, 158 Scope of delivery, 12, 18 Service, 165 Support, 165