

How to get process data onto your desktop: or Connectivity for your analog devices with a glimpse of the future: The Industrial Internet of Things IIoT

Dan Weise, Lesman Instrument Co

Thank You for Attending Today's Webinar

Your Host

Mike DeLacluyse President Lesman Instrument Company miked@lesman.com

Today's Featured Speaker

Dan Weise

Control Product Specialist Lesman Instrument Company danw@lesman.com

Get Social with Lesman

twitter

- Our Website
 - www.lesman.com
- Dan's Tips blog
 blog.lesman.com
- Follow us on LinkedIn
 - www.linkedin.com/company/ lesman-instrument-company
- Follow us on Twitter
 @Lesman Inst
- Check Out our YouTube Channel
 - www.youtube.com/ user/LesmanInstrumentCo

Where are we today?

Your Source for Process Control Instrumentation

Where are we today?

- Lots of analog sensors and switches
 - Thermocouples/RTDs
 - Pressure transmitters
 - Flow meters
 - Level transmitters
 - Humidity/moisture sensors
- Rugged, conditioned industrial outputs
 - 4-20mA
 - 0-5V
 - Modbus

Where are we today?

- If you already have a DCS or a Fieldbus, you'd be looking at the data on your desktop HMI
 - Profibus
 - Foundation Fieldbus
 - Ethernet/IP

• But, you're tuned in here because you don't

Where are we today?

Your Source for Process Control Instrumentation

Where are we today?

- PCs are 30-35 years old now
- But PCs don't natively handle process (analog or switch) data.
- Stumbling blocks
 - It isn't USB or Ethernet
 - No universal protocol to interpret the USB or Ethernet data
 - Software package needed to interpret/display the data
 - A driver needed to let software talk to the device

Where are we today?

Your Source for Process Control Instrumentation

Where are we today?

- You sit at your desktop and want to see what's happening in the process or to get an alarm when the switch trips
- How can you get process data onto your desktop?

- From an article, OPC UA, seen through the eyes of users
 - by Randy Kondor, published 2009, OPC Foundation
- Since the 1990's, the industrial world benefitted from OPC DA
- OPC DA (now 'Classic OPC") revolutionized connectivity of instruments/controls-to-HMI software
 - OPC is an industrial Communications Specification (set of rules)
 - Client Server
 - HMI Software is an OPC client
 - Instruments/devices talk to an OPC server
 - OPC server talks to OPC server
 - Uses the Windows component, DCOM restricted to a Windows environment
 - For instance, an OPC server runs as a Windows service
 - Use of OPC tracked the spread of Windows PCs into the industrial world

- Who uses OPC DA?
 - Anyone running an HMI software program less than 15 years old.
 - OPC Foundation estimates that 80% of OPC end-users do not even know they're using it
 - Allen Bradley's communications program, RSLinx, is based on OPC
- By any measure extremely widespread and successful why?
 - Visible System integrators could talk to more devices more easily
 - Invisible Eliminated the need for "driver development" by the HMI vendors; OPC server vendors concentrate on connectivity on the low side
 - Analogous to Windows handling printer drivers, rather than each DOS application needing a custom printer driver
- 20 years later, OPC DA seems limited given evolution of PC, the internet and wireless communications (cell phone)

- 2010 or thereabouts OPC Foundation announces the successor: OPC UA (Unified Architecture)
- OPC UA is a total restructuring of OPC connectivity, not necessarily limited to higher end instrumentation/devices
 - Includes self-recognizing, auto-populating device-to-client operation
 - Includes 'analytics', whatever that means
- OPC UA is the kernel of Industrial Internet of Things
 - Abbreviated IoT or IIot

What's the Industrial Internet of Things ?

• Painted as the True Panacea - all devices will be recognized and communicate with host software

What's the Internet of Things ?

Your Source for Process Control Instrumentation

- OPC UA will not be Windows dependent
 - means OPC UA will be able to be 'embedded' in non-Windows devices
 - O/S independent

What's the Internet of Things ?

Your Source for Process Control Instrumentation

- OPC DA is typically found between Level 2 & Level 3.
- OPC UA promises to exchange data between the Level 2/3 and the business (Level 4) network.

- OPC UA abandons Windows and is web services based
 - Upside O/S independence
 - Downside security
- "OPC UA is the Modbus of the new century"
 - Modbus is arguably the most widely used industrial communications protocol

What's the Internet of Things ?

Your Source for Process Control Instrumentation

- Evolution of smart cell phone connectivity is pushing development of apps for remote monitoring of industrial devices
- OPC is not a replacement for low-level field device communication standards such as 4-20 mA, HART, PROFIBUS, or Foundation Fieldbus.

What's the Internet of Things ?

Your Source for Process Control Instrumentation

What's the Industrial Internet of Things ?

In summary

- Up to now, a marketing promise (trust me . . .)
- OPC UA is coming.
- Our vendors tell us it's on the way
- But, to date, Lesman has one device wireless gateway with OPC UA
- Was it Xerox or IBM that in 1990 promised the "paperless office" by year 2000?
- Let's pause for a reality check
- Is it here yet? Not really
- Is it coming? Definitely

Data on the Desktop

Your Source for Process Control Instrumentation

Until OPC UA arrives . . .

- How do you get desktop connectivity now?
- "Data on the Desktop"
- Example Lesman's server room
- Servers are critical for our operation
 - Email
 - VOIP phones
 - Web orders
 - Internal: accounts receivable/payable; order entry, shipping
- Servers generate a lot of heat and do not like high ambient temperatures
- Need to know when A/C is compromised and take action
- What tells us?

Data on the Desktop

Your Source for Process Control Instrumentation

Data on the desktop

- Hang a temp sensor
- Connect sensor to a web/email/text message-enabled alarm recorder
- Configure staged alarms
 - 77 Deg F
 - 78 Deg F
 - 79 Deg F
 - 80 Deg F
 - 81 Deg F
- On alarm sends email and text message

Data on my phone

• On alarm - sends email and text message

0

Send

Data on the desktop

• From a desktop: View the temperature trend

Data on the Desktop

• See how long the temperature excursion lasted

Data on the Desktop

- Change the setpoints if need be
 - Note the log-in for making changes

Alarm 1 Hi (77.00), P1 Alm 1 Alarm 2 Hi (78.00), P1 Alm 2 Alarm 3 Hi (79.00), P1 Alm 3 Alarm 4 Hi (80.00), P1 Alm 4 Alarm 5 Hi (81.00), P1 Alm 5 Alarm 6 Hi (82.00), P1 Alm 6 Image: Control Mode	Edit Setup	Pens Pen 1	Alarms
Alarm 2 Hi (78.00), P1 Alm 2 Alarm 3 Hi (79.00), P1 Alm 3 Alarm 4 Hi (80.00), P1 Alm 4 Alarm 5 Hi (81.00), P1 Alm 5 Alarm 6 Hi (82.00), P1 Alm 6 Image: Control Mode Image: Control Mode	Alarm 1	Hi (77.00), P1 Alm 1	
Alarm 3 Hi (79,00), P1 Alm 3 Alarm 4 Hi (80,00), P1 Alm 4 Alarm 5 Hi (81,00), P1 Alm 5 Alarm 6 Hi (82,00), P1 Alm 6 Alarm 6 Hi (82,00), P1 Alm 6 Back Finish Status: Control Mode	Alarm 2	Hi (78.00), P1 Alm 2	
Alarm 4 Hi (80.00), P1 Alm 4 Alarm 5 Hi (81.00), P1 Alm 5 Alarm 6 Hi (82.00), P1 Alm 6 Alarm 6 Hi (82.00), P1 Alm 6 Back Finish Status: Control Mode	Alarm 3	Hi (79.00), P1 Alm 3	•
Alarm 5 Hi (81.00), P1 Alm 5 Alarm 6 Hi (82.00), P1 Alm 6 It (82.00), P1 Alm 6 Back Finish Control Mode	Alarm 4	Hi (80.00), P1 Alm 4	
Alarm 6 Hi (82,00), P1 Alm 6 Back Finish ? Itatus: Control Mode	Alarm 5	Hi (81.00), P1 Alm 5	•
Back Finish Control Mode	Alarm 6	Hi (82.00), P1 Alm 6	
tatus: Control Mode	d Back	Fir	nish 🔹
	Status:	Control Mode	
	Password		
Password	D. A. A.	Deleges Control	1 10010

Data on the Desktop

• What's it like doing it 'live'?

Data on the Desktop

- How usable is a system like this?
- Two parts to getting it working
 - Configuration
 - Networking
- Configuration
- Recorders are configured, not programmed
- Programming starts with a blank slate
 - Usually a separate Development software package
 - Programmer defines and codes everything all sequences, all operations, etc
 - Higher skill level, testing/debugging, requires a programmer to make changes
- Configuration is menu based & selecting a parameter from a set of choices

Blank slate programming

Your Source for Process Control Instrumentation

Blank Slate programming

• Honeywell's Control Designer for HC-900 Process Automation Controller

Blank slate programming

Your Source for Process Control Instrumentation

Blank Slate programming

• Honeywell's Control Designer uses Function Blocks

			Free Form Math	
III F			Block Number 117	Order 10
Rev 6.0x : Dan's Safety Explorations.			OUT = (A+B+C)/H	
/O Blocks .oop Blocks		MATH117 10	Errors:	Functions:
P Program etpoint Scheduler	10.000	B ERR O	_c]	abs exp
ogic ounters/Timers	15.000	c D		log
ath ⊨ ISCB		÷-E		Operators:
ADD		F		+ (Add) - (Subtract)
MUL	3.000	н		/ (Divide) / (Power)
4 Input ADD		1		
4 Input SUB				OK Car

Blank slate programming

Your Source for Process Control Instrumentation

Blank Slate programming

• PLCs/HMIs/Wonderware packages use Structured Text:

```
if result then functionString = "block_2";
else functionString = "block_3";
endif;
value = System.AppDomain.CurrentDomain.GetData("fResult");
'Use SortedList to pass multi-parameters
dim params as System.Collections.SortedList;
params = new System.Collections.SortedList();
'this parameter will be passed by value
params.Add("value",value);
'this parameter will be passed by reference
params.Add("myTable",myTable);
System.AppDomain.CurrentDomain.SetData("fParams",params);
```

- Whether Structured Text or Function Block programming
 - Initial and *continuing cost* of development software
 - Skill level required for blank slate programming/editing
 - Changes are billed like lawyer fees

Trendview Configuration

Your Source for Process Control Instrumentation

Compare to Trendview Configuration

- Recorders are NOT programmed from a blank slate
- Recorders use Menus. Make a selection from choices, or enter a value

Example of a recorder menu path from the Main Menu to Pen Scale configuration with clear rapid navigation

Trendview Configuration

Your Source for Process Control Instrumentation

Compare to Trendview Configuration

- With menu driven configuration, a technician with a moderate skill set can
 - Install
 - Commission
 - Make incremental changes over time
- Handle it 'in-house'

Networking a recorder

Your Source for Process Control Instrumentation

Networking a recorder

Requires some assistance from your IT guy

- Install software at a admin level
- User and group entries
- IP address, Gateway IP
- Routing between subnets
- Connect from your home PC requires VPN access from outside the plant

Variety of sizes and options

Your Source for Process Control Instrumentation

Variety of sizes and options

- Buy only what you need
 - Screen size
 - # of inputs
 - Case style
 - Options
 - Batch
 - Modbus Master

Why a recorder?

Your Source for Process Control Instrumentation

Why a recorder?

- Super readability for charts
 - High contrast LCD
 - Rounded, even time divisions
 - Swap between three chart speeds
- Trend data AND digital data
- Alarm Annunciation and notification
- Consolidates multiple paper recorders
- Print to a USB printer
- Batch recording
- USB bar code reader
- Easy to get data out
- Archived data saved in a database, not zillions of files that are "high maintenance" file management
- Menu Configuration, not blank slate programming
- View recorder screen remotely "Data on the desktop"

Cellular Visibility

Your Source for Process Control Instrumentation

Cellular visibility

- They hear you.
- It's coming
- Vendors are working on it
- Until it arrives, consider a networked recorder
- If the promises about OPC UA's universal connectivity are true, then the recorder will connect as easily as anything else; it won't be obsoleted
 - OPC does not eliminate the 'front end': the AI the sensors/transmitters connect to

Get Social with Lesman

twitter

- Our Website
 - www.lesman.com
- Dan's Tips blog
 blog.lesman.com
- Follow us on LinkedIn
 - www.linkedin.com/company/ lesman-instrument-company
- Follow us on Twitter
 @Lesman Inst
- Check Out our YouTube Channel
 - www.youtube.com/ user/LesmanInstrumentCo