

Thank You for Attending Our January Webinar:

Using Eductors in Non-Powered Tank Mixing and Pumping

Your Host

Mike DeLacluyse President Lesman Instrument Co miked@lesman.com

Featured Speaker Clarence Dela Vega Eductor Sales Specialist Clark-Reliance

cdelavega@clark-reliance.com

Follow the Conversation LIVE @Lesman_Inst #LesmanWebinar

Jacoby-Tarbox® Eductors[™]

Anderson Separators®Clark Steam Traps™Ernst Flow Industries®Enervac™HYCOA®Jacoby-Tarbox®Jerguson®Magne-Sonics®National Filtration Systems®Oil Filtration Systems®Reliance® Boiler Trim™

JACOBY·TARBOX[®]

What is an "Eductor" ?

A device that uses kinetic energy from one fluid (motive) to create a pressure differential in a confined space. This pressure differential allows a secondary fluid (suction) to flow toward this lower pressure area.

Either "fluid" may be a liquid, gas, or steam.

Eductor Applications

- Steam heating
- Liquid mixing
- Dilution
- Solids transfer
- Pump priming
- Gas mixing
- Venting gas

Water condensate

Outlet process

Arsenic

In-Line Eductor Applications (Specifics)

- Diesel pumping sulfuric acid (refineries)
- Water pumping wet strength resin (paper mills)
- Water pumping liquid detergent (fire applications)
- Water pumping activated carbon or anthracite (water treatment)
- Water pumping acids and bases (pH balance, water treatment)
- Water pumping bilge water (government, Navy)
- Steam pumping sulfur: gasoline desulfurization (refineries)
- Air entraining flue gas (sewage facilities)

In-Line Eductor Applications (Specifics) cont:

- Steam heating sugar juice (sugar cane facilities)
- Direct steam injection heating hydrocarbons (refineries)
- Steam sterilization (government)
- Refrigerant pumping refrigerant in closed loop systems (new technology: pending patent approval)
- Pumping water from a sump (water treatment)
- Natural gas pumping natural gas liquid (skid projects)
- Water condensate pumping arsenic solution (refineries)
- Pumping liquid propane offshore (refineries)

TLA (Tank Liquid Agitator)

TLA (Tank Liquid Agitator)

TLA Applications

- Chemical blending
- Chemical neutralization
- Steam tank heating
- Solids suspension
- Blending crude oil

TLA Application - Sequence

General Mixing:

Stratified Layers:

Suspension of Solids:

Directional Sweep:

Cost Savings: Pump vs. Mechanical Mixer

Jensen Mechanical Mixer

Model	Model 620	Model 650	Model 680
Horsepower (Max.)	20	40	75
Shaft R.P.M.	425	425	425
Gear Rating*	37.5 HP	116 HP	116 HP
Bearing Life **	48,000 HRS.	64,000 HRS.	48,000 HRS.
Critical Speed ***	2,470 RPM	2,800 RPM	3,200 RPM

* Equivalent A.G.M.A Class II Horsepower

** B-10 Life (90% of the bearings will meet or exceed). Life shown is lowest calculated life of any bearing in the mixer.

*** Propeller shaft first critical speed.

Select hp unit type:	Mechanic horsepower •	
Enter horsepower:	20	hp
	Convert Reset	
Result in kilowatts:	14.91399744	kW

Jensen Mechanical Mixer: Model 620

Electricity Bill Calculator

Select country:	United States	•
Typical appliance:	select	T
Power consumption:	14.91	kilowatts (kW) •
Hours of use per day:	24	h/day
1 kilowatt-hour (kWh) cost:	12	cent •
	Calculate Res	set
Electricity cost per day:	\$42.9408	
Electricity cost per month:	\$1307.01	
Electricity cost per year:	\$15684.1	

Electricity bill cost calculator. Electricity usage consumption calculator.

Useful Pump Formulas

Pressure (PSI)		Head (Feet) x Specific Gravity 2.31
Head (Feet)	W.	Pressure (PSI) x 2.31 Specific Gravity
Vacuum Inches of Mercury)	SIE.	Dynamic Suction Lift (Feet) x .883 x Specific Gravity
Horsepower (Brake)	#	GPM x Head (Feet) x Specific Gravity 3960 x Pump Efficiency
Horsepower (Water)	SHE S	GPM x Head (Feet) x Specific Gravity 3960
Efficiency (Pump)	ų,	Horsepower (Water) Horsepower (Brake) x 100 Per Cent
NPSH (Available)	0110	Positive Factors - Negative Factors

Power to Pump Water

Required horsepower (hp) to pump <u>1 cubic foot of water per minute (ft²/min)</u> with efficiency 85% - is indicated in the diagram below:

Horsepower due to Head of Water

	7.56 (GPM
Select hp unit type:	Mechanic horsepower •	
Enter horsepower:	8.6	hp
	Convert Reset	
Result in kilowatts:	6.4130188992	kW

0.35 horsepower x horsepower 185 *GPM* Electricity Bill Calculator Electricity bill cost calculator. Electricity usage consumption calculator. United States Select country: -- select --Typical appliance: 6.41 kilowatts (kW) • Power consumption: 24 h/day Hours of use per day: 12 1 kilowatt-hour (kWh) cost: cent 🔹 Calculate Reset \$18.4608 Electricity cost per day: \$561.901 Electricity cost per month: \$6742.81 Electricity cost per year:

Comparing Equipment Costs

Jensen Mixer Model 620

Electricity Bill Calculator

Electricity bill cost calculator. Electricity usage consumption calculator.

Select country:	United States •	
Typical appliance:	select	•
Power consumption:	14.91	kilowatts (kW) •
Hours of use per day:	24	h/day
1 kilowatt-hour (kWh) cost:	12	cent •
	Calculate Reset	
Electricity cost per day:	\$42.9408	
Electricity cost per month:	\$1307.01	
Electricity cost per year:	\$15684.1	

2" TLA w/ recirculation pump

Electricity Bill Calculator

Electricity bill cost calculator. Electricity usage consumption calculator.

TLA Yearly Savings = \$8,941.29

CFD Simulation

We will model the customer's tank design and simulate directional flow based on customer specs. Jacoby-Tarbox® is the ONLY one able to model your application!

CFD Simulation Cont.

Misconceptions

A pipe attached to a pump will be sufficient enough to mix

Misconceptions

A nozzle attached to a pump will be sufficient enough to mix

Efficiency Starts from the Design

Refinery in Lousiana: 8" TLAs for mixing / heating diesel fuel

□ Knocked out competition because of CFD

Munitions plant **Blending acetic** acid, water, and explosives particulates Electropolished at 15 Ra **Design and weld** specific to BAE's application

Car manufacturer: Neutralization Tanks

- Refinery: Test tank (asphalt) that converted nozzles into TLAs
- Will replace all existing nozzles in 30 tanks to TLAs
- CFD played a key role

CFD Results for Refinery

1-1/2" Nozzles: Max Blend

CFD Results for Refinery

1-1/2" TLAs: Max Blend

 Ethanol plant
Heating corn slurry using biomass mixers

Tools Available for Eductors

Eductor Literature

AccuBlend CFD

A Jacoby-Tarbox[®] Program[™]

Eductors require no power, which means no moving parts. The design of the eductor creates pressure differential allowing fluid to flow naturally within the device - creating suction, mixing, and pushing the liquid throughout the tank.

Jacoby-Tarbox[®] TLAs[™] & Jacoby-Tarbox[®] In-line Eductors[™] are designed and built to provide optimum performance.

We can prove it !

Jacoby-Tarbox[®] is the only Eductor manufacturer that can design your mixing solutions based on actual computational data.

Send us your specifications:

1. Goal of Mixing: blend, suspend solids, stratified layers, heating 2. Tank or Reservoir dimensions 3. Fluid properties

4. Turnover time

We will send you the proof !

JACOBY . TARBOX

Proven Results

"Without the AccuBlend CFD (Computation Fluid Dynamics) information to review, we would not have considered eductors for this project."

Senior Project Specialist for an International Car Manufacturer

Our engineers will simulate your mixing application in our *AccuBlend CFD* (Computational Fluid Dynamics) program and show you the stages of mixing,

(Computational Fluid Dynamics) program and show you the stages of mixing, including flow and directional velocities, until fully blended. We can provide the number of TLAs

required for your mixing needs and visually show; velocity profiles, velocity of the fluid in the tank, and a digital video snapshot of your tank being mixed over time.

Eductor Literature Cont:

URT OF ELANK-RELIANC

Clark-Reliance®

Eductor Sizing Sheets

		Quotatio	on:		
Company:					
ttention:		Econor	Clarence Dela Visco	Madal	
		From.	Charence Dela vega	Niddel.	
none:			110 010 7050	Size:	
-mail:		Phone:	440-846-7653	Mat'l:	
Reference:		E-mail:	cdelavega@clark-reliance.com	Part No:	
tem:	Tag No	o:	Price:	Del'y:	wks
Notive Conditio	ns:	Conne	ection Size:	Type:	
Jnits:		Customer Suppli	ed Information: Qu	oted Unit Per	formance:
Aedia:	(all)				
ressure:	(all)				
low:	(all)				
emperature:	(h) _				
ip.Gr. / Density:)ther:					
Suction Conditi	ons:	Conne	ection Size:	Type:	
Inits:		Customer Suppli	ed Information: Qu	oted Unit Per	formance:
ledia:	(all)				
ressure:	(all)				
low:	(all)				
emperature:	(h)				
ip.Gr. / Density:)ther:	_				
Outlet Condition	ns:	Conne	ection Size:	Type:	
Inits:		Customer Suppli	ed Information: Qu	loted Unit Per	formance:
ressure:	(all)				
emperature:	(h)				
Kow pl-num-in-	liquido	na-numpina coor	b-bosting po-purctice of	urrian n-n-	natio transmost
Key: pi=pumping	indringa	pg=pumping gases	n=neaung ps=pumping si	urries p=pneui	nauc transport
Application Notes:					
)*Delivery is ex-worl	ks (interr	national) or FCA (dom	estic) once the purchase order i	s accepted.	

Interest interest open	+1 440-572	2-1500 • +1	440-238-8828 Fax			3		8
Date:			Quotatio	n:				
Company:								
Attention:			From:	Clarence Dela	Vega	Model:	TLA	
Phone:				Eductor Sales Sp	pecialist	Size:	10"	
E-mail:			Phone:	440-846-7653	1 1 2	Mat'l:	Rubber	Lined
Reference:			E-mail:	odelavega@clark-reliar	nce.com	Part No:		
Item:	Tag N	lo:		Price:		Del'y:	2	wk
Media: Pressure: Flow: Temperature: Sp.Gr. / Density: Other:	(all) (all) (all) (h)	Custo	omer Suppli	eg information:		uoted Unit	rertorma	nce:
Tank Condition Units: Media: Pressure: Total Flow: Turnover Time: Flow Field:	(all) (all) (all) (L)	Custo	omer Suppli	ed Information:	Q	uoted Unit	Performa	nce:
Temperature: Tank Volume: Tank Dim's: Sp.Gr. / Density: Particle Size:		Ht	Dia:	Length:	Ht:	Dia:	Lengt	h:

в

С

CFD Analysis

Attention: Dan Scott Customer: WesTech Engineering

> CFD Analysis (Computational Fluid Dynamics)

JACOBY·TARBOX[®]

A PRODUCT OF CLARK-RELIANCE

This drawing and all information on it is the property of the Clark-Reliance Corporation. It is confidential and returned upon request. Neither this drawing nor any part of it nor any information concerning it may be copied, exhibited, or funnished to others nor may hohotograph be

Phone: 440-846-7653

consent of the Clark-Reliance Corporation

taken of any article fabricated or assembled from this drawing without

Prepared by: Clarence Dela Vega

E-mail: cdelavega@clark-reliance.com

1

CFD Number: E999-2507

Application Specs:

Media: waste water Pressure: NA Tank Dims: Ht = 46 ft, Dia = 12 ft Turnover Time: 20-30 minutes

9/12/2017

Clark-Reliance

Attention: Dan Scott Customer: WesTech Engineering

Velocity Vector: Full Blend Side View (17 minutes)

CFD Analysis

Attention: Dan Scott Customer: WesTech Engineering

Velocity Vector: Full Blend Top View (17 minutes)

Attention: Dan Scott Customer: WesTech Engineering

Initial Application Specs:

Media: waste water Pressure: 20-30 PSIG Tank Dims: Ht = 46 ft, Dia = 12 ft Turnover Time: 20-30 minutes

CFD Summary:

.

- Media: waste water
- Pump Pressure: 40 PSIG differential
- Maximum Flow Field: 73 feet
- Turnover Time: 17 minutes each turnover
- Average Velocity: 0.35 feet / second

Spec Summary:

- TLA Size: 3"
- TLA Material: CPVC
- Qty: 2 units per tank

Confirmed by:

Clarence Dela Vega – Product Engineer

9/12/2017

9

10

Exotics and Fabricated Eductors

CFD Eductor Video

Additional Information

Factory Contact:

Clarence Dela Vega:

cdelavega@clark-reliance.com

Phone: 440/846-7653 / Fax: 440/238-8828

Address:

The Clark-Reliance Corporation 16633 Foltz Parkway Strongsville, Ohio 44149

Get Social with Lesman

blog.lesman.com

Linked in

www.linkedin.com/company/ lesman-instrument-company

twitter

@Lesman_Inst

www.youtube.com/user/Les manInstrumentCo

Providing Solutions to Detect, Measure, Analyze, and Control Your Process and Your Facility.