

Thank You for Attending Our March Webinar

Tools and Strategies for Optimal Gas and Flame Detector Placement

Your Host John Greivell Vice President of Sales Lesman Instrument Co johng@lesman.com

Featured Speaker Murtaza Gandhi Senior Process Safety Engineer Baker Risk mgandhi@BakerRisk.com

Follow the Conversation LIVE @Lesman_Inst #LesmanWebinar

Providing Solutions to Detect, Measure, Analyze, and Control Your Process and Your Facility.

Tools and Strategies for Optimal Gas and Flame Detector Placement

Murtaza I. Gandhi, P.E.

BAKER ENGINEERING AND RISK CONSULTANTS, INC.

©2019 Baker Engineering and Risk Consultants, Inc.

- Flame Detector sensor designed to detect and respond to the presence of flame or fire, allowing flame detection
- Types:
 - Ultraviolet
 - Infrared
 - UV/IR

- Gas Detector Device that detects the presence of gases in an area, often as a part of the safety system
- Detectors can help early detection of different types of gases including flammable, toxic, oxygen, and others
- Types: Electrochemical, catalytic bead, IR, Photoionization and ultrasonic

Introduction

- What is F&G?
 - Fire and Gas Detection
 - Used to alert personnel of a potential fire or gas release
 - Outputs can include:
 - Visual and audible alarms
 - Operator intervention
 - Isolation of processes (manual/automatic)
 - Activation of deluge systems (manual/automatic)

How to Locate Fire and Gas Detectors

Performance Based Detector Mapping

- ISA84 TR7 provides guidance on the implementation of fire and gas detectors
- According to ISA84 TR7, performance of these systems depends on three main components:
 - Detector coverage
 - Fire and Gas System (FGS) safety availability
 - Mitigation effectiveness
- Two main approaches coverage
 - Geographic covera
 - Scenario coverage

Types of Coverage

Simply defined,

- Scenario coverage indicates the number of hazardous scenarios that can be successfully detected by FGS out of all the plausible scenarios
- Geographic coverage indicates the area or a volume that can be covered with detectors if a release or fire occurs in the monitored area

- Depends on the number of scenarios defined
 - What are the right number of scenarios?
- Depends on the fluctuations in the plume concentration
 - Is there enough time for the sensor to detect?
- How to model cross-wind and up-wind releases?
- Different detectors have different response times
 - Response characteristic impacts if detection is successful
 - Impacts the speed of the response

- To answer some of the questions, we performed a series of tests
- Tests were performed with saturated propane for ½", ¾" and 1" releases in 5 different orientations
- 74 tests were performed ranging from 1 to 1.5 minutes
- 14 detectors were placed 60ft up to 200ft from the release point (3 different manufacturers)

Case Study Results

Horizontal release downwind

- Scenario coverage for 1001 detector was observed to be <60%
- Scenario coverage for 2002 detector was observed to be <40%
- Most of the releases in the up or west direction were not detected
- Wide ranging fluctuations were observed in concentrations during the test duration
- Speed of rise and maximum concentrations varied significantly between detectors

Performing FGS Mapping with Scenario Coverage

Methodology

- Model development
- Import consequence and risk contours to aid in fire and gas detector placement
 - Flammable Contours
 - Toxic Contours
 - Thermal Contours
 - Risk Contours
- Placement and orientation of fire and gas detectors within the site
- Analyze and review detector coverage

Model Development

- Start with a CAD plot plan of the unit
- A unit survey is conducted to determine the dimensions of major equipment and structures
- Major equipment and structures are added to the FGS software model in 3-dimensions

Complete Model – 2D

Complete Model – 3D

Consequence and Risk Contours

- Contours are imported into the model from the site consequence models
- Flammable contours are imported at values of UFL, LFL, ½ LFL
- Toxic contours are imported at values of appropriate probit concentrations
- Thermal contours are imported at values of 4 kW/m², 12.5 kW/m², and 37.5 kW/m²
- Risk contours
 - Flammable, toxic, and thermal risk only

Flammable Contours

Thermal Contours

Risk Contours

Fire and Gas Detection

- Fire and gas detectors are located based on consequence and risk contours, client guidelines, and industry practices
- Gas detectors
 - Point gas detectors are given coordinates and a height to show a physical location in 3D
 - Line detectors are given coordinates and a height to allow them to interact with the 3D model
 - Acoustic detectors are given coordinates and a height to allow them to interact with 3D model
- Fire detectors
 - Conical flame detectors

Example Flammable Gas Detection

Example Toxic Gas Detection

Example Fire Detection

Completed Model – 2D

Completed Model – 3D

Comparison of FGS and SIS Life Cycles

FGS Life Cycle

SIS Life Cycle

Get Social with Lesman

blog.lesman.com

Linked in.

www.linkedin.com/company/lesman-instrument-company

twitter

@Lesman_Inst

www.youtube.com/user/LesmanInstrumentCo

Providing Solutions to Detect, Measure, Analyze, and Control Your Process and Your Facility.