

Smart Sensor Specifications

Bringing new visibility, reliability, and ease-of-use to gas detection in semiconductor processing and industrial manufacturing.

GAS MEASURED	OZONE (O₃)
Cartridge Part Number	MMS-U2
Sensor Technology	3 electrode electrochemical cell
Measuring Range	O ₃ O ppm to 0.4 ppm
Default Alarm 1	0.05 ppm (rising)
Default Alarm 2	0.1 ppm (rising)
Accuracy	$^{<\pm10\%}$ of measured value Exposure to $\rm O_3$ 0.2 ppm for 5 minutes
Response Time (t _{62.5})	Typical 13 seconds
Sensor Cartridge Life Expectancy	24 months under typical application conditions
Operating Temperature	0°C to 40°C (32°F to 104°F)
Effect of Temperature Zero Sensitivity	<±0.0018 ppm/°C <±0.8% of measured value/°C
Operating Humidity (continuous)	20% RH to 75% RH
Effect of Humidity Zero Sensitivity	Abrupt changes will cause a short term drift <±1% of measured value/% RH
Operating Pressure	70 kPa to 110 kPa
Effect of Position	No effect in typical application
Long Term Drift Zero Sensitivity	No drift <5% of measured value/6 months
Calibration Gas	Ozone (0.1 ppm to 0.3 ppm, default 0.2 ppm)
Challenge Gas (Bump Test)	Nitrogen Dioxide (1 ppm)
Warm Up Time	<10 minutes
Storage Temperature	5°C to 25°C (41°F to 77°F)

NOTE: The $\rm O_3$ sensor should not be used with $\rm SO_2$ sensor in same Midas $^{\rm o}$ -M unit.

NOTE: The abrupt pressure change due to flow load change can cause false gas readings or false alarms.

Midas®-M Ozone (O₃) Specifications

OTHER DETECTABLE GASES

The following additional gases can be detected with this sensor cartridge. Sensor performance and characteristics will be representative of the data as tabulated above. Consult the Technical Manual to set up the Midas®-M transmitter with the designated identification code for each of the following gas types:

DETECTABLE GAS	CHEMICAL FORMULA	MEASURING RANGE

CROSS SENSITIVITIES

Each Midas-M sensor is potentially cross sensitive to other gases and this may cause a gas reading when exposed to other gases than those originally designated. The table below presents typical readings that will be observed when a new sensor cartridge is exposed to the cross sensitive gas (or a mixture of gases containing the cross sensitive species).

NOTE: The cross sensitivity data shown below does not form part of the product specification and is supplied for guidance only. Values quoted are based on tests conducted on a small number of sensors and any batch may show significant variation.

CHEMICAL FORMULA	CONCENTRATION APPLIED (ppm)	READING (ppm O₃)
NH ₃	100	-3
AsH ₃	0.2	0
CO ₂	5000	0
CO	100	0
Cl ₂	1	1.2
ClO ₂	1	1.5
ClF ₃	1	1 (Theoretical)
F ₂	0.1	0.1
N_2H_4	3	-3
H ₂	500	-0.05
HCl	4	0.4 (Overrange)
HF	6	0.4 (Overrange)
H ₂ S	20	1.6
NO	100	1
N_2	100%	0
NO ₂	10	6
SO ₂	4	0.4 (Overrange)
	FORMULA NH ₃ AsH ₃ CO ₂ CO Cl ₂ ClO ₂ ClF ₃ F ₂ N ₂ H ₄ H ₂ HCl HF H ₂ S NO N ₂ NO ₂	FORMULA APPLIED (ppm) NH ₃ 100 AsH ₃ 0.2 CO ₂ 5000 CO 100 Cl ₂ 1 ClO ₂ 1 ClF ₃ 1 F ₂ 0.1 N ₂ H ₄ 3 H ₂ 500 HCl 4 HF 6 H ₂ S 20 NO 100 N ₂ 100% NO ₂ 10

HONEYWELL SAFETY PRODUCTS

Americas

Honeywell Analytics 405 Barclay Boulevard Lincolnshire, IL 60069 Tel: +1 847 955 8200 Toll free: +1 800 538 0363 Fax: +1 847 955 8208 detectgas@honeywell.com

Europe, Middle East, and Africa

Life Safety Distribution AG (LSD) Javastrasse 2 8604 Hegnau Switzerland Tel: +41 (0)44 943 4300 Fax: +41 (0)44 943 4398 gasdetection@honeywell.com

Asia Pacific, India

Honeywell Analytics Asia Pacific, Co., Ltd.
7F SangAm IT Tower
434 Worldcup Buk-ro, Mapo-gu
Seoul 03922
South Korea
Tel: +82 (0)2 6909 0300
Fax: +82 (0)2 2025 0388

India Tel: +91 124 4752700

analytics.ap@honeywell.com

Mainland China

Honeywell Industrial Safety Gas Detectors Building#1, 555 Huanke Road Zhang Jiang Hi-Tech Park Pudong New Area Shanghai 201203, China Tel: 021-80386800 Fax: 021-60246070 gaschina@honeywell.com

Taiwan

Honeywell Taiwan Ltd 6F-2, No.8, ZiQiang S. Road, Jubei City, 30264 Taiwan Tel: +886-3-5169284

Tel: +886-3-5169284 Fax: +886-3-5169339 analytics.tw@honeywell.com Manuals and other information about this product are available at:

www.honeywellanalytics.com/en/products/

THE FUTURE IS WHAT WE MAKE IT

