DCP552 Mark II DIGITRONIK Digital Control Programmer User's Manual

Thank you for purchasing an Azbil Corporation product.

This manual contains information for ensuring the correct use of this product.
It also provides necessary information for installation, maintenance, and troubleshooting.

This manual should be read by those who design and maintain equipment that uses this product. Be sure to keep this manual nearby for handy reference.

Please, read the 'Terms and Conditions' from following URL before the order and use.
 http://www.azbil.com/products/bi/order.html

NOTICE

Be sure that the user receives this manual before the product is used.
Copying or duplicating this user's manual in part or in whole is forbidden. The information and specifications in this manual are subject to change without notice.

Considerable effort has been made to ensure that this manual is free from inaccuracies and omissions. If you should find an error or omission, please contact Azbil Corporation.
In no event is Azbil Corporation liable to anyone for any indirect, special or consequential damages as a result of using this product.
© 1998-2016 Azbil Corporation All Rights Reserved.
The DIGITRONIK ${ }^{T M}$ is a trademark of Azbil Corporation in Japan.

SAFETY REQUIREMENTS

\triangleTo reduce risk of electrical shock which could cause personal injury, follow all safety notices in this documentation.

4This symbol warns the user of a potential shock hazard where hazardous live voltages may be accessible.

- If the equipment is used in a manner not specified by the manufacturer, the protection protection provided by the equipment must be impaired.
- Do not replace any component (or part) not explicitly specified as replaceable by your supplier.
- All wiring must be in accordance with local norms and carried out by authorized experienced personnel.
- The ground terminal must be connected before any other wiring (and disconnected last).
- A switch in the main supply is required near the equipment.
- Mains power supply wiring requires a (T) $0.5 \mathrm{~A}, 250 \mathrm{~V}$ fuse (s). DCP552 models sold in September 2013 or later have a built-in fuse.

Over-voltage:Category II (IEC60364-4-443, IEC60664-1)
Specification of common mode voltage:The common mode voltages of all I/O except for main supply are less than $33 \mathrm{Vrms}, 46.7 \mathrm{~V}$ peak and 70 Vdc .

EOUIPMENT RATINGS

Supply voltages	85 to 264 V AC
Frequency	$50 / 60 \mathrm{~Hz}$
Power	

EOUIPMENT CONDITIONS

Do not operate the instrument in the presence of flammable liquids or vapors. Operation of any electrical instrument in such an environment constitutes a safety hazard.

Temperature:
Humidity:
Vibration:
Over-voltage category
Pollution degree:
Installation location:
Altitude:

0 to $50^{\circ} \mathrm{C}$
10 to $90 \% \mathrm{RH}$
$2 \mathrm{~m} / \mathrm{s}^{2}$
Category II (IEC60364-4-443, IEC60664-1)
Pollution degree 2
Indoors
2000 m or less

EOUIPMENT INSTALLATION

The controller must be mounted into a panel to limit operator access to the rear terminals.

STANDARDS COMPLIANCE

EN61010-1, EN61326-1 (For use in industrial locations)
During EMC testing, the reading or output may fluctuate by $\pm 10 \% \mathrm{FS}$.
However, PV reading is within $\pm 30 \%$ FS.

CAUTION

Danger of explosion if battery is incorrectly replaced.
Replace only with the same or equivalent type recommended by the manufacturer. Dispose of used batteries according to the manufacturer's instructions.

SAFETY PRECAUTIONS

- About Icons

The safety precautions described in this manual are indicated by various icons. Please be sure you read and understand the icons and their meanings described below before reading the rest of the manual.

Safety precautions are intended to ensure the safe and correct use of this product, to prevent injury to the operator and others, and to prevent damage to property. Be sure to observe these safety precautions.
\triangle WARNING \triangle CAUTION

Warnings are indicated when mishandling this product might result in death or serious injury.

Cautions are indicated when mishandling this product might result in minor injury to the user, or only physical damage to the product.

Examples

| The indicated action is prohibited. |
| :--- | :--- |
| Be sure to follow the indicated instructions. |

\triangle WARNING

Defore removing, mounting, or wiring this module, be sure to turn off the
power to the module and all connected devices.
Doing so may result in an electric shock.

Be sure to follow the operating requirements (regarding temperature,
humidity, voltage, vibration, shock, mounting direction, atmosphere, etc.) as
stated in the specifications of the controller.
Failure to heed this caution may lead to fire or malfunction.
Fo not block ventilation openings.
Failure to heed this caution may lead to fire or malfunction.
Make sure that wire scraps, chips or water do not enter inside the case of the controller. Failure to heed this caution may lead to fire or malfunction.
Do not use pointed objects such as mechanical pencils or pins to press the keys on the controller. This may result in malfunction.
Connect the controller as specified using designated cables and connection procedures. Failure to heed this caution may lead to electric shock, fire or malfunction.
Current applied to current input terminals (55), (56) and (58), (59) must meet the specified range. Failure to heed this caution may lead to fire or equipment breakdown.
All terminal screws shall be tightened to specified torque. Improperly tightened screws may lead to electric shock or fire.
Do not use unused terminals on the instrument as relay terminals for other equipment. Failure to heed this caution may lead to electric shock, fire or equipment breakdown.

©CAUTION

| Attaching the terminal covers after completing the controller connections is |
| :--- | :--- |
| highly recommended. |
| Failure to heed this caution may lead to fire or malfunction. (Terminal covers |
| are supplied with the controller.) |

$!$ Handling Precautions
After turning on the DCP552 Mark II, leave it on for at least 10 seconds to let it stabilize before you start using it.

Organization of This User's Manual

This manual is organized as follows.

Chapter 1. PRODUCT OUTLINE

This chapter explains the use and features of the DCP551 and provides the basic function block and product model numbers.

Chapter 2. NAMES AND FUNCTIONS OF PARTS

This chapter gives the names and functions of parts of the DCP551, and input type and range number.

Chapter 3. INSTALLATION AND MOUNTINGS

This chapter describes the procedure for mounting the DCP551 onto an operation console.
We strongly urge persons responsible for device design on the DCP551 read this chapter.

Chapter 4. WIRING

This chapter describes the wiring procedure and precautions required for installing the DCP551.
We strongly urge persons responsible for device design and wiring of the
DCP551 read this chapter.

Chapter 5. FUNCTIONS

This chapter explains detailed functions of the DCP551.
We strongly urge persons responsible for control design on the DCP551 read this chapter.

Chapter 6. OPERATION

This chapter gives the selections of the basic display, program selection, operation, and other information.
We strongly urge persons responsible for device design and operation on the DCP551 read this chapter.

Chapter 7. PARAMETER SETUP

This chapter describes the parameter setting method of the DCP551 and the meaning of settings.

Chapter 8. PROGRAM SETUP
This chapter describes the program setting method of the DCP551 and the meaning of settings.

Chapter 9. MEMORY CARD OPERATION

This chapter describes how to use memory cards.
埴 NOTE
This chapter is not applicable to the DCP551B***** model.

Chapter 10. MAINTENANCE AND TROUBLESHOOTING

This chapter describes checkpoints and countermeasures when the DCP551 is not operating normally.

Chapter 11. DISPOSAL
This chapter describes the disposal of the DCP551.
Chapter 12. SPECIFICATIONS
This chapter gives the general specifications, performance specifications and the external dimensions of the DCP551.

Contents

Safety Requirements Safety Precautions The Role of This Manual Configuration of This User's Manual Conventions Used in This Manual

Chapter 1. PRODUCT OUTLINE

1-1 Features 1-1
1-2 Basic Function Block Diagram 1-2
1-3 Data Configuration Overview. 1-3
1-4 System Configuration. 1-4
■ CPL communications network-based configuration 1-4
1-5 Model Number 1-5
Chapter 2. NAMES AND FUNCTIONS OF PARTS
2-1 Structure 2-1
2-2 Console 2-2
■ Basic display status 2-2
■ Display 2-2
■ Key pad. 2-4
■ Key chord functions 2-6
■ Loader jack. 2-7
2-3 Input Type and Range Number 2-8
Input 2-8
Chapter 3. INSTALLATION AND MOUNTING
3-1 Before Installation 3-1

- Mounting position 3-1
- Sources of electrical interference and countermeasures 3-2
3-2 Installation 3-3
\square Panel cutout dimensions 3-3
■ Installation procedures 3-4
Chapter 4. WIRING
4-1 Precautions on Wiring 4-1
4-2 Recommended Cables 4-3
4-3 Making Terminal Connections 4-4
4-4 Terminal Array 4-5
4-5 Power Supply and Grounding 4-6
- Power supply 4-6
■ Grounding 4-6
4-6 PV Input (Analog Input) Connection 4-7
- PV input CH1 connection 4-7
- PV input CH2 connection 4-7
4-7 Control Output Connection 4-9
4-8 Auxiliary Output Connection 4-10
4-9 Event Output (Open Collector Output) Connection 4-11
4-10 External Switch Input Connection 4-12
4-11 Communication Connection 4-13
- RS-485 connection 4-13
■ RS-232C connection 4-16
\square Connection to ST221 4-17
4-12 Isolation During Input/Output 4-18
Chapter 5. FUNCTIONS
5-1 Data 5-1
■ Data types 5-1
5-2 Program Pattern 5-2
- Pattern 5-2
■ Events 5-5
- PID group selection 5-15
■ Selection of output limiter group 5-15
■ G.SOAK (Guaranteed soak) 5-16
- PV shift 5-17
■ Repeat 5-18
■ PV start 5-19
■ Cycle 5-20
- Pattern link 5-21
■ Tag 5-22
5-3 Mode 5-23
■ Mode types 5-23
■ Mode transitions 5-25
\square Mode transition operations 5-26
\square Mode transition restrictions 5-27
5-4 Input Process Functions 5-28
■ Model without carbon potential (CP) compensation 5-28
■ Model with carbon potential (CP) compensation 5-29
$\square \mathrm{O}_{2}$ sensor check (model with CP compensation) 5-30
5-5 Output Processing Functions 5-31
■ CH1 control output 5-31
■ CH2 control output 5-33
■ Auxiliary output 5-35

Chapter 6. OPERATION

6-1 Power Supply On 6-1
6-2 Basic Display Selection 6-2
\square Program run mode displays 6-3
■ Fixed command control mode 6-9
6-3 Selecting Programs 6-11
■ Selecting program numbers 6-11
6-4 External Switch Operation. 6-12
■ External switch input 6-12
■ Selecting programs 6-13
■ Read timing 6-15
6-5 Manual Operation and Auto-Tuning 6-16
■ Manual operation 6-16
■ Auto-tuning (AT) 6-16
Chapter 7. PARAMETER SETUP
7-1 Parameter Setup 7-1

- Selecting parameter settings groups 7-1
- Progression of individual items in parameter settings 7-1
\square Modifying individual items and exiting the setting mode 7-2
7-2 Parameter Setting List 7-4
■ Variable parameter setting 7-5
- Detailed information on variable parameters 7-9
■ Event configuration data settings 7-12
■ Settings by event type 7-13
■ PID parameter (CH1) setting 7-18
\square PID parameter (CH2) setting 7-21
■ Setup data setting 7-24
■ Detailed descriptions of setup data settings 7-31
■ Constant value control data (CH1) setting 7-36
\square Constant value control data (CH 2) setting 7-36
Chapter 8. PROGRAM SETUP
8-1 Program Setup 8-1
■ Selecting number of program to operate 8-1
\square Selecting channel of program to operate 8-1
■ Starting programming 8-2
- State transition 8-2
- Programming map 8-4
■ Display items 8-5
- Setting pattern items 8-5
\square Setting event items 8-7
■ Setting PID groups and output limiter group number items 8-12
Setting G.SOAK (guaranteed soak) items 8-13
■ Setting PV shift items 8-14
■ Setting repeat items 8-15
■ Setting PV start items 8-16
\square Setting cycle items 8-17
Setting pattern link items 8-18
Setting tag items 8-19
Deleting programs 8-20
Inserting and deleting segments 8-21
8-2 Copying Programs 8-23
Program copy procedures 8-23
8-3 General Reset 8-24
■ General reset procedures 8-24
Chapter 9. MEMORY CARD OPERATIONS
9-1 Memory Card Type and Functions 9-1
9-2 Save Procedures 9-2
Save menu 9-2
- Formatting cards 9-3
Saving single programs 9-3
■ Saving all programs 9-4
■ Saving setup data 9-4
- Saving variable parameters 9-4
Saving PID parameters 9-5
■ Saving event configuration data 9-5
- Saving all parameters 9-5
9-3 Load Procedures 9-6
Load menu 9-6
■ Card battery alarm panel 9-7
■ Loading individual programs 9-7
■ Loading all programs 9-8
■ Loading setup data 9-8
■ Loading variable parameters 9-8
- Loading PID parameters 9-8
■ Loading event configuration data 9-9
- Loading all parameters 9-9
9-4 Autoload 9-10
■ Key operated autoload procedure 9-10
■ Auto load using external switch inputs 9-11
9-5 Error Message List 9-12
Chapter 10. MAINTENANCE AND TROUBLESHOOTING
10-1 Self-Diagnostic Functions and Alarm Code Displays 10-1
■ Maintenance 10-1
- Power ON self-diagnostic routines 10-1
Self-diagnostic routines performed each sampling cycle 10-1
■ Self-diagnostic routines performed continuously during operation 10-1
Alarm code display 10-2
- Alarm classification 10-2
■ Display behavior and alarm code upon input burnout 10-2
10-2 Key Input Related Problems 10-3
■ Normal display mode problems 10-3
■ Parameter setting related problems 10-6
- Program setting related problems 10-6
10-3 When the BAT LED Flashes 10-8
BAT LED flashes 10-8
Replacing the battery 10-8
10-4 External Switch Operation Problems 10-12
Chapter 11. DISPOSAL
Chapter 12. SPECIFICATIONS
12-1 Specifications 12-1
- Attachment/auxiliary devices list 12-7
12-2 External Dimensions 12-8
DCP552 12-8
Program Work Sheet
Parameter Work SheetIndex

Conventions Used in This Manual

The following conventions are used in this manual.

$!$ Handling Precautions

: Handling Precautions indicate items that the user should pay attention to when handling the DCP552.

Note
(1), (2), (3) : The numbers with the parenthesis indicate steps in a sequence or indicate corresponding parts in an explanation.
>> : Controller state after an operation

DISP key, \uparrow key : Indicate the DCP552 keys. These symbols represent keys on the DCP552's console.

FUNC+PROG key : Combinations of symbols like this indicatate that PROG key must be pressed while holding FUNC key down.

PA-01, C21 : Indicate the 7 segment display of. DCP552 display panel 1 and display panel 2.

PV SHIFT : Indicates messages displayed by the DCP552 message display.

Chapter 1. PRODUCT OUTLINE
 1-1 Features

The DCP552 is a general purpose dual-loop control programmer for controlling temperature, pressure, flow rate, carbon potential (CP) and other parameters. The program provides a total of 49 patterns and up to 99 segments can be set for each pattern. Note, however, that the maximum number of segments is 2000 or less and that the maximum number of subfunctions for setting events is 4000 or less.

- High accuracy in multi-range inputs

Featuring a multi-range format, the user can select thermocouple, resistance temperature detector, DC voltage or DC current. Accuracy is $\pm 0.1 \% \mathrm{FS} \pm 1$ digit, the sampling cycles is 0.1 sec and some model numbers allow PV 2 channel O_{2} sensor inputs for carbon potential compensation.

- Multi-control output types

Selection at setup allows the user to choose from among current proportional output, voltage time proportional output and open collector time proportional output.

- Multi-communications

Selection at setup enables the user to switch between RS-485 and RS-232C on the rear panel terminal base.
At setup it is also possible to switch the communications port from the rear panel loader jack to the front panel loader jack. A special cable is required to use to loader jack on the front panel.

- Improved PLC support

The programmer is equipped with 16 external switch inputs and 16 event outputs for flexible support of PLC based automatic systems.

- Simple operation

The optional plug-in memory card makes it easy to achieve program and parameter settings for later reuse. Also, the optional smart loader package allows you to make program and parameter settings from a PC.

1-2 Basic Function Block Diagram

1-3 Data Configuration Overview

Data is comprised of parameters and the program. Parameters are used to set the functions of the DCP552 while the program is the software that operates the controller at run time.

A total of 49 patterns

It will store up to 49 programs per channel (CH1 and CH2), with up to 99 segments per program.

- Parameters

Five types of patterns are provided: variable parameters, event configuration data, PID parameters, setup data and constant value control data.

1-4 System Configuration

CPL communications network-based configuration

Models equipped with the optional communications interface can be connected as a slaved DigitroniK's controller to a CPL communications* network. In this case, the user can employ as the master station a personal computer.
*: CPL(Controller Peripheral Link) Communications network is the hostcommunications.

* "Communication controller CMC10L001A000" is
RS-232C/RS-485(3-wire system) converter in Azbil corporation.

1-5 Model Number

Model number: DCP552 $\square 2 \square \square \square \square$

Basic model number	Memory card	$\begin{aligned} & \text { PV input } \\ & \text { count } \end{aligned}$	Carbon potential	Option	Additional processing	Contents
DCP552						Digital programmable controller (dual-loop control)
	A					With memory card reader/writer
	B					Without memory card reader/writer
		2				2 channels
			0			Not provided
			1			Provided
				0		Not provided
				1		Auxiliary output channel 1
				2		Auxiliary output channel 2, communications
					00	Not provided
					D0	Inspection Certificate provided

Chapter 2. NAMES AND FUNCTIONS OF PARTS

2-1 Structure

The DCP552 consists of a main unit, console, case, and terminal base.

DCP552A model

Memory card slot
A memory card is inserted into this slot.

DCP552B model

2-2 Console

The console consists of the operation keys, displays and LEDs (light emitting diodes).

Basic display status

Basic display status shows the running condition of the DCP552 on the console. The basic display status is invoked when the DCP552 is powered up (power on). Key operations make it possible to change from the basic display status to parameter setting status, program setting status, program copy status, memory card operation status and general reset status.

Key operations can also be used to return to the basic display status.
*: This function is available on the DCP552A***** model only.
Display

- Basic display LEDs

PV : Lights during PV display, otherwise off.
DEV : Lights during deviation display, otherwise off.
OUT : Lights during output display, otherwise off.
CYC : Lights during cycle display, otherwise off.
SP : Lights during SP display, otherwise off.
TM : Lights during time display, otherwise off.
SYN : Lights in CH1 and CH2 sync mode, otherwise off.

- Display panel 1

Indicates PV and other data in basic display status.
Indicates item codes in parameter setting status.
Indicates set values and item codes in program setting status.

- Display panel 2

Indicates SP, time, output and other data in basic display status.
Indicates set values in parameter setting status.
Indicates set values in program setting status.

- Message display

Indicates output graph, deviation graph, running progress graph, event status, program tag and other data in basic display status.
Displays reference messages in parameter setting status.
Displays tag settings and reference messages in program setting status. Indicates selected operation and operation results during memory card operation.

- Program number display

Indicates a selected program number in basic display status.
Indicates a set program number in program setting status.
Off during constant value control.
Indicates the alarm code "AL" when an alarm occurs in basic display status.

- Segment number display

Indicates a selected segment number in basic display status.
Indicates a set segment number in program setting status.
Off during constant value control.
Indicates an alarm code number when an alarm occurs in basic display status.

- Mode display LED

RUN, HLD : Indicates the RUN, HOLD, FAST, END, and READY FAST modes (see the table below).

LED Mode	READY	RUN	HOLD	FAST	END	READY FAST
RUN	OFF	Lights	OFF	Flicker	OFF	Lights
HLD	OFF	OFF	Lights	OFF	Flickers	Lights

MAN : Lights in MANUAL mode. Off in AUTO mode.
PRG : Lights in program setting status, otherwise off.
AT : Flickers during auto tuning execution, otherwise off.
BAT : Flickers when battery voltage is too low, otherwise off.
EG1 : Lights when CH1 is displayed, otherwise off.
EG2 : Lights when CH2 is displayed, otherwise off.

- Profile display

Indicates the rising, soaking, and falling trends of a program pattern.
Flickers during G.SOAK wait and lights continuously after power on.

Key pad

©CAUTION

Do not use pointed objects such as mechanical pencils or pins to press the keys on the controller.
This may result in malfunction.
DCP552A model

() : Denotes key term used in this manual.

DCP552B model

() : Denotes key term used in this manual.

Classification	Function	Key operation
Basic display status	Changes the display contents.	DISP
	Changes display channels.	FUNC + DISP
	Changes the display contents on the message display.	MESSAGE
	Changes set program numbers in ascending order. (In READY mode)	PROG
	Performs RUN operation. (In READY, HOLD, FAST, or READY FAST mode)	RUN/HOLD
	Performs HOLD operation. (In RUN mode)	
	Performs RESET operation. (In RUN, HOLD, FAST, END, or READY FAST mode)	PROG + RUN/HOLD
	Performs ADV operation. (In RUN, HOLD, FAST, or READY FAST mode)	PROG + DISP
	Performs FAST operation. (In RUN, HOLD, or READY mode)	FUNC + \rightarrow
	Performs MANUAL operation. (In AUTO mode)	A/M
	Performs AUTO operation. (In MANUAL mode)	
	Starts AUTO tuning. (When AUTO tuning is not in operation.)	AT
	Interrupts AUTO tuning. (When AUTO tuning is in operation.)	
	Changes numerics during MANUAL operation. (When the MV or SV display flickers.)	$\uparrow \downarrow \leftarrow \rightarrow$
	Changes program numbers or segment numbers. (When the program number or segment number flickers.)	
Parameter setting	Starts the variable parameter setting. (In basic display status)	PARA
	Starts the event configuration setting. (In basic display status)	FUNC + PARA
	Starts the PID parameter setting. (In basic display status)	PID
	Starts the setup setting. (In basic display status)	SETUP
	Starts the fixed command control setting. (In basic display status)	FUNC + PID
	Shifts each item.	$\uparrow \downarrow \leftarrow \rightarrow$
	Enters set values.	ENTER
	Completes a change in a set value. (When a set value flickers.)	
	Changes each item's set point. (When a set value flickers.)	$\uparrow \downarrow \leftarrow \rightarrow$
	Stops each item's set point. (When a set value flickers.)	PARA
	Ends parameter setting.	DISP
Program setting	Starts the program setting (programming). (In basic display status)	FUNC + PROG
	Shifts to program item or segment number.	$\uparrow \downarrow \leftarrow \rightarrow$
	Enters set values.	ENTER
	Completes a change in a set values. (When a set value flickers.)	
	Changes each item's set point. (When a set value flickers.)	$\uparrow \downarrow \leftarrow \rightarrow$

Classification	Function	Key operation
Program setting	Erases or resets a set value. (When a set value flickers.)	FUNC + CLR
	Cancels change in set value. (When a set value flickers.)	DISP
	Inserts or delete a segment when a pattern SP setting is started.	FUNC + ENTER
	Changes RAMP-X \Leftrightarrow RAMP-T or RAMP-X \Leftrightarrow RAMP-E when a pattern SP setting is completed.	
	Starts a program number change.	FUNC + PROG
	Ends program setting.	DISP
Program copy	Starts program copy. (In basic display status)	$\uparrow+$ PROG
	Changes program number at copy destination.	$\uparrow \downarrow$
	Executes the copy. (When a set value flickers.)	ENTER
	Ends program copy.	DISP
Memory card operation (available on the DCP552A***** model only)	Starts a data write operation to the memory card. (In basic display status)	SAVE
	Writes data to the memory card.	
	Starts a data read operation from the memory card. (In basic display status)	LOAD
	Reads data from the memory card.	
	Changes selected memory card operation.	$\uparrow \downarrow$
	Enters memory card operation.	ENTER
	Interrupts memory card operation.	DISP
General reset	Returns a check status of the general reset. (In basic display status)	FUNC + CLR + MESSAGE
	Executes a general reset.	ENTER
	Interrupts a general reset.	DISP

Key chord functions

PROG + RUN/HOLD : Reset key
Press the RUN/HOLD key while holding down the PROG key in basic status display to perform a RESET.
The READY mode is invoked when a reset is performed in the RUN, HOLD, FAST, END, or READY FAST modes. This RESET operation does not work in the READY mode.

PROG + DISP	Advance key Press the DISP key while holding down the PROG key in the program run mode in basic status display to perform an ADV (advance) operation. The next segment		
is displayed when this action is performed in the RUN, HOLD, FAST, or			
READY FAST modes. This ADV operation does not work in the READY mode.		\quad	$: \quad$Fast key Press the \rightarrow key while holding down the FUNC key in the program run mode in basic status display to perform a FAST operation. The system changes from the RUN or HOLD mode to the FAST mode. If the system is in the READY mode, it goes to the READY FAST mode.
:---			

FUNC + DISP	Display channel select key Press the DISP key while holding down the FUNC key in basic display status to select display channels. In the program setting status, press the DISP key while holding down the FUNC key to select the channel of the program to be set.
FUNC + PARA	Event configuration setting key Press the PARA key while holding down the FUNC key in basic status display to switch to the event configuration setting status.
FUNC + PID	Constant value control setting key Press the PID key while holding down the FUNC key in basic status display to switch to the constant value control setting status.
FUNC + PROG	Program setting (programming) key Press the PROG key while holding down the FUNC key in the program run mode in basic status display to go to the program setting (programming) status. When the PROG key is pressed while holding down the FUNC key in the program setting status, allows you to change the number of the program to be set.
FUNC + CLR	Program delete key Press the CLR key while holding down the FUNC key during registration in the program setting status to delete a setting or return to a default value.
FUNC + ENTER	Segment insert/remove/RAMP/selection key Press the ENTER key while holding down the FUNC key to go to the segment insert/delete panel during SP and time setting in the program setting status. Pressing the ENTER key while the FUNC key is held down during SP registration in the program setting status allows you to switch between RAMPX and RAMP-T as well as RAMP-X and RAMP-E.
$\uparrow+$ PROG	Program copy key Press the PROG key while holding down the \uparrow key in program run READY mode in basic display status to go to the program copy panel.
FUNC + CLR + MESSAGE :	General reset key Press the CLR and MESSAGE keys simultaneously while holding down the FUNC key in the READY AUTO mode in the basic display status to go to the general reset verification panel.

Loader jack

This jack allows the connection of a loader.
Do not insert plugs other than loader plugs.
The loader jack is not isolated from internal digital circuits.
When not in use, always replace the cap.

2-3 Input Type and Range Number

Input

- Thermocouple

Input type			Input range (FS)		Accuracy (under standard conditions)	
Symbol	Code	Range No.	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
K (CA)	K46	16	-200.0 to +200.0	-300.0 to +400.0	$\pm 0.1 \%$ FS	$\pm 0.3 \%$ FS at -200 to $-100^{\circ} \mathrm{C}$
K (CA)	K09	0	0.0 to 1200.0	0 to 2400	$\pm 0.1 \%$ FS	
K (CA)	K08	1	0.0 to 800.0	0 to 1600	$\pm 0.1 \%$ FS	
K (CA)	K04	2	0.0 to 400.0	0 to 750	$\pm 0.1 \%$ FS	
E (CRC)	E08	3	0.0 to 800.0	0 to 1800	$\pm 0.1 \%$ FS	
J (IC)	J08	4	0.0 to 800.0	0 to 1600	$\pm 0.1 \%$ FS	
T (CC)	T44	5	-200.0 to +300.0	-300 to +700	$\pm 0.1 \%$ FS	$\pm 0.3 \%$ FS at -200 to $-45^{\circ} \mathrm{C}$
B (PR30-6)	B18	6	0.0 to 1800.0	0 to 3300	$\pm 0.1 \%$ FS	$\pm 4.0 \%$ FS at 0 to $260^{\circ} \mathrm{C}$, $\pm 0.15 \% \mathrm{FS}$ at 260 to $800^{\circ} \mathrm{C}$
R (RR13)	R16	7	0.0 to 1600.0	0 to 3100	$\pm 0.1 \%$ FS	
S (PR10)	S16	8	0.0 to 1600.0	0 to 3100	$\pm 0.1 \%$ FS	
W (WRe5-26)	W23	9	0.0 to 2300.0	0 to 4200	$\pm 0.1 \%$ FS	
W (WRe5-26)	W14	10	0.0 to 1400.0	0 to 2552	$\pm 0.1 \%$ FS	
PR40-20	D19	11	0.0 to 1900.0	0 to 3400	$\pm 0.2 \%$ FS	$\begin{aligned} & \pm 0.9 \% \text { FS at } 0 \text { to } 300^{\circ} \mathrm{C}, \\ & \pm 0.5 \% \mathrm{FS} \text { at } 300 \text { to } 800^{\circ} \mathrm{C} \end{aligned}$
N	U13	12	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
PL II	Y13	13	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
Ni-Ni • Mo	Z13	14	0.0 to 1300.0	32 to 2372	$\pm 0.1 \%$ FS	
Gold, iron, chromel	Z06	15	0.0 to 300.0 K	(K : Kelvin)	$\pm 0.4 \% \mathrm{FS}$	

- Resistance temperature detector (RTD)

Input type			Input range (FS)		Accuracy (under standard conditions)	
Symbol	Code	Range No.	${ }^{\circ} \mathrm{C}$	${ }^{\circ} \mathrm{F}$		
JIS'89Pt100 (IEC Pt100ת)	F50	64	-200.0 to +500.0	-300.0 to +900.0	$\pm 0.1 \%$ FS	
	F46	65	-200.0 to +200.0	-300.0 to +400.0	$\pm 0.1 \%$ FS	
	F32	66	-100.0 to +150.0	-150.0 to +300.0	$\pm 0.1 \%$ FS	
	F36	67	-50.0 to +200.0	-50.0 to +400.0	$\pm 0.1 \%$ FS	
	F33	68	-40.0 to +60.0	-40.0 to +140.0	$\pm 0.15 \%$ FS	
	F01	69	0.0 to 100.0	0.0 to 200.0	$\pm 0.15 \%$ FS	
	F03	70	0.0 to 300.0	0.0 to 500.0	$\pm 0.1 \%$ FS	
	F05	71	0.0 to 500.0	0.0 to 900.0	$\pm 0.1 \%$ FS	
JIS'89Pt100	P50	96	-200.0 to +500.0	-300.0 to +900.0	$\pm 0.1 \%$ FS	
	P46	97	-200.0 to +200.0	-300.0 to +400.0	$\pm 0.1 \%$ FS	
	P32	98	-100.0 to +150.0	-150.0 to +300.0	$\pm 0.1 \%$ FS	
	P36	99	-50.0 to +200.0	-50.0 to +400.0	$\pm 0.1 \%$ FS	
	P33	100	-40.0 to +60.0	-40.0 to +140.0	$\pm 0.15 \%$ FS	
	P01	101	0.0 to 100.0	0.0 to 200.0	$\pm 0.15 \%$ FS	
	P03	102	0.0 to 300.0	0.0 to 500.0	$\pm 0.1 \%$ FS	
	P05	103	0.0 to 500.0	0.0 to 900.0	$\pm 0.1 \%$ FS	

- DC current, DC voltage

Input type			Input range (FS)	Accuracy (under standard conditions)	
Symbol	Code	Range No.			
mA	C01	48	Programmable range -19999 to +20000 (Decimal point position is variable.)	$\pm 0.1 \%$ FS	
(Linear)	Z51	52		$\pm 0.1 \% \mathrm{FS}$	
mV (Linear)	M01	49		$\pm 0.1 \% \mathrm{FS}$	
	L02	50		$\pm 0.1 \% \mathrm{FS}$	
		51		$\pm 0.1 \%$ FS	
mA (Linear)	C01	128		$\pm 0.1 \% \mathrm{FS}$	
	Z51	134		$\pm 0.1 \% \mathrm{FS}$	
V(Linear)		129		$\pm 0.1 \% \mathrm{FS}$	
		130		$\pm 0.1 \%$ FS	
	V01	131		$\pm 0.1 \% \mathrm{FS}$	
		132		$\pm 0.1 \% \mathrm{FS}$	
		133	0 to 10V	$\pm 0.1 \% \mathrm{FS}$	
O_{2} sensor *		135	0 to 1250 mV Carbon potential (CP value) indication range: 0.000 to $4.000 \% \mathrm{C}$ (Note, however, that PID control is calculated over the 0.000 to 2.000% input range) Oxygen pressure indication range: 0.000 to 1.500×10^{-20} atm	$\pm 0.1 \% \mathrm{FS}$	When converted to mV values

* The O2 sensor is manufactured by one of the following companies: Nihon Glass (NGK), Marathon Monitors, Cambridge, Corning, AACC (Advanced Atmosphere Control Corporation), Barber Colman or Furnace Control.
- PV2 in models with carbon potential compensation is tied to the O_{2} sensor.

! Handling Precautions

- The unit for code Z06 is "K" (kelvin).
- Code F50 and P50 do not generate the PV lower limit alarm.
- The number of decimal digits for DC current and DC voltage is programmable from 0 to 4.
- The O2 sensor generates the PV upper limit alarm at values of 1375 mV or above, but does not generate the PV lower limit alarm.
- The lower limit readout of code B 18 is $20^{\circ} \mathrm{C}\left(68^{\circ} \mathrm{F}\right)$.

Chapter 3. INSTALLATION AND MOUNTING

3-1 Before Installation

\. WARNING

(1) Before removing, mounting, or wiring this modula

Doing so may result in an electric shock.
Do not disassemble the controller as this could lead to electric shock or malfunction.

\triangle CAUTION

(1)
Be sure to follow the operating requirements (regarding temperature, humidity, voltage, vibration, shock, mounting direction, atmosphere, etc.) as stated in the specifications of the controller.
Failure to heed this caution may lead to fire or malfunction.
Do not block ventilation openings.
Failure to heed this caution may lead to fire or malfunction.
Make sure that wire scraps, chips, or water do not enter inside the case of the controller.
Failure to heed this caution may lead to fire or malfunction.

- Mounting position

Do not install the DCP552 in locations:

- exposed to high or low temperature or humidity.
- exposed to direct sunlight or to the elements such as outside.
- exposed to water, oil or chemicals.
- exposed to corrosive or inflammable gas.
- exposed to dust or smoke.
- exposed to vibrations or shocks.
- exposed to strong electric or magnetic fields.
- exposed to electric noise such as ignition devices or welding machines.
- Outdoors.

Sources of electrical interference and countermeasures

- The following list notes common sources of electrical interference.
(1) Relays and contacts
(2) Solenoid coils and valves
(3) Power lines (especially those carrying more than 90 V AC)
(4) Inductive loads
(5) Inverters
(6) Motor rectifiers
(7) Phase angle control SCR
(8) Wireless communications equipment
(9) Welding machines
(10) High voltage ignition devices
- If the source of noise cannot be removed, take the following measures.
- Use a CR filter to suppress fast-rising noise.

Recommended CR filter : Azbil Corporation model No. 81446365-001

- Use a varistor to suppress high-amplitude interference.

Recommended varistors : Azbil Corporation model No. 81446366-001 (for 100V)
81446367-001 (for 200V)

$!$ Handling Precautions

Varistors must be handled carefully as they become defective if they are short-circuited.

3-2 Installation

This section describes installation procedures.

Panel cutout dimensions

Use 2 mm thick steel panels in setting up the DCP552.

$!$ Handling Precautions
Install the DCP552 in a location where the lower panel is not exposed to temperatures that exceed the operating temperature range (0 to $50^{\circ} \mathrm{C}$). Make sure that the temperatures above and below the controller meet specified requirements.

Installation procedures

- Use the provided mounting bracket to firmly secure the upper and lower panels.
- Assemble the instrument before mounting (1).

1. Handling Precautions

When the provided mounting brackets are firmly secured and there is no looseness, turn the screws only one full turn. Over-tightening the screws of the brackets can deform or damage the case.

- The rear of the instrument must not be more than 10° above or below the horizontal plane.

Chapter 4. WIRING

4-1 Precautions on Wiring

. WARNING

Connect the FG terminal to ground with a ground resistance of maximum 100Ω before connecting other equipment and external control circuits. Failure to do so may cause electric shock or fire.
(! Before removing, mounting, or wiring this module, Doing so may result in an electric shock.
Do not touch a live part such as a power terminal.
This may result in electric shock.

\CAUTION

Connect the controller as specified using designated cables and connection procedures.
Failure to heed this caution may lead to electric shock, fire or malfunction.
Make sure that wire scraps, chips or water do not enter inside the case of the controller.
Failure to heed this caution may lead to fire or malfunction.
(1) Current applied to curr the specified range.

Failure to heed this caution may lead to fire or equipment breakdown.
All terminal screws shall be tightened to specified torque.
Improperly tightened screws may lead to electric shock or fire.
Do not use unused terminals on the instrument as relay terminals for other equipment. Failure to heed this caution may lead to electric shock, fire or equipment breakdown.
(1) Attaching the terminal covers after completing the controller connections is highly recommended.
Failure to heed this caution may lead to fire or malfunction. (Terminal covers are supplied with the controller.)
(1 If there is a risk of a power surge caused by lightning, use a surge absorber (surge protector) to prevent fire or device failure.
(1) Be careful not to allow crimp terminal lugs to touch adjacent terminals.

! Handling Precautions

- Before connecting the lines, verify the model number and terminal numbers on the label affixed to the side panel of the DCP552. After completing, always double check to ensure all wiring has been performed correctly before turning on the power.
- The I/O signal lines and the communications lines shall maintain at least 50 cm between them and the power supply line and power supply cables. Do not route these cables through the same conduit or duct.
- Make sure that no crimp-style solderless wire connectors are touching an adjacent terminal or connector.
- When connecting a thermocouple input of the DCP552 to another instrument, make sure the instrument's input impedance totals at least $1 \mathrm{M} \Omega$. If less than $1 \mathrm{M} \Omega$, the DCP552 may not be able to detect sensor disconnection.
- Cautions when using data input devices in combination Input of the DCP552 input or output (connected in parallel for input) to an A/D converter, analog scanner, etc., may cause dispersion of the read data. To prevent such occurrence, take one of the following corrective measures.
(1) Use a low-speed integral A/D converter.
(2) Insert an isolator with no switching power supply between the DCP552 and the A/D converter.
(3) Perform averaging with a personal computer when the data is read.
(4) If the device permits, insert an input filter.
- Devices and systems to be connected to this unit must have the basic insulation sufficient to withstand the maximum operating voltage levels of the power supply and input/output parts.

4-2 Recommended Cables

To perform thermocouple input, connect a thermocouple element to the terminals. When the wiring distance is long or when connecting the thermocouple without the element to the terminals, connect via shielded compensating lead wires. To select, refer to the compensating lead wire specifications below.

- For I/O other than thermocouple, use instrument cable for JCS4364 shielded instruments or equivalent. (general name: twisted shielded cable for instrument use)
The following cables are recommended:

Fujikura Ltd.	2-wire	IPEV-S-0.9mm ${ }^{2} \times 1 \mathrm{P}$
	3 -wire	ITEV-S-0.9mm $2 \times 1 \mathrm{~T}$
Hitachi Cable, Ltd.	2 -wire	KPEV-S- $0.9 \mathrm{~mm}^{2} \times 1 \mathrm{P}$
	3 -wire	KTEV-S-0.9mm $2 \times 1 \mathrm{~T}$

- A shielded multicore microphone cord (MVVS) may be used, if electromagnetic induction is comparatively low.

4-3 Making Terminal Connections

To connect a line to the terminals, use crimp-style solderless wire connectors that fit an M3.5 screw.

$!$ Handling Precautions

- If the DCP552 is mounted in a location subject to noticeable vibration or impact, be sure to use round crimp-style solderless wire connectors to prevent lines from becoming disconnected from the terminals.
- Be careful not to allow any of the crimp-style solderless wire connectors to touch adjacent terminals or connectors.
- The terminal screws shall be tightened to 0.78 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$ torque.

4-4 Terminal Array

Wires are connected to the terminal base according to the layout shown below.

4-5 Power Supply and Grounding

Power supply

To supply power to the DCP552, use an instrument-dedicated single-phase power supply subject to minimal electrical interference.

! Handling Precautions

- If electrical interference proves excessive, we recommend adding an insulating transformer and/or using a line filter.
Azbil corporation model no.: 81442557-001
- After carrying out interference reducing measures, do not bundle the primary and secondary power supply coils together or insert them in the same conduit or duct.

Grounding

If grounding the shield wire or other lines proves difficult, ground them separately to a grounding terminal block.
Type : Category 3 or higher (Max: 100)
Conductor : Annealed copper wire, min. $2 \mathrm{~mm}^{2}$ (AWG14)
Max. Length : 20m

$!$ Handling Precautions

To ground the DCP552, connect the FG terminal (terminal (52), or (53)) to a single ground point without jumpering.

4-6 PV Input (Analog Input) Connection

§ CAUTION

©
Current applied to current input terminals (55), (56) and (58), (59) must meet the specified range.
Failure to heed this caution may lead to fire or equipment breakdown.

PV input CH1 connection

PV input CH1 is a multi-input type input for sensors. Connect as shown below, according to the type of sensor being used.

- Thermocouple input

DC voltage input

Resistance temperature detector input

- DC current input

PV input CH2 connection

PV input CH2 is a multi-input type input for sensors. Connect as shown below, according to the type of sensor being used.

- Thermocouple input

Resistance temperature detector input

$!$ Handling Precautions

- Be careful to connect the input polarities correctly.
- Use shielded cable to connect the input.

4-7 Control Output Connection

WARNING

(1)

Be sure to turn off the power supply when you are installing or removing the controller.
Failure to do so may cause electric shock or fire.

- Current output (5G, 5S)

4 to 20mA DC Load resistance less than 600Ω

- Voltage output (6D)

2 to 22 mA DC With current value adjustment function (Setup data C95)

2 to 22 mA DC
With current value adjustment function (Setup data C96)
$!$ Handling Precautions
The voltage output is a constant current circuit inside. The SSR used is set to an optimum voltage to meet the requirements of the load. Enter the value in the setup data. A normal SSR voltage has been set at the factory before shipment.

- Open collector output (8D)

$!$ Handling Precautions

- Do not short-circuit the positive (+) terminal of the external power supply to terminal (43) on the DCP552. Doing so causes the open collector outputs to malfunction. (There is no short-circuit preventing circuit inside.)
- When connecting a semiconductor load such as a programmable controller (sequencer), select a module in which the current directions match.
Use one made inoperative by the leakage current produced when the digital outputs are shut off.

4-8 Auxiliary Output Connection

〔. WARNING

(1)

Before removing, mounting, or wiring this module, be sure to turn off the power to the module and all connected devices.
Doing so may result in an electric shock.

4-9 Event Output (Open Collector Output) Connection

! Handling Precautions

- Do not short-circuit the positive (+) terminal of the external power supply to terminals (5) to (8), (17) to (20), (10), (11), (22), (23), (27), (28), (31), and (32) on the DCP552. Doing so causes the open collector outputs to malfunction. (There is no short-circuit preventing circuit inside.)
- When connecting a semiconductor load such as a programmable controller (sequencer), select a module in which the current directions match.

Use one made inoperative by the leakage current produced when the digital outputs are shut off.

4-10 External Switch Input Connection

- Internal circuit diagram of the DCP552 connecting external switch input

! Handling Precautions
- The inputs of the DCP552 unit are provided with a built-in power supply (open voltage type, 8.5V DC). Always use no-voltage contacts externally.
- For the no-voltage contacts, use gold contacts or other relays that switch on small currents. Other types of relay contacts may not switch. Use contacts that have ample margin over the minimum switching capacity with respect to the current and open voltage ratings of contacts provided on the DCP552.
- If using semiconductors (open collectors, etc.) as no-voltage contacts, use one that maintains a potential of no more than 2 V across the contacts when actuated, and a leakage current of no more than 0.1 mA when shut off.
- The digital inputs (remote switch inputs) of all SDC40 and SDC10 series units can be connected in parallel. If connecting them in parallel to another instrument, carefully check the requirements of the other instrument before proceeding.
- Do not connect SDC20/21, SDC30/31 series in parallel. Doing so may cause the external switch input to malfunction.
- Common terminals (12) and (41) of the external switch input are connected internally.

4-11 Communication Connection

RS-485 connection

! Handling Precautions

- The slave station can be connected in a multi-drop configuration.
- Always set a unique address to each slave station.
- Attach terminating resistances (a total of four when connecting a 5-wire system) to the ends of the communications lines. Use $1 / 2 \mathrm{~W}$ or greater terminating resistances of $150 \Omega \pm 5 \%$.
- If connecting three lines, short-circuit terminals (60), (62) and (61), (63).
- Do not short-circuit the RDA to RDB and SDA to SDB terminals. Doing so may cause the DCP552 to malfunction.

5-wire system RS-485 connection diagram

! Handling Precautions

- Be sure to connect SG terminals each other.

Failure to do so might cause unstable communications.

Attach $1 / 2 \mathrm{~W}$ or greater terminating resistances of $150 \Omega \pm 5 \%$ at each end of the communications lines. Ground the shield FGs at one end in one location, not at both ends.

- 3-wire system RS-485 connection diagram

$!$ Handling Precautions

In the 3-wire system, the Azbil Corporation CMC10L001A000 can be used as a converter in the master station.

! Handling Precautions

- Be sure to connect SG terminals each other.

Failure to do so might cause unstable communications.

Attach $1 / 2 \mathrm{~W}$ or greater terminating resistances of $150 \Omega \pm 5 \%$ at each end of the communications lines. Ground the shield FGs at one end in one location, not at both ends.
When only three RS-485 terminals are provided, the areas designated with an asterisk (*) are connected internally.

RS-232C connection

Example of connection

$!$ Handling Precautions

- Connect the slave station to the master station in a single-drop (point-topoint) configuration.
- There are three (RD, SD and SG) communications terminals on the RS232C interface on the master station which may not output data if not short-circuited as shown above.

프추* $N o t e$

RS-232C connector signals (9 pins)
Example: IBM and compatibles

| Pin No. | JIS code | Name | Signal direction
 Host | | Instrument |
| :---: | :---: | :---: | :---: | :---: | :---: |$|$| 1 | CD | DCD | \leftarrow |
| :---: | :---: | :---: | :---: |
| 2 | RD | RxD | \leftarrow |
| 3 | SD | TxD | \rightarrow |
| 4 | ER | DTR | \rightarrow |
| 5 | SG | GND | |
| 6 | DR | DSR | \leftarrow |
| 7 | RS | RTS | \rightarrow |
| 8 | CS | CTS | \leftarrow |

RS-232C connector signals (14 pins)
Example: PC-9821 Ne

Pin No.	JIS code	Name	Signal direction Host
1	RD	RxD	\leftarrow
2	DR	DSR	\leftarrow
3	CD	DCD	\leftarrow
4	CS	CTS	\leftarrow
9	SD	TxD	\rightarrow
10	RS	RTS	\rightarrow
11	ER	DTR	\rightarrow
13	SG	GND	
14	SG	GND	

RS-232C connector signals (25 pins)
Example: PC9800 series

Pin No.	JIS code	Name	Signal direction Host						
Instrument				$	$	1	SG	GND	
:---:	:---:	:---:	:---:						
2	SD	TxD	\rightarrow						
3	RD	RxD	\leftarrow						
4	RS	RTS	\rightarrow						
5	CS	CTS	\leftarrow						
6	DR	DSR	\leftarrow						
7	SG	GND							
8	CD	DCD	\leftarrow						
20	ER	DTR	\rightarrow						

Connection to ST221

ST221DE05DCP

$!$ Handling Precautions

- Attach $1 / 2 \mathrm{~W}$ or greater terminating resistances of $150 \Omega \pm 5 \%$ at each end of the communications lines.
- The DCP552 operates as a master station when connected to an ST221 during communications.

4-12 Isolation During Input/Output

Isolation between inputs and outputs are shown below. In this figure, the solid lines enclose mutually-isolated sections. Those sections bounded by dashed lines are not isolated.

PV input, CH 1	Digital circuit	Control output, CH 1
PV input, CH2		Auxiliary output, CH 1
Loader communication		Control output, CH 2
External switch input		Auxiliary output, CH2
Communication		Event output
Memory card input*		

* : available on the DCP552A***** model only

! Handling Precautions

The loader jack is not isolated from internal digital circuits.
When not in use, always replace the cap.

Chapter 5. FUNCTIONS

5-1 Data

Data types

The data types are listed below.
For further information on data types, see "Chapter 7. PARAMETER SETUP" and "Chapter 8. PROGRAM SETUP".

5-2 Program Pattern

Pattern

Separate programs are set in CH 1 and CH 2 for each program number.
Three systems for selecting programs are provided: RAMP-X, RAMP-T and RAMP-E. The first segment of each program is always RAMP-X, but the other segments can be any system and all three types can be used in one program.

- RAMP-X system

This system, sets a segment of a pattern using SP and time, is called RAMP-X.
SP setting : within the upper and lower SP limiter range
Time setting: 0 hours 00 minutes to 500 hours 00 minutes
0 minutes 00 seconds to 500 minutes 00 seconds or 0.0 seconds to 3000.0 seconds
(Time units are selected using the C62 setup data setting.)
SP is a point on the elapsed time axis in the current segment, which is a straight line connecting the start point, the SP set value in the previous segment, and the end point, the SP set value in the current segment. Segments are classified as follows.

- Rising RAMP (or rising slope)

Previous segment SP setting < current segment SP setting

- Falling RAMP (or descending slope)

Previous segment SP setting $>$ current segment SP setting

- SOAK (soaking)

Previous segment SP setting = current segment SP setting
The start and end points of the first segment are also the SOAK segment of the SP set value for the first segment.

SP calculation (other than first segment)
SP = (current segment SP set value - previous segment SP set value)
\times (current segment elapsed time \div current segment time setting)

+ previous segment SP setting.

- RAMP-T system (θ setting)

In the RAMP-T system, a segment is set using SP and ramp θ (theta).
SP setting : within the upper and lower SP limiter range θ setting $\quad: 1$ to 10000 (SPU/hour, SPU/min, SPU/sec)
(Time units are selected using the C62 setup data setting.)
SP is a point on the elapsed time axis in the current segment which is an extended straight line, the ramp set value of the current segment when the SP set value in the previous segment is the start point.
The end point is the point where this line reaches the SP setpoint of the current segment. Note that the RAMP-T system cannot be used in the first segment. SP calculation: SP $=\theta$ set value \times segment elapsed time + previous segment $S P$.

- RAMP-E system (Δ SP setting)

In the RAMP-E system, segments are set using SP and $\Delta \mathrm{SP}$ (digital SP) for each external switch input pulse.
SP setting : within the upper and lower SP limiter range
Δ SP setting: 1 to 10000 SPU
The start point is the SP set value in the previous segment.
SP is a value resulting from adding a multiple of the external switch input count to the SP set value when the SP in the previous segment is the start point.
The segment ends when this SP reaches the SP setting in the current segment and the current segment SP is more than the previous segment SP or when current segment SP is less than the previous segment SP .
SP calculation: when current segment SP is more than the previous segment SP , $\mathrm{SP}=\Delta \mathrm{SP}$ set value \times external switch input count + the previous segment SP . When current segment SP is less than the previous segment SP ,
SP $=-(\Delta$ SP set value \times external switch input count $)+$ the previous segment SP.

Note

- Select the program pattern setting system using setup data setting C61.

0 : combined use of RAMP-X and RAMP-T
1: combined use of RAMP-X and RAMP-E

- Select time setting units using setup data setting C62.

0 : hours and minutes
1: minutes and seconds
2: 0.1 seconds

- Select θ setting units using setup data setting C62.

0: SPU/hour
1: SPU/min
2: SPU/sec

- Select SP setting and SP setting decimal position using setup data setting C65.
$0: ~ X X X X X$
1: $X X X X . X$
2: $X X X . X X$
3: XX.XXX
4: X.XXXX
- External switch for pulse input requires 1: RAMP-E using a setup data setting between $C 71$ to $C 74$.
- The pulse input interval time can be checked by setting event type 93 in the event. Event type 93 is RAMP-E time monitored during a period of 0.0 to 3000.0 seconds.

Even when a setting is exceeded and there is no pulse input, the event remains on.

Events

First, setup data setting C64 is used to assign CH1 and CH2 events, then the event configuration data setting is used to set event types for event outputs 1 to 16 .
Events are of the following four types: time event, PV event, code event and mode event. Settings are divided into two types of events: segment events and instrument event.

- Segment events are used to set the event operating point in a program setting and makes it possible to set different set values in different segments. But in the constant value control mode segment events are off.
- Instrument events are used to set events that do not require an event operating point or set the event operating point in the event configuration setting. It performs operations that are shared by all program operations and constant value control.

Time events

The On Time or both the On and Off Time can be set by event number and segment. Output on/off duration are as shown below.

睤 Note

- The On Time is indicated by the length of the line from the start of the segment until the upturned arrow.
- The Off Time is indicated by the length of the line from the start of the segment until the downturned arrow.
- When the On Time is less than the off time, the output is on from the on time until the off time.
(See segments 1, 6 and 7 in the figure.)

Segment	
On-time	AON<OFF
Off-time	OOM
Output-ON	
Output-OFF	

- When only an on setting is made, the output stays on until the end of the segment. (See segments 2 and 5 in the figure.)

Segment	2	3
On-time		
Off-time	The output goes off at the end of the \rightarrow	
Output-ON	segment when no off time is set.	
Output-OFF		

- The output is off when no On or Off Time has been set.
- An off time cannot be set without setting an on time.
(See segment 3B in the figure.)
- An On Time \geq Off Time setting cannot be made.
(See segment 3C in the figure.)

Segment	3B		3C
On-time	No On Time is set.		
Off-time			
Output-ON			
Output-OFF			

- An On Time or Off Time is valid only within a segment and cannot straddle segments. In the next segment, the On time and Off time set for that segment are valid. (See segments 4 and 5 in the figure.)
Thus an On Time and Off Time setting made at the end of a RAMP-X segment are ignored. (Compare segment 9 with the G.SOAK wait in segment 10 in the figure.)
Note, however, that an On Time or Off Time setting at the end of a RAMP-T segment is either valid or invalid depending on the computational error.

- When the On Time is set to 0 (no Off Time being set or set to more than 0), the output goes on when the On Time becomes 0 . If the output was on at the end of the previous segment, it stays on and does not go off momentarily between the two segments. (See segments 5 and 6 in the figure.)

Segment	5	6
On-time	\uparrow	
Off-time		
Output-ON		
Output-OFF		ON duration

- The G.SOAK Time is not included in the On and Off Time. (See segment 7.) Nor is the Wait Time included for a G.SOAK that occupies an entire segment.

- When there is a G.SOAK wait at the start of a segment and the ON Time is set to 0 , the output goes on at the start of the G.SOAK wait and the On Time starts as the G.SOAK wait ends.

The output time $=$ G.SOAK time $+($ Off Time - On Time $)($ See segment 8 in the figure.)

- An On Time and Off Time occurring at the end of a RAMP-X segment are valid when there is a G.SOAK wait at the end of a segment or as the end state of the final segment. (See segment 10 in the figure.)
Note, however, that an On Time or Off Time setting at the end of a RAMP-T segment is either valid or invalid depending on the computational error.

Segment	ON = Segment time	
On-time		
Off-time		
Output-ON		
Output-OFF		
Segment		
	ON = Segment time	
On-time		
Off-time		
Output-ON		
Output-OFF		

- When there is a G.SOAK at the end of the previous segment, the On Time in the next segment is ignored if it is set to 0 . (See segments 11 and 12 in the figure.)
Thus the $\mathrm{ON}=0$ of segment 12 is not output at the end of the set time for segment 11, but when the G.SOAK wait ends.
- This function can be combined with an event ON delay set using PARA. Delay works when an event goes from off to on. A delay is not triggered when an On Time continues across two segments as shown in segments 5 and 6 in the figure.

Segment		Segment time		
On-time				
Off-time				
Output-ON				
Output-OFF				
Segment				
On-time	\uparrow ON=0			
Off-time				
Output-ON				
Output-OFF				

PV event

- Basic specifications

The difference between PV, deviation, absolute value deviation, SP and MV for each event type is shown on the following pages. The thick lines show ON and OFF conditions. The upper line indicates ON and the lower line indicates OFF conditions.
EV indicates the event set value and H indicates the hysteresis value. Outputs in READY mode are OFF. But normal PV1 upper and lower limit operation and normal PV2 upper and lower limit operation events run also in the READY mode.

- Event standby

Standby events operate as described below.

- If the event is in the gray area \square shown in the figure during a change from READY to RUN mode or when the power is restored after an outage, the event operates without a standby. The upturned arrows in the figures indicate ON while the downturned arrows indicate OFF.
- If the event is outside the gray area \square shown in the figure during a change from READY to RUN mode or when the power is restored after an outage, it remains off until it enters the gray area \square.

After entering the gray area \square, the upturned arrows in the figures indicate ON while the downturned arrows indicate OFF.
A standby event is off in the READY mode.

- Event on delay

The number of the event to be delayed and the delay time can be set regardless of event type. The delay turns on the output for the duration of the delay when the event meets the conditions for going from OFF to ON. When this function is combined with the event standby function, the event on delay operates when the standby state is cleared.

- Segment event progress
- The output stays OFF until the program reaches a segment with an event.
- The event goes ON or OFF according to the set value of the event.
- Previous settings are valid until segments with other event settings are reached.
- Previous settings are valid when the program has reached segment number 1 using the cycle function or pattern link function. The output is turned off if there is no event in segment number 1.

- Other functions

Normal PV1 upper and lower limit operation event and normal PV2 upper and lower limit operation events operate in the READY mode.

Deviation upper limit
Deviation upper limit with standby

Absolute value deviation upper limit
Absolute value deviation upper limit with standby
SOAK absolute value deviation upper limit**
SOAK absolute value deviation upper limit with standby*

SP
Items marked * operate only in SOAK segments.

Deviation lower limit
Deviation lower limit with standby

Absolute value deviation lower limit
Absolute value deviation lower limit with standby SOAK absolute value deviation lower limit*

Items marked * operate only in SOAK segments.

- PV deviation rate event

PV deviation is measured in each sampling cycle set using the event configuration data setting while on/off states are determined by comparing event setting deviation rate $\Delta \mathrm{PV}$.
PV deviation between sampling cycles is ignored. Event on/off switching is performed according to the sampling cycle. This function can be combined with event on delay.
Set event value is more than 0 (using upper limit event)

Set event value is less than 0 (using lower limit event)

- Code event

Several events are used as one group and the number of output points are output as one parallel code number. Assigning code numbers to event outputs has the same effect as increasing the number of physical output points.

- Code event

Set event type to code event and set the number of output points (1 to 8) in auxiliary setting 1 . An output code value (0 to 255) can be set for each segment. A binary coded low-order bit for the set number of output points is output. The previous setting is valid until the program reaches a segment with a new setting.
Note, however, that unless a setting is made in the first segment, the program will assume that a set value of 0 is set in the first segment.

Example: Setting a code event involving 3 output points in event 3

The table below shows the output state when a value of 3 is set in segment 2 , a value of 6 is set in segment 4 and a value of 0 is set in segment 5 .

- Timed code event

This function is a combination of a code event and a time event. The set code value is output at the set time. The number of settings that can be made in the first segment is the same as the number of output points. For example, for a 3point output up to three settings can be made in the first segment.
Like a time eventit, a setting within the segment period is valid and those that exceed it are ignored. When the program reaches the start time of the first segment or a new segment, the set code value is 0 (all points off) until the set time of the time event.

Example: Setting a timed code with 3 output points in event 3
The table below shows the output state when a value of 5 is set in segment 2 and set to start at the beginning of the segment, a value of 3 is set to occur $0: 10$ after the start of segment 2 and a value of 4 is set to occur 0:30 after the start of segment 4 .

Segment	1	2	3	4	5
Set value	Not set	5 5	Not set	6	0
Set time	Not set	0.00: 0.10	Not set	0.30	0.00
Time		0.10		0.30	
Code value 1 in event 3	OFF		OFF	OFF	
Code value 2 in event 4	OFF	OFF	OFF	OFF	OFF
Code value 4 in event 5	OFF	ON	OFF	OFF	OFF
Output code	0 $0, \quad 0,$	$\begin{array}{l:l} \hline 5 & 3 \\ :{ }^{*} 1 & { }^{*} 2 \end{array}$	$\begin{aligned} & 3 \\ & :(\mathrm{OFF}, \mathrm{OFF}, \mathrm{C} \\ & 0,0 \end{aligned}$		$\begin{aligned} & 0 \\ & \text { OFF } \end{aligned}$

- Program/segment number event

A program or a binary coded segment number is set in an event type and the number of output points (1 to 7) is set in auxiliary setting 1 . Or a program or a BCD code of the segment number is set in an event type and the number of output points (1 to 8) is set in auxiliary setting 1 .
A selection, a program designed for a specific operation or a coded segment number is output. A low-order bit code corresponding to the set number of output points is output.

- An event on delay can be combined with the code event.

Note, however, that when there are several channel code events, the delay has to be entered for each channel.

Decimal binary code comparison table

Decimal BCD code comparison table

- Mode event

This event goes on or off depending on controller mode, alarm generation and other states.
It cannot be combined with the event standby function but with the on delay function. It does not set event set values (operating points) or hysteresis.

- Basic operations

The following types are provided.
RUN + HOLD + END + FAST
HOLD
READY + READY FAST
END
G.SOAK wait

MANUAL
During auto-turning execution
FAST + READY FAST
Console setting operation
RUN
ADV (advance)
Full alarm (logical OR)
PV range alarm
Instrument alarm
O 2 sensor failure
Battery voltage drop
The event goes on when the specified instrument state is reached and is off at other times.

- Alarm

Alarms are of two types: PV range alarm group (alarm code number 01 to 04) and instrument alarm group (alarm code number 91 to 99 and battery voltage drop). When the event type is all alarm, the event goes on if one alarm occurs. When the event type is a PV range alarm, the event goes on if one alarm in the PV range alarm group goes on.
When the event type is an instrument alarm, the event goes on if one alarm in the instrument alarm group goes on.

- ADV

When ADV (advance) is executed, the event goes on for 1 second. This function is valid during on delay.

PID group selection

- Separate PID group selections can be set in CH 1 and CH 2 programs.
- PID groups can be selected in two ways: by setting a PID segment or through automatic PID group switching.
A PID group segment and automatic PID group switching can also be combined. When a PID group number is set to 0 , the setting in the previous segment is continued.

PID group segment setting

- In a PID group segment setting a PID group number is set in each segment and PID parameters are used for calculating the control output. The nine PID groups PID1 to PID9 can be used.
- In automatic PID group switching, the entire SP scale is divided into seven zones assigning $C P-A 1$ to $C P-A 6$ to each. The PID constants that are used according to SP values are automatically selected to calculate control output. The PID group number for each segment specifies A. Seven PID groups from PID-A1 to PID-A7 can be used.

Selection of ouput limiter group

- Separate output limiter groups can be set in CH 1 and CH 2 programs.
- Output limiter group number can be set for each segment to control the lower limit (OL) and upper limit (OH) of the control output. oL and oH groups 1 to 9 can be used.
- The output limiter can only be specified by segment; automatic selection cannot be made.
- When the output limiter is set to 0 , the setting in the previous segment is continued.

G.SOAK (Guarantee soak)

Separate G.SOAK settings can be made in CH 1 and CH 2 programs.
G.SOAK on/off state, type and G.SOAK width is set by the segment. G.SOAK are of three types: segment start point, segment end point and the entire segment. G.SOAK time is set using the variable parameter PA46 setting. Any offset between SP and PV triggers a G.SOAK wait which narrows the distance between SP and PV to guarantee the segment execution time. G.SOAK operates not only on SOAK but also on RAMP segments.
Note, however, that in FAST mode a G.SOAK setting does not trigger a G.SOAK wait.
When a G.SOAK wait occurs in one channel in sync mode (variable parameter PAO4 is set to 1), the program in the other channel is halted.
G.SOAK can be cleared with an external switch input. The following types of clearing conditions can be selected using setup data setting $C 71$ to $C 74$.
(1) G.SOAK is cleared when an external switch contact is set to on or when PV meets the G.SOAK clearing conditions.
(2) G.SOAK is cleared when an external switch contact is set to on and PV meets the G.SOAK clearing conditions.

- G.SOAK at start of segment

PV and SP are compared at the beginning of the segment. The segment starts when the absolute value of the difference continues beyond the G.SOAK time and becomes narrower than G.SOAK width.
A G.SOAK wait state continues until these conditions are met which is announced by the flashing of the linear LED on the left of the profile display. The operating condition is the same as HOLD at the beginning of a segment (time $=0$).

- G.SOAK at end of segment

PV and SP are compared at the end of the segment. The operation in that segment ends when the absolute value continues beyond the G.SOAK time and becomes narrower than G.SOAK width.
A G.SOAK wait state continues until these conditions are met which is announced by the flashing of the linear LED at the center of the profile display. The operating condition is the same as HOLD at the end of a segment (time $=$ set segment time).

- G.SOAK for entire segment

PV and SP are compared at across the entire segment. The operation in that segment continues when the absolute value continues beyond the G.SOAK time and becomes narrower than G.SOAK width.
A G.SOAK wait state continues until these conditions are met which is announced by the flashing of the linear LED at the left and the center of the profile display.
The operating condition is the same as HOLD at the continued time.

Separate PV shift settings can be made in CH 1 and CH 2 programs.
A PV correction value can be set for each segment. PV is PV input value plus PV bias and PV shift. Note, however, that in the READY mode and the constant value control mode, PV bias but not PV shift is added to the PV input value.
The setting in the previous segment continues when PV shift is set to "-----" ."
(nothing).

Repeat

Separate repeat settings can be made in CH 1 and CH 2 programs. Repeat on/off and return destination are set by the segment with the segment number and repeat count. Operation completes at the end of a segment. If there is a repeat setting, the program returns to the start of the set destination segment and operation is resumed from there. This operation is repeated the number of times specified by the repeat count.

No repeat is performed when the destination segment number is larger than the current segment number. When the program returns to the first segment, PV is not started even if a PV start setting has been made.

$!$ Handling Precautions

- When repeat operations involve multiple segments and the destination segment settings overlap, nest or intersect, the repeat operation will become an abnormal eternal loop. Do not make such settings.

- When the current segment does not contain a set value or the value is 0 , executed values for program items (for example, set PV event values or set PID group selection values) that are sequels to settings in a previous segment are the same during the first run and the repeat run.

PV start

Separate PV start settings can be made in CH 1 and CH 2 programs.
When a PV start is set in the program setting, a PV start is performed in a normal RUN operation.
The program looks for the first point where PV and the program pattern SP are equal (both PV and SP include bias) and starts operation from there. PV starts are of three kinds: rising PV start that looks for a point where PV and SP are equal on a rising RAMP, falling PV start that looks for a point where PV and SP are equal on a falling RAMP and bi-directional PV start that looks for such a point both on rising and falling RAMPs.
Note, however, that if there is no point where PV and SP are equal, operation starts from the beginning of segment 1 .
When a PV start has been implemented, the event operating point and the time event time are automatically corrected. This is described in the figure shown below. When PV is at (1) in the figure, a rising PV start or a bi-directional PV start starts from B and a falling PV start starts from C . When PV is at (2) in the figure, a falling PV start or a bi-directional PV start starts from D and a rising PV start starts from A. When PV is at (3) in the figure, any PV start starts from A.

Note
PV start is valid for segments in the selected program but not for segments beyond a pattern link destination.
When a PV start is performed in one or both channels of a program whose both channels have the same segment time settings, the segment number and operating progress time of the two channels do not match.

Cycle

Separate cycles can be set in CH 1 and CH 2 programs.
The cycle function allows you to repeat operation from segment 1 to the last segment in a program pattern the number of times set in the cycle count. A total of 10,000 times can be set.
When a cycle number of n is set, the total operation count is $\mathrm{n}+1$. During cycle operation, the operation at the last point in the final segment is not performed and executed values of program items (sequels to settings in the previous segment ; for example, PV event value, pid group number) that continue from a previous segment are cleared before program restart.
When the SP start point and end point are not equal, SP changes in a step-like manner during cycle operation.

Pattern link

Separate pattern links can be made in CH 1 and CH 2 programs.
The pattern link function links patterns; the program number of the link at the destination is set in the pattern link item. An initial value of 0 indicates that linking is not performed.
When the number of the program is set in the pattern link item, it forms an eternal loop.
When SP at the end of the original link and SP at the destination are not equal, SP changes in a step-like manner.
When cycle operation has been set, the pattern link operates after the cycle operation has been completed.
Since operation starts from the first segment at the destination during pattern linking, executed values of program items (sequels to settings in the previous segment) that continue from a previous segment are cleared before program restart.
When a PV start has been programmed in a pattern at the destination link, the PV start function operates after the link has been made.
PID computations are not initialized but continued after a link has been established.
When the READY mode is invoked at the end of an operation or in a RESET operation, operation returns to program number 1 that is switched from READY to RUN mode (RUN to READY). If a RESET is performed when a program at the pattern link destination is reached during an ADV operation in the READY mode, operation returns to segment 1 of the link destination program number. Note, however, that program numbers selected using the external switch takes priority.

Linking program No. 1 and program No. 2

Tag
Programs that have the same number in CH 1 and CH 2 also share the same tag.
Tags are 8-character alphanumerics, katakana or symbols that can be entered in a program.
When segment 1 pattern item is set in a program setting, a total of eight characters consisting of PROG plus two characters in the program number and "__" two space characters.
Example: Program no. 1 : "PROG01_,"
Program no. 19:"PROG19__"

5-3 Mode

Mode types

Modes are listed below.

- Program operation

The program is run according to SP , time, events and other settings made in program patterns 1-49.

- Constant value control

The program is run according to SP and events made with the constant value controls.

- READY

READY indicates that the program is ready to run.
MV becomes fixed and events whose operation depends on values set in the segments are turned off. Note, however, that DCP552 state dependent events still run.
Program numbers between 1 to 49 and set segment numbers can be selected during program operation.

All setup data, some event configuration data and some constant value control data parameters can be changed in the READY mode. Memory cards can also be used in the READY mode.

- RUN

- HOLD

The HOLD mode temporarily halts program operation.
Note, however, that, like the RUN mode, MV output and events operate during PID operation, ON-OFF control and other types of control. During constant value control the HOLD mode cannot be invoked.

- FAST

The FAST mode is essentially a speeded-up version of the RUN mode. The time factor is selected using variable parameter PA39. MV output and events operate during PID control, ON-OFF control and other types of control. G.SOAK (guaranteed soak) settings are ignored.
During constant value control the FAST mode cannot be invoked.

- END

The END mode indicates the state of a program that has run its course.
When a program stops at the end, MV output and events operate during PID control, ON-OFF control and other types of control.
During constant value control the END mode cannot be invoked.

- READY FAST

The READY FAST mode is a combination of the READY and FAST modes. MV output, SP output and events operate in the same way as in the READY mode. Program numbers and segment numbers cannot be selected. Parameters that can only be changed in the READY mode and memory card operation is not possible in this mode.
During constant value control the READY FAST mode cannot be invoked.

The AUTO mode performs automatic operation. MV outputs can be used depending on DCP552 control.

The MANUAL mode performs manual operation.
The " \uparrow ", " \downarrow ", " \leftarrow " and " \rightarrow " console keys can be used to change communications and MV output.

Mode transitions

- Program operation

Mode transitions are indicated by the solid line arrows and end operation is indicated by the dashed lines in the figure below.

鲴 Note

- AUTO \Leftrightarrow MANUAL mode changes can be made in the boxes of each mode.
- READY and END at the end of operation can be selected using setup data C31.
- CH1 and CH2 mode transitions can be performed both synchronously or asynchronously.

- Constant value control

Mode transitions are indicated by the solid line arrows.

	$\xrightarrow[\text { RESET }]{ }$	RUN AUTO
READY MANUAL	RESET	RUN MANUAL

№te

- AUTO \Leftrightarrow MANUAL mode changes can be made in the boxes of each mode.
- CH 1 and CH 2 mode transitions can be performed both synchronously or asynchronously.
- Switching between program operation and constant value control

Constant value control data "ConSt" control mode item in the READY mode is used to switch between these two modes.
0 : Program operation
1: Constant value control

Mode transition operations

Mode transitions are performed using the following operations.
Although "Operation end" is not an operation, it is described here as a factor in mode transitions.

- RUN

Switches from the READY, HOLD, FAST and READY FAST modes to the RUN mode. To go from the READY mode or READY FAST to the RUN mode using keys, external switches or transmission, the DCP552 must be in basic display status.

- HOLD

Switches from the RUN and FAST modes to the HOLD mode. During constant value control the HOLD mode cannot be invoked.

- RESET

Switches from the RUN, HOLD, FAST, END and READY FAST modes to the READY mode.
In program operation, the reset involves returning the program to the first segment.
ADV
Brings the program forward by one segment in the READY, RUN, HOLD, FAST and READY FAST modes. ADV (advance) operation is not available in the constant value control mode.

- FAST

The FAST mode is invoked from the RUN, HOLD, READY and READY FAST modes. During constant value control the FAST mode cannot be invoked.

- AUTO

- MANUAL

Switches from the AUTO mode to MANUAL mode.
The basic display status shows PV and the output value (\%) during this transition. Switching from AUTO to MANUAL using external switches or transmission invokes the basic display status even when the parameter setting status or programmer setting status are in use.

- Operation end

Operation ends when all progress of program settings including cycle and pattern links reach the end in the RUN, FAST and READY FAST program operation modes or during an ADV operation. By making a setup selection, it is possible to set READY or END as the state of the controller when the program reaches its end.
Note, however, that when an operation ends in the READY FAST mode, it always ends in the READY mode. In constant value control mode, operation end is not available.

Mode transition restrictions

Modes can be changed using console keys, external switch inputs or through communications. The table below shows the operations that are valid for each mode.

		RUN (To RUN mode)			HOLD (To RUN mode)			RESET (To READY mode)			ADV (To next segment)			FAST(To FAST orREADY FAST mode)		
		Key	Switch	Commu- nication	Key	Switch	Communication	Key	Switch	Commu- nication	Key	Switch	Communication*	Key	Switch	Communication
Program operation	READY	(0)	©	()	-	-	-	-	\triangle	\square	-	(-	()	©	©
	RUN	-	-	\square	(0)	\bigcirc	©	(0)	\bigcirc	(0)	(0)	\bigcirc	©	(0)	\bigcirc	(0)
	HOLD	(0)	\bigcirc	(0)	-	-	\square	()	\bigcirc	()	(0)	\bigcirc	()	()	\bigcirc	()
	FAST	(0)	\bigcirc	(0)	-	\bigcirc	(0)	(0)	\bigcirc	(0)	(0)	\bigcirc	©	-	-	\square
	END	-	-	-	-	-	-	©	\bigcirc	()	-	-	-	-	-	-
	READY FAST	(0)	©	©	-	-	-	©	\bigcirc	()	(0)	\bigcirc	©	-	-	\square
Constant value control	READY	()	()	©	-	-	-	-	-	\square	-	-	-	-	-	-
	RUN	-	-	\square	-	-	-	(0)	\bigcirc	(-	-	-	-	-	-

		MANUAL (To MANUAL mode)			AUTO (To AUTO mode)		
		Key	Switch	Communicaion	Key	Switch	Communicaion
Program operation	AUTO	(0)	\bigcirc	(0)	-	-	\square
	MANUAL	-	-	\square	(0)	\bigcirc	(0)
Constant value control	AUTO	(0)	\bigcirc	(0)	-	-	\square
	MANUAL	-	-	\square	(0)	\bigcirc	(0)

O: Valid operation
(o): Operation from basic display status valid
\triangle : Returns to the first segment remaining in the READY mode.
\square : Operation is invalid, but the communication end code is normal if performed in the basic display status. - : Invalid operation

* ADV operation performed via communications may not go to the next segment but to the segment set in the communications message.

$!$ Handling Precautions

- Mode transitions can be simultaneously performed for both CH 1 and CH 2 under the following conditions.
- When key operations are performed in synchronous mode (PA04=1).
- Switch operations performed when both the CH 1 operation cancel switch (SW15) and the CH2 operation cancel switch (SW16) are set to OFF.
-When a write command is used to communicate with 2001 status 1 (CH 1 and CH 2).
- Mode transitions can be simultaneously performed for either CH 1 or CH 2 under the following conditions.
- When key operations are performed in asynchronous mode (PA04=0).
- Switch operations performed when both the CH 1 operation cancel switch (SW15) and the CH2 operation cancel switch (SW16) are set to ON.
-When a write command is used to communicate with 261 status 1 $(\mathrm{CH} 1)$ or 281 W status $1(\mathrm{CH} 2)$.
- If a program pattern is set for only one of the two channels, it is not possible to enter RUN mode unless the operation of the other channel is disabled. Therefore, to start RUN mode with the RUN key, first select asynchronous mode (PAO4=0). To start RUN mode with an external switch, first disable the other channel with SW15 and SW16. For details, see "External switch input" on page 6-13.

5-4 Input Process Functions

This section uses diagrams to describe input processes.
Model without carbon potential (CP) compensation

Note
The use of equalizer (approximation by linearization table) is shown in the figure below.
When a sensor with curved characteristics is used to measure PV, a linearization table is used.

Model with carbon potential (CP) compensation

O_{2} sensor check (model with CP compensation)

- Objective

As the O_{2} sensor starts to deteriorate, its output impedance increases. This function checks sensor output impedance and turns on the O_{2} sensor error event when the impedance exceeds $130 \mathrm{k} \Omega$.

- Setting

- One of the values set for setup data $C 71$ to $C 74$ is set to 11 to assign the O_{2} sensor check to an external switch.
- One of the values set for event configuration data setting E01-t to $E 16-t$ is set to 142 to assign an O_{2} sensor error event.
- Operation
- Two methods are used to perform an O_{2} sensor check. In one method the external switch which has been assigned the O_{2} sensor check function goes from OFF to ON. This is called a constant check.

The other method the external switch is turned on each 24 -hour period. This is called an automatic check.

- The impedance is checked when PV1 is $800^{\circ} \mathrm{C}$ or more and the O_{2} input is 1000 mV or higher.
- The O_{2} sensor error event goes on when sensor impedance exceeds $130 \mathrm{k} \Omega$; otherwise it remains off.
- The constant check method is shown below.

- The automatic check method is shown below.

5-5 Output Processing Functions

CH1 control output

CH 1 control output is processed as shown below.

- 5G output (with setup data C21 set to 1)

- 6D, 8D output (with setup data C21 set between 2 to 5)

CH2 control output

CH2 control output is processed as shown below.

5G output (with setup data C22 set to 1)

- 6D, 8D output (with setup data C22 set between 2 to 5)

Auxiliary output

- Auxiliary output 1

Auxiliary output 1 is processed as shown below by a model with one or two auxiliary output channels.

- Auxiliary output 2

Auxiliary output 2 is processed as shown below on a model with two auxiliary output channels.

Chapter 6. OPERATION

6-1 Power Supply On

When 100 to 240 V AC is applied across terminals (39) and (40) on the DCP552, the display goes on in about 10 seconds and controls and other operations start. When the controller is starting up, the LEDs on the profile display go on at irregular intervals one after the other starting from top right in clock-wise order until the controller becomes ready for operation.
The startup flow procedure is shown below.

- Startup flow procedure

*: The measurement of a power outage may vary by about 10 seconds.

6-2 Basic Display Selection

The console basic display status is comprised of the program number display, segment number display, display panel 1, display panel 2, basic display LEDs and the message panel.
Use the DISP key or MESSAGE key to cycle through the different displays. The mode display LEDs perform the same functions both in the basic display status and during parameter settings and do not change by pressing the DISP or MESSAGE key.

The displays and their functions are shown in the figure below.

Program run mode displays

- DISP key function (When variable parametar PA03 is set to 0)

The DISP key is used to cycle through the displays in the following order: Display A1, Display A2, Display A3, Display A4, Display A5, Display A6, Display A1.

- Display A1

- Display A2

- Display A3

When used in MANUAL mode, the number of digits available for output values flashes.

Display A4

Select Hours and Minutes, Minutes and Seconds or 0.1 Seconds in the time unit setup data. In the setup data, also select Remaining Segment Time or Total Running Time.

- Display A5

When the remaining number of cycles is 0 , cycle operation stops.

- Display A6

Select Hours and Minutes, Minutes and Seconds or 0.1 Seconds in the time unit setup data. In the setup data, also select Remaining Segment Time or Total Running Time.

- DISP key function (when variable parameter PAO3 to 1)

Cycles through Display B1 \rightarrow Display B2 \rightarrow Display B3 \rightarrow Display B4 \rightarrow Display B5 \rightarrow Display B6 \rightarrow Display B1 \rightarrow

- Display B1

- Display B2

- Display B3

When used in MANUAL mode, the number of digits available for output values flashes.

Display B4

When the remaining number of cycles is 0 , cycle operation stops.

- Display B5

- Display B6

Select Hours and Minutes, Minutes and Seconds or 0.1 Seconds in the time unit setup data. In the setup data, also select Remaining Segment Time or Total Running Time.

- Message key function (when variable parameter PA03 is set to 0)

Cycles through the message panel displays.

- When CH1 is displayed: Display C1, Display C2, Display C3, Display C4, Display C5, Display C6, Display C1.
- When CH2 is displayed: Display C1, Display C2, Display C3, Display C4, Display C5, Display C6, Display C1.

- Display C1

- Display C2

- Display C3
- Display C5

Display C6

P V 2	1122.3
S P 2	1100.0

Display C7

PV 1	1010.2
SP1	10000.0

! Handling Precautions

- Models with CP computation compensation the CH 2 PV values have the following meaning depending on variable parameter PA44 settings.
- When PA44 is set to 0 : CP value (unit: \%) or PO 2 values (unit $10^{-20} \mathrm{~atm}$)
- When PA44 is set to 1: millivolt voltage value (unit: mV)
- When PA44 is set to 2: O2 sensor impedance value (unit: $\mathrm{k} \Omega$)

Message key function (when variable parameter PA03 is set to 1)

Cycles through the message panel displays.

- Display D1, Display D2, Display D3, Display D4, Display D5, Display D6, Display D1.
- Display D1

| OUT 1 | 20.4% OU T |
| :--- | :--- | :--- |
| OUT 2 | 70.5% OU T |

- Display D2

DEV 1	8.6% F S
DEV 2	3.1% F S

- Display D3
$\left[\begin{array}{llll:l}\hline \text { T1 } & 0 & 19: 59 \\ \text { T2 } & 019: 59 & 180: 01 \\ \hline\end{array}\right]$ - Time value of CH 1 time unit
- Display D4
indicates that events are on and indicates that they are off.

- Display D5

TAG1	[PROG 01		-The [] displays the 8-character program tag
TAG2	[PROG01	1	$\leftarrow \mathrm{CH} 2 \mathrm{tag}$

Display D6

PV 1	1010.2		
PV2	1122.3	\leftarrow	CH1 PV value
:---			

! Handling Precautions

- Models with CP computation compensation the CH2 PV values have the following meaning depending on variable parameter PA44 settings.
- When PA44 is set to 0 : CP value (unit: \%) or PO2 values (unit $10^{-20} \mathrm{~atm}$)
- When PA44 is set to 1 : millivolt voltage value (unit: mV)
- When PA44 is set to $2: \mathrm{O}_{2}$ sensor impedance value (unit: $\mathrm{k} \Omega$)

Fixed command control mode

- DISP key function (when variable parameter PA03 is set to 0)

The DISP key is used to cycle through the displays in the following order: Display E1, Display E2, Display E3, Display E1.

- Display E1

- Display E2

- Display E3

In MANUAL mode, the number of digits available for output values flash.

DISP key function (when variable parameter PA03 is set to 1)
The DISP key is used to cycle through the displays in the following order: Display F1, Display F2, Display F3, Display F4, Display F1.
When CH 1 and CH 2 are both in the fixed command control mode, the display show the information shown in the figures below. When only one channel is in the fixed command control mode, the displays provide the same information is shown in the program run mode. Note, however, that channel time and remaining cycle count are displayed as [-----].

- Display F1

- Display F2

- Display F3

When used in MANUAL mode, the number of digits available for output values flashes.
Display F4

6-3 Selecting Programs

A total of 49 programs can be selected with the operation keys.

Selecting program numbers

- Press the PROG key in the READY program run mode and basic display status. The program number starts to flash.
- Press the PROG key when the program or segment number starts flashing to cycle through set program numbers when several programs have been set. The segment number is set to 1 .
- Use the \uparrow or \downarrow key when the program number is flashing to select a program number regardless of whether a program has been set or not. The segment number is set to 1 .
- Use the \uparrow or \downarrow key when the segment number is flashing to select a segment number. When no program has been set, only 1 can be selected. When a program has been set, any of the set segments can be selected.
- The message panel displays the program tag when a program or segment number flashes. The 8 -character tag display is off when no program has been set.
- Press the RUN key to start RUN mode operation from the displayed segment number when the program or segment number is flashing.

$!$ Handling Precautions

- Programs cannot be selected during external switch input.
- Selections cannot be made in fixed command control mode, RUN, HOLD, END and READY FAST modes.
- When variable parameter PA04 is set to 0 , separate program numbers can be selected for CH 1 and CH 2 using the keys. When variable parameter PAO4 is set to 1 , only the same program number can be set for CH 1 and CH 2 using the keys.
- When variable parameter PAO4 is set to 1 , the RUN mode can be invoked with the RUN key only when a program with the selected number is set both in CH 1 and CH 2 .

6-4 External Switch Operation

External switch input

A total of 16 external switch inputs are available. Each input is called SW1, SW2, etc. up to SW16. (SW: external switch input)

- Types of external switch inputs

SW1 to 4 and SW9 to 16 are tied.
SW5 to 8 functions are selected using setup data settings $C 71$ to $C 74$.
SW9 to 14 are for program selections. Selections are made by entering BCD code or binary codes in the setup data $C 75$. When two weights are given for an item, the right weight is for binary figures and the left is for $B C D$.

External switch number	Function	Detection way
SW1	RUN	Leading edge
SW2	HOLD	Leading edge
SW3	RESET	Leading edge
SW4	ADV	Leading edge
SW5	Selects one of the following functions using setup settings.	
SW6	RAMP-E	Leading edge
SW7	FAST	Leading edge
SW8	Clears G.SOAK using the OR condition.	Status
	Clears G.SOAK using the AND condition.	Status
	MANUAL/AUTO	Leading/trailing edge
	AT start/stop	Leading/trailing edge
	AUTO Loading (the DCP552A***** model only)	Leading edge
	O_{2} sensor check	Leading edge
SW9	Selects program number, weight 1	Status
SW10	Selects program number, weight 2	Status
SW11	Selects program number, weight 4	Status
SW12	Selects program number, weight 8	Status
SW13	Selects program number, weight 10 or 16	Status
SW14	Selects program number, weight 20 or 32	Status
SW15	CH1 operation canceled	Status
SW16	CH 2 operation canceled	Status

Note

- When G.SOAK is cleared using an OR condition and an external switch is on, or PV enters the G.SOAK width, a G.SOAK wait is cleared.
- When G.SOAK is cleared using an AND condition and an external switch is on and PV enters the G.SOAK width, a G.SOAK wait is cleared.
- The on and off states of SW15 and SW16 determine whether external SW1 to SW14 operations are enabled or disabled. Note, however, that the autoload function and the O_{2} sensor check function cannot be disabled by SW15 and SW16.

SW15	SW16	External switch operation
OFF	OFF	Enabled in both CH 1 and CH 2
ON	OFF	Enabled in CH 2, but disabled in CH 1
OFF	ON	Enabled in CH 1, but disabled in CH 2
ON	ON	Disabled in both CH 1 and CH 2

- The settings of SW15 and 16 determine whether external switch inputs SW1 to SW14 are enabled or disabled. The two-channel synchronous operation setting (parameter PA04) is ignored in the operation of external switches SW1 to SW14. If the program pattern of either channel is not set, RUN operation is not possible unless the unset channel is disabled by SW15 and 16.

Selecting programs

- Programs can be selected using the external switches in the READY program run mode.
- Programs are selected using the external switches and the BCD system or the binary system, and are set in setup data C75. In the BCD system, four switches SW9 to 12 are used to set the one digit and the two switches SW13 to 14 are used to set the ten digit. In the binary system, six switches SW9 to 14 are used to set. Settings made with these systems are shown in the tables below.
- BCD system

BCD system (the one digit)		Status									
External switch number	Weight										
SW9	1	OFF	ON								
SW10	2	OFF	OFF	ON	ON	OFF	OFF	ON	ON	OFF	OFF
SW11	4	OFF	OFF	OFF	OFF	ON	ON	ON	ON	OFF	OFF
SW12	8	OFF	ON	ON							
Number selection		0	1	2	3	4	5	6	7	8	9

BCD system (the ten digit)		Status			
External switch number	Weight				
SW13	10	OFF	ON	OFF	ON
SW14	20	OFF	OFF	ON	ON
Number selection		0	10	20	30

- Binary system

Binary system		Status											
External switch number	Weight												
SW9	1	OFF	ON	OFF	ON	OFF	ON		ON	OFF	ON	OFF	ON
SW10	2	OFF	OFF	ON	ON	OFF	OFF		OFF	ON	ON	OFF	OFF
SW11	4	OFF	OFF	OFF	OFF	ON	ON		ON	ON	ON	OFF	OFF
SW12	8	OFF	OFF	OFF	OFF	OFF	OFF		ON	ON	ON	OFF	OFF
SW13	16	OFF	OFF	OFF	OFF	OFF	OFF		OFF	OFF	OFF	ON	ON
SW14	32	OFF	OFF	OFF	OFF	OFF	OFF		OFF	OFF	OFF	OFF	OFF
Number selection		0	1	2	3	4	5	\cdots	13	14	15	16	17

Binary system		Status							
External switch number	Weight								
SW9	1		ON	OFF	ON		ON	OFF	ON
SW10	2		ON	OFF	OFF		ON	OFF	OFF
SW11	4		ON	OFF	OFF		ON	OFF	OFF
SW12	8		ON	OFF	OFF		ON	OFF	OFF
SW13	16		ON	OFF	OFF		OFF	ON	ON
SW14	32		OFF	ON	ON		ON	ON	ON
Number selection		\cdots	31	32	33	-	47	48	49

! Handling Precautions

- When a program number of 0 is set using the external switch inputs, programs can be selected using the console keys and by transmission.
- Program numbers 1 to 39 can be selected in the BCD system.

Read timing

- SW1 to 8 and 15 to 16 timing

SW1 to 8 and 15 to 16 are read according to the timing in the figure shown below.
(1) When the input changes from OFF to ON, reading starts within less than 0.2 seconds.
(2) When the input changes from ON to OFF, reading starts within less than 0.2 seconds.

- SW9 to 14 and RUN, FAST (READY FAST) timing

Selecting SW9 to 14 program numbers takes less than 0.4 seconds after a change in input status.
Thus the following timings (1) to (4) must be observed during RUN operations. FAST (READY FAST) operations should follow the same timings.
(1) Time from number selection to leading edge of the RUN signal
: 0.4 seconds or more
(2) Time from the leading edge of the RUN signal to number selection hold
: 0.2 seconds or more
(3) Time from RUN signal OFF to leading edge of RUN signal
: 0.2 seconds or more
(4) Time from leading edge of RUN signal to RUN signal ON hold
: 0.2 seconds or more
(5) Time from entry of selected number to program number change
: 0.4 seconds or less
(6) Time from leading edge of RUN signal to start of RUN signal
: 0.4 seconds or less

$!$ Handling Precautions

To ensure correct operation, the above read timings should be regarded as minimum time settings in external switch operations.

6-5 Manual Operation and Auto-Tuning

Manual operation

> When outputs are indicated in the basic display status, only one digit in the output value flashes. Increasing or decreasing the output value using \uparrow and \downarrow keys causes the actual output to change accordingly. Unlike setting registration, there is no need to press the ENTER key.
> Use the \leftarrow and \rightarrow keys to move the flashing digit.
> Setup data C35 is used to select smooth and preset output changes when going from AUTO to MANUAL modes.
> Changes from MANUAL to AUTO are smooth.
> (Note, however, that when the integral time setting for a PID group PID parameter of 0 may cause abrupt changes.)

Auto-tuning (AT)

Set values can automatically be written when using auto-tuning (AT) in the RUN, HOLD, FAST and END modes during AUTO mode operation and PID groups (1 to 9, A1 to A7 or fixed command control) are being used.
In READY AUTO mode, the tuning points of PID parameters $t P-A 1$ to $t P-A 7$ settings can be used as SP to perform auto-tuning of PID groups A 1 to A 7 values. Variable parameter $P A 08(\mathrm{CH} 1)$ and $P A 93(\mathrm{CH} 2)$ allow the following selections:
$0: A T$ is not performed.
1 : A general AT operation of a PID group used in a mode other than READY mode
2 : AT of PID values that do not easily overshoot can be written to a PID group used in a mode other than READY mode.
3 : A standard AT operation is repeatedly performed on PID groups A1 to A7 in READY mode.
4 : Repeated AT of PID values that do not easily overshoot can be written to PID groups A1 to A7 used in READY mode.

- During auto-tuning, program run time stops. Thus the RUN and FAST modes are changed to the HOLD mode.
- Auto-tuning always calculates the excess time and limit sensitivity of thread for two limit cycles and calculates PID values using characteristics equations, then automatically writes the results.
- The setup data C 21 setting (CH 1) and C 22 setting (CH 2) change the upper and lower output limit used during auto-tuning.
A setting of 1,3 or 5 causes the lower output limit to be determined by variable parameter PA09 and the upper output limit to be determined by PA10.
A setting of 2 or 4 , lower output limit is off and the upper output limit is on.
- The point at which output reverses (lower limit \Leftrightarrow upper limit) during autotuning is determined from the SP and PV values at AT startup as follows.

- Auto-tuning performed using a variable parameter $P A 08$ setting of 3 or 4 and a $P A 93$ setting of 3 or 4 cause auto-tuning to be performed on SP, PID parameters $t P-A 1$ to $t P-A 7$, in order.

- Auto-tuning can be started by the AT key, external switch input and by transmission. The AT LED flashes during auto-tuning.
- Auto-tuning terminates without writing PID constants and the AT LED goes off when any of the following conditions occur.
- Operation is terminated by pressing of the AT key.
- Operation is terminated by an external switch input.
- Operation is terminated by transmission.
- Mode change occurs. (When the MANUAL mode is invoked; the READY mode is invoked by setting PA08 and PA93 to 1 or 2, the RUN mode is invoked by setting PA08 and PA93 to 3 or 4 .)
- When PV goes outside the range.

$!$ Handling Precautions

- Auto-tuning is not possible in CH 2 on a model with CP compensation.
- Auto-tuning does not operate normally when the equipment to be controlled is not connected.
- The time required for auto-tuning depends on the equipment controlled.
- When auto-tuning is executed, control is terminated, lower and higher limit outputs are repeated several times and PV fluctuates. When equipment failure may be caused by PID fluctuations, set the PID value manually.
If just PID value can not be got in case of control object, sets PID value with manual.
- Variable parameter PA08 and PA93 settings make values set at the start of auto-tuning valid. A change in the PA08 and PA93 settings made during auto-tuning execution is ignored. The new value is valid in the next auto-tuning operation.

Chapter 7. PARAMETER SETUP

7-1 Parameter Setup

Parameter settings can be changed when the DCP552 is in the normal display mode.
When not in the normal display mode, press the DISP key to invoke it.

Selecting parameter settings groups

In the normal display mode, the keys listed in the table below can be used to select settings groups and individual items in these groups.

Individual items in each settings group are listed below.

Variable parameter	PA01
Event configuration data	E01-t
PID parameters	: P - 1 in READY mode Use P setting in the used PID group in modes othe than READY mode.
Setup data	C01
Constant value control data	:ConSt when using FUNC + PID key $S P$ when using the PID key in constant value control mode

Progression of individual items in parameter settings

The item codes for individual (specific) items are shown on display panel 1, their set values are shown on display panel 2 and their mnemonic codes are shown on the message panel.
Individual items are displayed in the vertical-horizontal matrix shown on page 7-3, with matrix sizes varying according to settings group. The \uparrow key, \downarrow key,\leftarrow key and \rightarrow key are used to cycle through individual items.
The PARA key (valid for variable parameters and event configuration data), PID key (valid for PID parameters and constant value control data) or the SETUP key (valid for setup data) allow you to search for displayable items in ascending order of item number.

Modifying individual items and exiting the setting mode

Pressing the ENTER key while an individual item is displayed causes the set value to flash and enables the registration state. At this point, the \uparrow key and \downarrow key allow you to increase or decrease the values, while the $\leftarrow \mathbf{k e y}$ and \rightarrow key move the digit positions on the display at which the values flash. Pressing the ENTER key after the flashing number has been changed to the desired value stops the flashing, the number reverts to the on state and the new setting is stored in internal memory.
Modification of settings is terminated by pressing either the PARA key (valid for variable parameters and event configuration data), PID key (valid for PID parameters and constant value control data), SETUP key (valid for setup data) or DISP key. Pressing the PARA key, PID key or SETUP key moves the cursor to the next item stops the flashing and the number reverts to its normal on state. Pressing the DISP key enables the normal display mode. Should display panel 2 show "-----" during display of an individual item or pressing the ENTER key not enable the registration state, it means that settings cannot be made or modified for that item.

$!$ Handling Precautions

- When PA01 is set to more than 1 in a variable parameter setting, PA03 and items beyond are not displayed. PA03 and items beyond cannot be changed when PA02 is set to 1 or more.
- Event configuration data settings cannot be changed when PAO2 is set to a value more than 1. Also, when PA02 is set to 0 or 1 , the event type setting and some auxiliary settings (output points of code events) cannot be changed.
- PID parameter settings cannot be changed when PA02 is set to 4 or 5 .
- Setup data settings cannot be changed when PAO2 is set to a value more than 1 and cannot be displayed in modes other than the READY mode.
- The fixed control data setting cannot be changed when PA02 is set to 4 or 5. And, since the FUNC and PID keys are invalid in modes other than the READY mode, a ConSt setting cannot be displayed or changed.
- Example of individual item matrix (setup data)

* : The ENTER key stores set values in memory.
**: The ENTER, PID or SETUP keys do not store set values in memory.

7-2 Parameter Setting List

Note

"PVU (PV1)", "PVU (PV2), "SPU (CH1)" and "SPU (CH2)" used in the "Factory Default Settings" and "User Settings" columns in the lists on the following pages have the following meaning.

PVU (PV1): When the PV1 range type (setup data setting C01) is a thermocouple or resistance temperature detector, the PV1 decimal point position (setup data setting CO3) causes the decimal point position to change.
When the PV range type is linear, the PV1 linear decimal point position (setup data setting C04) causes the decimal point position to change.
For example, in a decimal point position of 1 , -19999 PVU (PV1) becomes -19999.9 and +20000 PVU (PV1) becomes +2000.0 .

PVU (PV2): Like PVU (PV1), a PV2 range type (setup data setting C11), a PV2 decimal point position (setup data setting $C 13$) and a PV2 linear decimal point position (setup data setting C14) causes the decimal point position to change.
$\mathrm{SPU}(\mathrm{CH} 1)$: The SPU decimal point position (setup data setting $C 65$) causes the decimal point position to change.
For example a decimal point position of 2,
-19999 SPU becomes -199.99 and +20000 SPU becomes +200.00 .
$\mathrm{SPU}(\mathrm{CH} 2)$: The SPU decimal point position (setup data setting $C 68$) causes the decimal point position to change.

Variable parameter setting

No.	Item code	Item	Factory default settings	$\begin{gathered} \text { User } \\ \text { settings } \end{gathered}$	Settings and descriptions
1	PA 01	Keylock	0		0: Keylock disabled 1: Display of setup data settings disabled 2: Display of all settings disabled 3: Display of all settings disabled. Operation keys disabled [Description:] PA01 can be displayed and changed regardless of PA01 and PA02 settings.
2	PA 02	Memory protect	0		0: Disabled 1: Program settings are protected 2: Setup, variable parameters and event configurations are protected. 3: Setup, variable parameters and event configurations are protected. 4: Setup, variable parameters and event configurations are protected. 5: Program settings and all parameter settings are protected. [Description:] PA02 can be displayed and changed regardless of PA01 and PA02 settings.
3	PA 03	Display channel setting	0		0: 2 items are displayed for the selected CH 1: Simultaneous 2CH display of the same item
4	PA 04	Synchronous 2 channel operation	1		0: asynchronous 1: synchronous
5	PA 05	Program auto load *	0		$\begin{aligned} & \text { 1: ON } \\ & \text { 2: OFF } \end{aligned}$
6	PA 06	Unused	-		[Description
7	PA 07	Unused	-		"-----"is displayed and setting is not possible.
8	PA 08	Auto-tuning (CH1)	0		0: AT not performed 1: Standard AT performed on currently used PID group in mode other than READY mode. 2: AT writing overshoot-proof PID values to currently used PID groups in mode other than READY mode performed. 3: Standard AT performed on PID groups A1 to A7 in READY mode. 4: AT writing overshoot-proof PID values to PID groups A1 to A7 in READY mode continuously performed.
9	PA 09	Auto-tuning MV lower limit (CH1)	0.0		-5.0 to upper limit \% [Description:] Valid when setup data C21 setting is set to 1, 3, 5 .
10	PA 10	Auto-tuning MV upper limit (CH1)	100.0		Lower limit to +105\% [Description:] Valid when setup data $C 21$ setting is set to $1,3,5$.
11	PA 11	SP bias (CH1)	0 SPU		-10000 to +10000 SPU (CH1)
12	PA 12	PV digital filter (CH1)	0.0		0.0 to 120.0 sec
13	PA 13	PV bias (CH1)	0 PVU		-1000 to +1000 PVU (PV1)
14	PA 14	Manipulated variable deviation limit (CH1)	110.0		0.1 to 110.0\% OUT/0.1sec
15	PA 15	Time proportional output cycle (CH1)	10		1 to 240sec
16	PA 16	On-off control differential (CH1)	50 SPU		0 to +1000 SPU (CH1)
17	PA 17	PID computation initialize manipulated variable (CH1)	0.0		-5.0 to +105.0\%
18	PA 18	Unused	-----		[Description:] "-----"is displayed and setting is not possible.
19	PA 19	Unused	-----		
20	PA 20	Unused	-----		
21	PA 21	SP bias (CH2)	0 SPU		-10000 to +10000 SPU (CH2)
22	PA 22	PV digital filter (CH2)	0.0		0.0 to 120.0 sec
23	PA 23	PV bias (CH2)	0 PVU		-1000 to +1000 PVU (PV2)

[^0]| No. | Item code | Item | Factory default settings | User settings | Settings and descriptions |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 24 | PA 24 | Manipulated variable deviation limit (CH2) | 110.0 | | 0.1 to 110.0\% OUT/0.1 sec |
| 25 | PA 25 | Time proportional output cycle (CH2) | 10 | | 1 to 240 sec |
| 26 | PA 26 | ON-OFF control Differential (CH2) | 50 | | 0 to 1000 SPU (CH2) |
| 27 | PA 27 | PID computation initialize manipulated variable (CH 2) | 0.0 | | -5.0 to 105.0\% |
| 28 | PA 28 | Unused | ----- | | [Description:] |
| 29 | PA 29 | Unused | ----- | | |
| 30 | PA 30 | Unused | ----- | | |
| 31 | PA 31 | Event on delay Group 1 event number | 0 | | 0 to 16
 [Description:]
 A setting of 0 generates no delay. |
| 32 | PA 32 | Event on delay Group 1 delay time | 0.0 | | 0.0 to 3000.0 sec
 [Description:]
 When PA31 is set to 0, "-.-.." is displayed and setting is not possible. |
| 33 | PA 33 | Event on delay Group 2 event number | 0 | | 0 to 16
 [Description:]
 A setting of 0 generates no delay. |
| 34 | PA 34 | Event on delay Group 2 delay time | 0.0 | | 0.0 to 3000.0 sec
 [Description:]
 When PA33 is set to 0, "....." is displayed and setting is not possible. |
| 35 | PA 35 | Event on delay Group 3 event number | 0 | | 0 to 16
 [Description:]
 A setting of 0 generates no delay. |
| 36 | PA 36 | Event on delay Group 3 delay time | 0.0 | | $\begin{aligned} & 0.0 \text { to } 3000.0 \mathrm{sec} \\ & \text { [Description:] } \\ & \text { When PA35 is set to } 0 \text {, "-....-" is displayed and setting is not possible. } \end{aligned}$ |
| 37 | PA 37 | Event on delay Group 4 event number | 0 | | 0 to 16
 [Description:]
 A setting of 0 generates no delay. |
| 38 | PA 38 | Event on delay Group 4 delay time | 0.0 | | 0.0 to 3000.0 sec
 [Description:]
 When PA37 is set to 0, ".-.-." is displayed and setting is not possible. |
| 39 | PA 39 | FAST X | 0 | | ```0: 2X 1: 10X 2: 60X 3: 120X [Description:] When setup data C62 is set to 1 (program time unit: minutes, seconds), settings 3 and 4 produce a speed of 10 X . When C62 is set to 2 (program time unit: 0.1 sec), the FAST mode is not available.``` |
| 40 | PA 40 | CP computation temperature compensation | 0 | | $\begin{aligned} & -1000 \text { to +1000 PVU (CH1) } \\ & \text { [Description:] } \\ & \text { "----" is displayed for models without CP compensation } \\ & \text { and setting can not be performed. } \end{aligned}$ |
| 41 | PA 41 | Unused | 0 | | [Description:]
 "-----"is displayed and setting is not possible. |
| 42 | PA 42 | Unused | 0 | | |
| 43 | PA 43 | PID computation initialize (CH1) | 0 | | 0 : No initialization during advance processing and PID group change.
 1: Initializes during advance processing but not during PID group change.
 2: No initialization during advance processing but initializes during PID group change
 3: Initializes both during advance processing and PID group change |
| 44 | PA 44 | PV2 message display mode | 0 | | 0 : CP or PO_{2} value display
 1: mV value display
 2: O_{2} sensor impedance value display |
| 45 | PA 45 | G.SOAK time (CH1) | 2.0 | | 0.1 to 60.0 sec |
| 46 | PA 46 | G.SOAK time (CH2) | 2.0 | | 0.1 to 60.0 sec |

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
47	PA 47	Unused	----		[Description:] "-----" is displayed and setting can not be performed.
48	PA 48	Unused	----		
49	PA 49	Unused	----		
50	PA 50	Unused	----		
51	PA 51	PV1 equalizer compensation point No. 1	Range lower limit value		Compensation point No. 1 : PV1 range lower limit value (tied) Compensation points No. 2 to 9 : -19999 to +20000 PVU (PV1) Compensation point No. 10 : PV1 range upper limit value (tied) Compensation amount No. 1 to 10: -1000 to +1000 PVU (PV1) [Description:] When setup data $C 30$ is set to 0,2 , "-----" is displayed and setting is not possible. Compensation point No. 1 and No. 10 are automatically changed during a PV1 range change.
52	PA 52	PV1 equalizer compensation amount No. 1	0 PVU		
53	PA 53	PV1 equalizer compensation point No. 2	500 PVU		
54	PA 54	PV1 equalizer compensation amount N. 2	0 PVU		
55	PA 55	PV1 equalizer compensation point No.	1000 PVU		
56	PA 56	PV1 equalizer compensation amount №. 3	0 PVU		
57	PA 57	PV1 equalizer compensation point N 0.4	1500 PVU		
58	PA 58	PV1 equalizer compensation amount №. 4	0 PVU		
59	PA 59	PV1 equalizer compensation point №. 5	2000 PVU		
60	PA 60	PV1 equalizer compensation amount No. 5	0 PVU		
61	PA 61	PV1 equalizer compensation point №. 6	2500 PVU		
62	PA 62	PV1 equalizer compensation amount No. 6	0 PVU		
63	PA 63	PV1 equalizer compensation point N 0.7	3000 PVU		
64	PA 64	PV1 equalizer compensation amount №. 7	0 PVU		
65	PA 65	PV1 equalizer compensation point No. 8	3500 PVU		
66	PA 66	PV1 equalizer compensation amount №. 8	0 PVU		
67	PA 67	PV1 equalizer compensation point N 0.9	4000 PVU		
68	PA 68	PV1 equalizer compensation amount N. 9	0 PVU		
69	PA 69	PV1 equalizer compensation point N . 10	Range upper limit value		
70	PA 70	PV1 equalizer compensation amount No. 10	0 PVU		
71	PA 71	PV2 equalizer compensation point No.	Range lower limit value		Compensation point No. $1 \quad:$ PV2 range lower limit value (tied)Compensation points No. 2 to $9 \quad:-19999$ to +20000 PVU (PV2)Compensation point No. $10 \quad: \mathrm{PV} 2$ range upper limit value (tied)Compensation amount No. 1 to $10:-1000$ to +1000 PVU (PV2)[Description:]When setup data C30 is set to 0,1 , "-----" is displayedand setting is not possible.Compensation point No. 1 and No. 10 are automaticallychanged during a PV2 range change.
72	PA 72	PV2 equalizer compensation amount №. 1	0 PVU		
73	PA 73	PV2 equalizer compensation point No . 2	500 PVU		
74	PA 74	PV2 equalizer compensation amount №. 2	0 PVU		
75	PA 75	PV2 equalizer compensation point No. 3	1000 PVU		
76	PA 76	PV2 equalizer compensation amount №. 3	0 PVU		
77	PA 77	PV2 equalizer compensation point No. 4	1500 PVU		
78	PA 78	PV2 equalizer compensation amount №. 4	0 PVU		
79	PA 79	PV2 equalizer compensation point No. 5	2000 PVU		
80	PA 80	PV2 equalizer compensation amount N. 5	0 PVU		
81	PA 81	PV2 equalizer compensation point No. 6	2500 PVU		
82	PA 82	PV2 equalizer compensation amount No. 6	0 PVU		
83	PA 83	PV2 equalizer compensation point N 0.7	3000 PVU		
84	PA 84	PV2 equalizer compensation amount №. 7	0 PVU		
85	PA 85	PV2 equalizer compensation point N 0.8	3500 PVU		
86	PA 86	PV2 equalizer compensation amount N 0.8	0 PVU		
87	PA 87	PV2 equalizer compensation point N 0.9	4000 PVU		
88	PA 88	PV2 equalizer compensation amount №. 9	0 PVU		
89	PA 89	PV2 equalizer compensation point N . 10	4500 PVU		
90	PA 90	PV2 equalizer compensation amount No. 10	0 PVU		
91	PA 91	Unused	-----		[Description:] "-----"is displayed and setting is not possible.
92	PA 92	Unused	-----		

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
93	PA 93	Auto-tuning (CH2)	0		0: AT not performed 1: standard AT performed on currently used PID group in mode other than READY mode. 2: AT writing overshoot-proof PID values to currently used PID groups in mode other than READY mode performed. 3: Standard AT performed on PID groups A1 to A7 in READY mode. 4: AT writing overshoot-proof PID values to PID groups A1 to A7 in READY mode continuously performed. [Description:] "--...." is displayed for models with CP compensation and setting is not possible.
94	PA 94	Auto-tuning MV lower limit (CH2)	0.0		```-5.0 to upper limit % [Description:] "-...." is displayed for models with CP compensation and setting is not possible. Valid when setup data C22 setting is set to 1,3 or 5.```
95	PA 95	Auto-tuning MV upper limit (CH2)	100.0		Lower limit to +105\% [Description:] "-...." is displayed for models with CP compensation and setting is not possible. Valid when setup data C22 setting is set to 1,3 or 5 .
96	PA 96	PID computation initialize (CH2)	0		0 : No initialization during advance processing and PID group change 1: Initializes during advance processing but not during PID group change 2: No initialization during advance processing but initializes during PID group change 3: Initializes both during advance processing and PID group change
97	PA 97	CP computation compensation	0		0: No compensation 1: compensates [Description:] "--..." is displayed for models without CP compensation and setting is not possible.
98	PA 98	CP value (PV) display lower limit value	0.000		0 to upper limit SPU (CH2) [Description:] "-...." is displayed for models without CP compensation and setting is not possible.
99	PA 99	CP value (PV) display upper limit value	4.000		lower limit to 4000 SPU (CH2) [Description:] ".-...." is displayed for models without CP compensation and setting is not possible.
100	PA 100	Gas constant	23.5		$\begin{aligned} & 10.0 \text { to } 50.0 \% \\ & \text { [Description:] } \\ & \text { "--.." is displayed for models without CP compensation and setting is not possible. } \end{aligned}$
101	PA 101	CP computaion compensation No. 1 compensation point	0.000		No. 1 compensation point : 0 SPU (CH2) (tied)
102	PA 102	CP compuation compensation No. 1 compensation amount	0.000		No. 2 to 9 compensation point : 0 to +2000 SPU (CH2) NO. 10 compensation point : 2000 SPU (CH2) (tied)
103	PA 103	CP computaion compensation No. 2 compensation point	0.200		NO. 1 to 10 compensation amount ${ }^{\text {a }}$-1000 to +1000 SPU
104	PA 104	CP compuation compensation No. 2 compensation amount	0.000		[Description:]
105	PA 105	CP compulation compensation N O 3 compensation point	0.400		\qquad " is displayed for models without CP compensation and setting is not possible.
106	PA 106	CP compuation compensation No. 3 compensation amount	0.000		-"-----" is displayed when PA97 is set to 0 and setting i
107	PA 107	CP computaion compensation No. 4 compensation point	0.600		
108	PA 108	CP compuation compensation No. 4 compensation amount	0.000		
109	PA 109	CP compulation compensation No. 5 compensation point	0.800		
110	PA 110	CP compuation compensation No. 5 compensation amount	0.000		
111	PA 111	CP compulation compensation No. 6 compensation point	1.000		
112	PA 112	CP compuation compensation No. 6 compensation amount	0.000		
113	PA 113	CP computation compensation No. 7 compensation point	1.200		
114	PA 114	CP compuation compensation No. 7 compensation amount	0.000		
115	PA 115	CP computaion compensation No. 8 compensation point	1.400		
116	PA 116	CP compuation compensation No. 8 compensation amount	0.000		
117	PA 117	CP computaion compensation No. 9 compensation point	1.600		
118	PA 118	CP computaion compensation No. 9 compensation amunt	0.000		
119	PA 119	CP computaion compensation N .10 compensation point	2.000		
120	PA 120	CP compuation compensation No. 110 compensation amount	0.000		

- Detailed information on variable parameters

- PA01 (keylock)

0 : keylock disabled
1: display of setup data setting disabled
2: display of all settings disabled
3: display of all settings disabled. Operation keys disabled

- The following keys are disabled when $P A 01$ is set to 1 . Normal display mode:

```
SETUP key (setup data setting)
FUNC + CLR + MESSAGE keys (general reset)
```

- The following keys are disabled when PAO1 is set to 2 . Normal display mode:

SETUP key	(setup data setting)
FUNC + CLR + MESSAGE keys	(general reset)
FUNC + PARA keys	(event configuration data setting)
PID key	(PID parameter setting/constant value
	control data setting)
FUNC + PID keys	(constant value control data setting)
FUNC + PROG keys	(program setting)
\uparrow + PROG keys	(program copy)
LOAD key	(memory card load)
SAVE key	(memory card save)

- The following keys are disabled when PAO1 is set to 3 or to 2 .

Normal display mode:

FUNC + DISP key	(display channel switching)
PROG key	(program selection)
RUN/HOLD key	(RUN operation/HOLD operation)
PROG + RUN/HOLD keys	(RESET operation)
PROG + DISP keys	(ADV operation)
FUNC $+\rightarrow$ keys	(FAST operation)
A/M key	(AUTO operation/MANUAL operation)
AT key	(AT start, AT cancel)

Note, however, that in the normal display mode in MANUAL mode MV can be changed.

- PAO2 (memory protect)

0 : disabled
1 : program settings are protected
2 : setup, variable parameters and event configuration settings are protected
3 : setup, variable parameters, event configuration settings and program settings are protected
4 : setup, variable parameters, event configuration settings and PID parameter settings are protected
5 : program settings and all parameter settings are protected
-When PAO2 is set to $\neq 0$ (protect on), a general reset is not possible.

- When program settings are protected, it is not possible to copy programs or load programs from a memory card.
- When PID parameters are protected, constant value control data is also protected.
- When settings are protected by setup data, variable parameters, event configurations and PID parameters, they cannot be loaded from a memory card.

- PA04 (2-channel synchronous operation)

0 : asynchronous
1 : synchronous

- If the PA04 setting is 0 , mode transitions and program selection by key operation are possible only on the one channel indicated by the EG1/EG2 LED.
- If the PA04 setting is 1 , mode transitions and program selection by key operation are possible on both channels at the same time. If a program pattern is set for only one channel, changeover from READY to RUN cannot be done by key operation.
- The PA04 setting does not affect external switch operation. For details, see "External switch input" on page 6-13.

- PA05 (program autoload)

0 : OFF
1 : ON

- This function is available on the DCP552A***** model only.
- When PA05 is set to 1 and a memory card is inserted and press LOAD key, display panel 1 shows "AUtO", display panel 2 shows "LOAd" and program file No. 1 is read to program No. 1 in the DCP552. This operation is called "program autoload".
- A load operation other than a program autoload that is started using the LOAD key can only be performed when PA05 is set to 0 .
- A program autoload using the external switches can be performed when PA05 is set to 0 or 1 .
- PA14 (manipulated variable deviation rate limit)

- PA24 (manipulated variable deviation rate limit)

When output deviation (\%) after a PID computation is larger than the set limit value, the controller limits the output deviation both of the increase or decrease to the set value.
The following example shows the actual deviation change when the deviation limit is set to 0.5% and the manipulated variable changes from 20% to 22%. When the set value is 0.5% per 0.1 sec , the output becomes 22% after 0.4 sec .

- PA16 (ON-OFF control differential)

- PA26 (ON-OFF control differential)

When the PID group number is set to ON-OFF or P is set to 0.0, ON-OFF control is on and a value for the differential between the two operations is set.

- PA17 (PID computation initialize manipulated variable)
- PA27 (PID computation initialize manipulated variable)

Under the conditions listed below, a PID computation starts using the value set in PA17.

- When there is a mode change from READY AUTO to RUN AUTO.
- When the controller is powered up in RUN (or HOLD, FAST, END) AUTO mode.
- When auto-tuning ends.

Since the PV, SP and PID parameters affect a PID computation, the first manipulated variable of a PID computation may not be the same as the value set in PA17 and PA27.

- PA31 to PA38 (event on delay groups 1 to 4, event/delay time)
- On delay can be performed on up to 4 events.
- PA31, PA33, PA35 and PA37 determine which events are to be processed.
- In a code event involving several event outputs, event on delay has to be set separately for each output.
- All processes including event output standby on/off are processed before on delay processing. When the event output ON condition remains on for longer than the on delay time, the event output stays on.
- This is shown in the diagram below.

- PA43 (PID computation initialize)
- PA96 (PID computation initialize)

When SP changes abruptly due to ADV, the derivative action of a PID computation, may cause an excessive change in the manipulated variable of the computation.
For this reason, the initialization of a PID computation is performed to suppress an excessive change.
But the initialization of a PID computation means that PID computation continuity is lost which may affect operating conditions. PA43 and PA96 settings allow the user to turn on or off initialization and determine its conditions.

Event configuration data settings

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	E01-t	Event 1 event type	0		The event type setting of each event determines whether auxiliary setting 1 or auxiliary setting 2 is on or off, their meaning, unit and range. For details, see © Settings by event type on the following pages.
2	E01-1	Event 1 auxiliary setting 1	----		
3	E01-2	Event 1 auxiliary setting 2	----		
4	E02-t	Event 2 event type	0		
5	E02-1	Event 2 auxiliary setting 1	----		
6	E02-2	Event 2 auxiliary setting 2	----		
7	E03-t	Event 3 event type	0		
8	E03-1	Event 3 auxiliary setting 1	----		
9	E03-2	Event 3 auxiliary setting 2	----		
10	E04-t	Event 4 event type	0		
11	E04-1	Event 4 auxiliary setting 1	----		
12	E04-2	Event 4 auxiliary setting 2	----		
13	E05-t	Event 5 event type	0		
14	E05-1	Event 5 auxiliary setting 1	----		
15	E05-2	Event 5 auxiliary setting 2	----		
16	E06-t	Event 6 event type	0		
17	E06-2	Event 6 auxiliary setting 1	----		
18	E06-3	Event 6 auxiliary setting 2	----		
19	E07-t	Event 7 event type	0		
20	E07-1	Event 7 auxiliary setting 1	----		
21	E07-2	Event 7 auxiliary setting 2	----		
22	E08-t	Event 8 event type	0		
23	E08-1	Event 8 auxiliary setting 1	----		
24	E08-2	Event 8 auxiliary setting 2	----		
25	E09-t	Event 9 event type	0		
26	E09-1	Event 9 auxiliary setting 1	----		
27	E09-2	Event 9 auxiliary setting 2	----		
28	E10-t	Event 10 event type	0		
29	E10-1	Event 10 auxiliary setting 1	----		
30	E10-2	Event 10 auxiliary setting 2	----		
31	E11-t	Event 11 event type	0		
32	E11-1	Event 11 auxiliary setting 1	----		
33	E11-2	Event 11 auxiliary setting 2	----		
34	E12-t	Event 12 event type	0		
35	E12-1	Event 12 auxiliary setting 1	----		
36	E12-2	Event 12 auxiliary setting 2	----		
37	E13-t	Event 13 event type	0		
38	E13-1	Event 13 auxiliary setting 1	----		
39	E13-2	Event 13 auxiliary setting 2	----		
40	E14-t	Event 14 event type	0		
41	E14-1	Event 14 auxiliary setting 1	----		
42	E14-2	Event 14 auxiliary setting 2	----		
43	E15-t	Event 15 event type	0		
44	E15-1	Event 15 auxiliary setting 1	----		
45	E15-2	Event 15 auxiliary setting 2	----		
46	E16-t	Event 16 event type	0		
47	E16-1	Event 16 auxiliary setting 1	--		
48	E16-2	Event 16 auxiliary setting 2	----		

- Settings by event type

For information on event operations, see " \square Events" (pages 5-5 to 5-14).

Event type	0	1	2	3
Meaning Message	Event off OFF	Time event TIME	PV upper limit PV-H	PV lower limit PV-L
Range of auxiliary setting 1 Message	Unused	Unused	Hysteresis 0 to 100 SPU hysteresis	Hysteresis 0 to o 1000 SPU hysteresis
Range of auxiliary setting 2 Message	Unused	Unused	Unused	
Setting category Operation category	-	-	Segment type Time type	Segment type PV type

Event type	4	5	6	7
Meaning Message	Upper deviation limit DEV-H	Lower deviation limitt DEV-L	Deviation rate upper limit wait DEV-H-W	Deviation lower limit with standby DEV-L-W
Range of auxiliary setting 1 Message	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Segment type PV type			

Event type	8	9	10	11
Meaning Message	Absolute value deviation upper limit A-DEV-H	Absolute value deviation lower limit A-DEV-L	Absolute value deviation rate upper limit with standby A-DEV-H-W	Absolute value deviation lower limit with standby A-DEV-L-W
Range of auxiliary setting 1 Message	Hysteresis 0 to 1000 SPU hysteresis			
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Segment type PV type			

Event type	12	13	14	15
Meaning Message	PV deviation rate upper limit D-PV-H	PV deviation rate lower limit D-PV-L	SP upper limit SP-H	SP lower limit SP-L
Range of auxiliary setting 1 Message	Sampling cycle 0.1 to 600.0sec sampling rate	Sampling cycle 0.1 to 60.0 Sec sampling rate	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Segment type PV type			

Event type	16	17	18	19
Meaning Message	MV upper limit MV-H	MV lower limit MV-L	Code event CODE	SOAK absolute value deviation upper limit S-A-DEV-H
Range of auxiliary setting 1 Message	Hysteresis 0.0 to 100.0% hysteresis	Hysteresis 0.0 to 100.0% hysteresis	Number of output points 1 to $8 * 1$ channels	Hysteresis 0 to 1000 SPU hysteresis
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Segment type PV type	Segment type PV type	Segment type Code type	Segment type PV type

*1: Code event auxiliary setting 1 (number of output points) can be changed only in the READY mode.

Event type	20	21	22	23
Meaning Message	SOAK absolute value deviation lower limit S-A-DEV-L	SOAK absolute value deviation upper limit with standby S-A-DEV-H-W	SOAK absolute value deviation lower limit with standby S-A-DEV-L-W	Timer code event T-CODE
Range of auxiliary setting 1 Message	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Number of output points 1 to $8 ~^{2}$ channels
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Segment type PV type	Segment type PV type	Segment type PV type	Segment type Time type, code type

*2: Auxiliary setting 1 (number of output points) can be changed only in the READY mode.

Event type	24 to 63	64	65	66
Meaning Message	Event off OFF	Normal PV1 upper limit operation PV1-H	Normal PV1 lower limit operation PV1-L	Normal PV2 upper limit operation PV2-H
Range of auxiliary setting 1 Message	Unused	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis
Range of auxiliary setting 2 Message	Unused	Operating point -19999 to +20000 SPU set point	Operating point -19999 to +20000 SPU set point	Operating point -19999 to +20000 SPU set point
Setting category Operation category	-	Instrument type PV type	Instrument type PV type	Instrument type PV type

Event type	67	68	69	70
Meaning Message	Normal PV2 upper limit operation PV2-L	PV upper limit PV-H	PV lower limit PV-L	Deviation upper limit DEV-H
Range of auxiliary setting 1 Message	Hysteresis 0 to 1000 SPU hysteresis			
Range of auxiliary setting 2 Message	$\begin{aligned} & \text { Operating pointt } \\ & -19999 \text { to }+20000 \text { SPU } \\ & \text { set point } \end{aligned}$	$\begin{aligned} & \text { Operating point } \\ & -19999 \text { to }+20000 \mathrm{SPU} \\ & \text { set point } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Operating point } \\ & -19999 \text { to }+20000 \text { SPU } \\ & \text { set point } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Operating point } \\ & -19999 \text { to }+20000 \text { SPU } \\ & \text { set point } \\ & \hline \end{aligned}$
Setting category Operation category	Instrument type PV type			

Event type	71	72	73	74
Meaning Message	Deviation lower limit DEV-L	Deviation upper limit wait DEV-H-W	Deviation lower limit wait DEV-L-W	Absolute value deviation upper limit A-DEV-H
Range of auxiliary setting 1 Message	Hysteresis 0 to 1000 SPU hysteresis			
Range of auxiliary setting 2 Message	$\begin{array}{\|l} \hline \begin{array}{l} \text { Operating point } \\ \text {-19999 to }+20000 ~ S P U ~ \\ \text { set point } \end{array} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \begin{array}{l} \text { Operating point } \\ \text {-19999 to }+20000 \text { SPU } \\ \text { set point } \end{array} \\ \hline \end{array}$	$\begin{aligned} & \text { Operating point } \\ & \text {-19999 to }+20000 \text { SPU } \\ & \text { set point } \end{aligned}$	Operating point 0 to 20000 SPU set point
Setting category Operation category	$\begin{aligned} & \text { Instrument type } \\ & \text { PV type } \end{aligned}$	$\begin{aligned} & \text { Instrument type } \\ & \text { PV type } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Instrument type } \\ & \text { PV type } \end{aligned}$	Instrument type PV type

Event type	75	76	77	78
Meaning Message	Absolute value deviation lower limit A-DEV-L	Absolute value deviation upper limit with standby A-DEV-H-W	Absolute value deviation lower limit with standby A-DEV-L-W	PV deviation rate upper limit D-PV-H
Range of auxiliary setting 1 Message	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Sampling cycle 0.1 to 600.0 sec sampling rate
Range of auxiliary setting 2 Message	Operating point 0 to 20000 SPU set point	Operating point 0 to 20000 SPU set point	Operating point 0 to 20000 SPU set point	Operating point -19999 to +20000 SPU set point
Setting category Operation category	Instrument type PV type			

Event type	79	80	81	82
Meaning	PV deviation rate lower limit D-PV-L	SP upper limit SP-H	SP lower limit SP-L	MV upper limit MV-H
Ressage				

Event type	83	84	85	86
Meaning Message	MV lower limit MV-L	SOAK absolute value deviation upper limitt S-A-DEV-H	SOAK absolute value deviation lower limit S-A-DEV-L	SOAK absolute value deviation upper limit with standby S-A-DEV-H-W
Range of auxiliary setting 1 Message	Hysteresis 0.0 to 100.0% hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis	Hysteresis 0 to 1000 SPU hysteresis
Range of auxiliary setting 2 Message	Operating point -5.0 to $+105.0 \%$ set point	Operating point 0 to 20000 SPU set point	Operating point 0 to 20000 SPU set point	Operating point 0 to 20000 SPU set point
Setting category Operation category	Instrument type PV type PV type	$\begin{array}{\|l} \text { Instrument type } \\ \text { PV type } \end{array}$	$\begin{array}{\|l} \text { Instrument type } \\ \text { PV type } \end{array}$	Instrument type PV type

Event type	87	88	89	90
Meaning Message	SOAK absolute value deviation lower limit with stanby S-A-DEV-L-W	Program number binary code PROGG-BIN	Segment number binary code SEG-BIN	Program number BCD code PROG-BCD
Range of auxiliary setting 1 Message	Hysteresis 0 to 1000 SPU hysteresis	Number of output points 1 to 7 channels	Number of output points 1 to 7 channels	Number of output points 1 to 8 channels
Range of auxiliary setting 2 Message	Operating point 0 to 20000 SPU set point	Unused	Unused	Unused
Setting category Operation category	Instrument type PV type	Instrument type Code type	Instrument type Code type	Instrument type Code type

Event type	91	92	93	94
Meaning Message	Segment number BCD code SEG-BCD	Special segment SEG SEQUENCE	RAMP-E time monitoring RAMP-E TIME OUT	Segment time SEG TIME
Range of auxiliary setting 1 Message	Number of output points 1 to 8 channels	$\begin{array}{\|l} \hline \text { Segment specification } \\ -2 \text { to }+2 \text { *1 } \\ \text { segment } \\ \hline \end{array}$	Operating point 0.0 to $3000.0 \mathrm{sec}{ }^{*} 2$ time out	On Time 0:00 to 500:00 *3 on-time
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Off Time 0:00 to 500:00 *3 off-time
Setting category Operation category	Instrument type Code type	Instrument type Mode type	Instrument type Time type	Instrument type Time type
Event type	95	96 to 127	128	129
Meaning Message	Program time PROG TIME	Event off OFF	RUN, HOLD, END, FAST RUN, HOLD, END, FAST	$\begin{aligned} & \text { HOLD } \\ & \text { HOLD } \\ & \hline \end{aligned}$
Range of auxiliary setting 1 Message	On Time $0 ; 00$ to $500 ; 00$ * 3 on-time	Unused	Conditions assessed for each channel 0: only assigned channel 1: OR condition for both channels 2: AND conditions for both channels	Conditions assessed for each channel 0 : only assigned channel 1: OR condition for both channels 2: AND conditions for both channels
Range of auxiliary setting 2 Message	Off Time 0:00 to 500:00 * off-time	Unused	Unused	Unused
Setting category Operation category	Instrument type Time type	-	Instrument type Mode type	Instrument type Mode type

*1: The meaning of auxiliary setting 1 for special segment is shown below.
-2 : Two segments before the final segment
1: First segment
-1 : One segment before the final segment
2: Second segment
0 : Final segment
*2: When auxiliary setting 1 of RAMP-E time monitoring is set to 0.0 sec, event output is off.
*3: Auxiliary setting 1 and auxiliary setting 2 of segment time and program time that determine display unit and range of segment are set by setup data $C 62$ settings as follows.
When $C 62$ is set to $0: 0$ hours 00 min to 500 hours 00 min
When C62 is set to 1:0 min 00 sec to 500 min 00 sec
When $C 62$ is set to $2: 0.0 \mathrm{sec}$ to 3000.0 sec

Event type	130	131	132	133
Meaning Message	READY, READY FAST, READY, READY FAST	END END	G.SOAK wait G.SOAK	MANUAL MANUAL
Range of auxiliary setting 1 Message	Conditions assessed for each channel 0: only assigned channel 1: OR condition for both channels 2: AND conditions for both channels	Conditions assessed for each channel 0: only assigned channel 1: OR condition for both channels 2: AND conditions for both channels	Conditions assessed for each channel 0: only assigned channel 1: OR condition for both channels 2: AND conditions for both channels	Conditions assessed for each channel 0: only assigned channel 1: OR condition for both channels 2: AND conditions for both channels
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Instrument type Mode type			

Event type	134	135	136	137
Meaning Message	AT executing AT	FAST, READY FAST FAST, READY FAST	Console settings are being made CONSOLE	RUN RUN
Range of auxiliary setting 1 Message	Conditions assessed for each channel 0 : only assigned channel 1: OR condition for both channels 2: AND conditions for both channels	Conditions assessed for each channel 0: only assigned channel 1: OR condition for both channels 2: AND conditions for both channels	Unused	Conditions assessed for each channel 0 : only assigned channel 1: OR condition for both channels 2: AND conditions for both channels
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Instrument type Mode type			
Event type	138	139	140	141
Meaning Message	Advance ADV	All alarm (logical OR) ALL ALARMS	PV range alarm PV ALARMS	Instrument alarm DCP ALARMS
Range of auxiliary setting 1 Message	Conditions assessed for each channel 0 : only assigned channel 1: OR condition for both channels 2: AND conditions for both channels	Unused	Unused	Unused
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Instrument type Mode type			
Event type	142	143	144	145 to 253
Meaning Message	O_{2} sensor error SENSOR CHECK	Event off OFF	Battery voltage drop BATTERY LOW	Event off OFF
Range of auxiliary setting 1 Message	Unused	Unused	Unused	Unused
Range of auxiliary setting 2 Message	Unused	Unused	Unused	Unused
Setting category Operation category	Instrument type Mode type	$-$	Instrument type Mode type	$-$

PID parameter (CH1) setting

No.	Item code		\quad Item	Factory default settings	User settings

No.	Item code	Item		Factory default settings	User settings

PID parameter (CH2) setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	$P-1$	Proportional band (PID group 1)	100.0		P: 0.0 to 1000.0% ON-OFF control when set to 0.0 I : 0 to 3600 sec No integral operation when set to 0 d : 0 to 1200 sec No derivative operation when set to 0 $r E: 0.0$ to 100.0% oL : -5.0 to manipulated variable upper limit \% oH : Manipulated variable lower limit to $+105.0 \%$ CP : -19999 to +20000 SPU $t P$: -19999 to +20000 SPU
2	1-1	Integral time (PID group 1)	0		
3	d-1	Derivative time (PID group 1)	0		
4	$r E-1$	Manual reset (PID group 1)	50.0		
5	oL-1	Manipulatd variale bwer limit(Output limiter group 1)	0.0		
6	$\mathrm{oH}-1$	Manipulatd variale upper imit (Output imier group 1)	100.0		
7	$P-2$	Proportional band (PID group 2)	100.0		
8	l-2	Integral time (PID group 2)	0		
9	d-2	Derivative time (PID group 2)	0		
10	$r E-2$	Manual reset (PID group 2)	50.0		[Description:] - When P is set to 0.0, ON-OFF control is on and I, d and $r E$ settings display "-----" and setting cannot be performed.
11	oL-2	Manipulated variable lower limit (Output limiter group 2)	0.0		and setting cannot be performed. - Although a low P setting improves control, overshoot and hunting is more likely to occur.
12	$\mathrm{OH}-2$	Manipulated variable upper limit (Output limiter group 2)	100.0		- Although a low / setting improves tracking, cycling caused by integral operation occurs more often. - Although a low d setting makes it easier to suppress
13	$P-3$	Proportional band (PID group 3)	100.0		overshoot, hunting is more likely to occur due to reactions to minute PV action.
14	I-3	Integral time (PID group 3)	0		between $1 / 3$ to $1 / 4$ of the integral time. Since derivative operation is a cause of hunting in pressure
15	d-3	Derivative time (PID group 3)	0		set a low value. - The $r E$ setting is used to eliminate offset caused by proportional action (no integral action) and sets a suitable
16	$r E-3$	Manual reset (PID group 3)	50.0		- The oL and oH settings also operate as integral limiters. When oL or oH manipulated variable reaches the upper or lower limit, they turn off integral action and prevents reset
17	oL-3	Manipulated variable lower limit (Output limiter group 3)	0.0		lower limit, they turn off integral action and prevents reset windup that occurs when PV has not risen for a long time.
18	$\mathrm{OH}-3$	Manipulated variable upper limit (Output limiter group 3)	100.0		PID groups A1 to A7. - $t P$ is the tuning point where P, I and D settings in groups $A 1$
19	P-4	Proportional band (PID group 4)	100.0		
20	1-4	Integral time (PID group 4)	0		[Note:] CH2 PID parameter settings are described on this page. CH2 PID parameters are set when the PID key is pressed when CH 2 is selected (when the EG2 LED is on) during program operation in the normal display mode.
21	d-4	Derivative time (PID group 4)	0		
22	$r E-4$	Manual reset (PID group 4)	50.0		
23	OL-4	Manipulated variable bwer limit (Outputilimer group 4)	0.0		
24	oH-4	Manipulated variable upper limit (Outpout limiter group 4)	100.0		
25	$P-5$	Proportional band (PID group 5)	100.0		
26	1-5	Integral time (PID group 5)	0		
27	d-5	Derivative time (PID group 5)	0		
28	rE-5	Manual reset (PID group 5)	50.0		
29	OL-5	Manipulated variable bwer linit (Outputimiter group 5)	0.0		
30	oH-5	Manipulated variable upper Iimit (Outpout liniter group 5)	100.0		
31	P-6	Proportional band (PID group 6)	100.0		
32	I-6	Integral time (PID group 6)	0		
33	d-6	Derivative time (PID group 6)	0		

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
34	$r E-6$	Manual reset (PID group 6)	50.0		[Note:] CH2 PID parameter settings are described on this page. CH 2 PID parameters are set when the PID key is pressed when CH 2 is selected (when the EG2 LED is on) during program operation in the normal display mode.
35	oL-6	Manipulated variale lower IImit (Output imiter rouv0 6)	0.0		
36	oh-6	Manipulated variable upper limit (Output limiter group 6)	100.0		
37	$P-7$	Proportional band (PID group 7)	100.0		
38	$1-7$	Integral time (PID group 7)	0		
39	d-7	Derivative time (PID group 7)	0		
40	$r E-7$	Manual reset (PID group 7)	50.0		
41	oL-7	Manipulated variable lower limit (Output imiter group 7)	0.0		
42	oH-7	Manipulated variable upper limit (Output limiter group7)	100.0		
43	$P-8$	Proportional band (PID group 8)	100.0		
44	1-8	Integral time (PID group 8)	0		
45	d-8	Derivative time (PID group 8)	0		
46	$r E-8$	Manual reset (PID group 8)	50.0		
47	oL-8	Manipulated variable lower Iimit (Output imiter group 8)	0.0		
48	oh-8	Manipulated variable upper limi (Output limiter group 8)	100.0		
49	$P-9$	Proportional band (PID group 9)	100.0		
50	1-9	Integral time (PID group 9)	0		
51	d-9	Derivative time (PID group 9)	0		
52	rE-9	Manual reset (PID group 9)	50.0		
53	OL-9	Manipulated variable lower limit (Output limiter group 9)	0.0		
54	oH-9	Manipulated variable upper limit (Output limiter group 9)	100.0		
55	P-A1	Proportional band (PID group A1)	100.0		
56	I-A1	Integral time (PID group A1)	0		
57	d-A1	Derivative time (PID group A1)	0		
58	$r E-A 1$	Manual reset (PID group A1)	50.0		
59	CP-A1	Changeover point (PID group A1)	1000 SPU		
60	$t P-A 1$	Tuning point (PID group A1)	500 SPU		
61	$P-A 2$	Proportional band (PID group A2)	100.0		
62	I-A2	Integral time (PID group A2)	0		
63	d-A2	Derivative time (PID group A2)	0		
64	rE-A2	Manual reset (PID group A2)	50.0		
65	$C P-A 2$	Changeover point (PID group A2)	2000 SPU		
66	$t P-A 2$	Tuning point (PID group A2)	1500 SPU		
67	$P-A 3$	Proportional band (PID group A3)	100.0		
68	I-A3	Integral time (PID group A3)	0		
69	d-A3	Derivative time (PID group A3)	0		
70	rE-A3	Manual reset (PID group A3)	50.0		
71	CP-A3	Changeover point (PID group A3)	3000 SPU		
72	$t P-A 3$	Tuning point (PID group A3)	2500 SPU		
73	$P-A 4$	Proportional band (PID group A4)	100.0		
74	I-A4	Integral time (PID group A4)	0		
75	d-A4	Derivative time (PID group A4)	0		
76	rE-A4	Manual reset (PID group A4)	50.0		
77	CP-A4	Changeover point (PID group A4)	4000 SPU		
78	tP-A4	Tuning point (PID group A4)	3500 SPU		
79	P-A5	Proportional band (PID group A5)	100.0		
80	I-A5	Integral time (PID group A5)	0		

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
81	d-A5	Derivative time (PID group A5)	0		[Note:] CH2 PID parameter settings are described on this page. CH 2 PID parameters are set when the PID key is pressed when CH 2 is selected (when the EG2 LED is on) during program operation in the normal display mode.
82	rE-A5	Manual reset (PID group A5)	50.0		
83	CP-A5	Changeover point (PID group A5)	5000 SPU		
84	$t P-A 5$	Tuning point (PID group A5)	4500 SPU		
85	$P-A 6$	Proportional band (PID group A6)	100.0		
86	I-A6	Integral time (PID group A6)	0		
87	$d-A 6$	Derivative time (PID group A6)	0		
88	$r E-A 6$	Manual reset (PID group A6)	50.0		
89	CP-A6	Changeover point (PID group A6)	6000 SPU		
90	$t P-A 6$	Tuning point (PID group A6)	5500 SPU		
91	$P-A 7$	Proportional band (PID group A7)	100.0		
92	I-A7	Integral time (PID group A7)	0		
93	d-A7	Derivative time (PID group A7)	0		
94	$r E-A 7$	Manual reset (PID group A7)	50.0		
95	CP-A7	Changeover point (PID group A7)	$\begin{array}{\|l} 20000 \text { SPU } \\ \text { (fixed) } \end{array}$		
96	$t P-A 7$	Tuning point (PID group A7)	6500 SPU		

Setup data setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	C 01	PV1 range number	0		0 to 16 : t/c 48 to $52:$ linear (DC current, DC voltage) 64 to 71 : RTD 96 to $103:$ RTD 128 to $134:$ linear (DC current, DC voltage) [Description:] For details see range numbers listed in "Section 2-3 Input Type and Range Number" (page 2-8)
2	C 02	PV1 temperature unit	0		$0:{ }^{\circ} \mathrm{C}$ Celsius 1: ${ }^{\circ} \mathrm{F}$ Fahrenheit [Description:] When setting C01 is set to linear, "-----" is displayed and setting cannot be performed.
3	$C 03$	PV1 decimal point position	1		0 to 2 A setting of 0 means no decimal point and a setting of 1 and 2 indicates the number of decimal digits. [Description:] When setting C01 is set to linear, "-----" is displayed and setting cannot be performed. The setting range varies with the C01 and C02 setting. - A setting between 0 and 2 can be made when C01 is set to: $5,15,65$ to 69,97 to 101 and C02 is set to 0 . C01 settings: 66,68,69,98,100,101 and CO2 is set to 1. - A setting of 0 and 1 can be made when C01 is set to: 0 to 4,6 to $14,16,64,70,71,96,102,103$ and C02 is set to 0 . C01 settings: 0 to $5,7,8,10,12$ to $14,16,64,65,67$, 70, 71, 96, 97, 99, 102, 103 and C02 is set to 1 . - Only a setting of 0 is possible when C01 is set to: 6, 9, 11 and C02 is set to 1 When the C01 setting is set to t/c or RTD, this setting is reflected in PVU (PV1) units.
4	C 04	PV1 linear decimal point position	1		0 to 4 A setting of 0 means no decimal point and a setting between 1 and 4 indicates the number of decimal digits. [Description:] C01 settings for t/c and RTD display "-----" and setting cannot be performed. When the C01 setting is set to linear, this setting is reflected in PVU (PV1) units.
5	C 05	PV1 linear range lower limit	0 PVU		$-19999 \text { to +20000 PVU (PV1) }$ [Description:] When the C01 settingis set to t/c and RTD display "-----"
6	C 06	PV1 linear range upper limit	10000PVU		and setting cannot be performed. Reversing the lower limit and upper limit makes it possible to reverse analog inputs and specified values.
7	C 07	PV1 cold junction compensation	0		0 : Provided (compensated internally) 1: Not provided (compensated externally) [Description:] When the C01 setting is set to t/c and RTD display "-----" and setting cannot be performed.
8	C 08	PV1 square root extraction	0		0: Not provided 1: Provided [Description:] When the C01 setting is set to t/c and RTD display "-----" and setting cannot be performed.
9	C 09	PV1 square root extraction dropout	0.2		0.2 to 10.0% (ratio depends on input range) [Description:] When the C01 setting is set to t / c and RTD display "-----" and setting cannot be performed.
10	C 10	PV1 cold junction bias	0.0		$\begin{aligned} & -1.0 \text { to }+1.0^{\circ} \mathrm{C} \\ & {[\text { Description:] }} \\ & \text { When the } \mathrm{CO1} \text { setting is set to } \mathrm{t} / \mathrm{c} \text { and RTD display "-----" } \\ & \text { and setting cannot be performed. } \\ & \text { Use } 0.0 \text { for normal settings. } \end{aligned}$

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
11	C 11	PV2 range number	0		0 to $16:$: T/C 48 to 52 : linear (DC current, DC voltage) 64 to $71:$ RTD 96 to 103 : RTD 128 to 134 : linear (DC current, DC voltage) $135: \mathrm{O}_{2}$ Sensor [Description:] 0 to 16 : T/C 48 to 52 : linear (DC current, DC voltage) 64 to 71 : RTD 96 to 103 : RTD 128 to 134: linear (DC current, DC voltage) 135 O_{2} Sensor [Description:] Setting 135 cannot be made on a model without CP compensation. A model with CP compensation is tied to setting 135. For details see range numbers listed in Section 2-3, "Input Types and Range Numbers" (page 2-8).
12	C 12	PV2 temperature unit	0		0: ${ }^{\circ} \mathrm{C}$ Celsius 1: ${ }^{\circ} \mathrm{F}$ Fahrenheit [Description:] When the C01 setting is set to linear or O_{2} sensor, [----] is displayed and setting is not possible.
13	C 13	PV2 decimal point position	1		0 to 2 A setting of 0 means no decimal point and a setting of 1 and 2 indicates the number of decimal digits. [Description:] When the C11 setting is set to linear or O_{2} sensor, [---] is displayed and setting is not possible. The setting range varies with the C11 and C12 setting. - A setting between 0 and 2 can be made when C11 is set to: and $C 12$ is set to 0 . C11 settings: $66,68,69,98,100,101$ and $C 12$ is set to 1 . - A setting of 0 and 1 can be made when $C 11$ is set to: 0 to 4 , 6 , to $14,16,64,70,71,96,102,103$ and C12 is set to 0 , when C11 is set to: 0 to $5,7,8,10,12$ to $14,16,64,65,67$, $70,71,96,97,99,102,103$ and $C 12$ is set to 1 . - Only a setting of 0 is possible when C11 is set to: $6,9,11$ and C12 is set to 1 . - When the C11 setting is for t/c or RTD, this setting is reflected in PVU (PV2) units.
14	C 14	PV2 linear decimal point position	1		0 to 4 A setting of 0 means no decimal point and a setting between 1 and 4 indicates the number of decimal digits. [Description:] When the C11setting is set to t / c, RTD, or O_{2} sensor, [---$-]$ is displayed and setting is not possible. When setting C11 is linear, this setting is reflected in PVU (PV2) units.
15	C 15	PV2 linear range lower limit	0 PVU		```-19999 to +20000 PVU (PV2) [Description:] When the C11setting is set to t/c, RTD, or O2 sensor, [--- -] is displayed and setting is not possible.```
16	C 16	PV2 linear range upper limit	10000PVU		Reversing the lower limit and upper limit makes it possible to reverse analog inputs and specified values.
17	C 17	PV2 cold junction compensation	0		0 : Yes (compensated internally) 1: No (compensated externally) [Description:] When the C11setting is set to RTD, linear or O_{2} sensor, [----] is displayed and setting is not possible.
18	C 18	PV2 square root extraction	0		0 : No 1: Yes [Description:] When the C11setting is set to T/C RTD, or O_{2} sensor [----] is displayed and setting is not possible.
19	C 19	PV2 square root extraction dropout	0.2		0.2 to 10.0% (ratio depends on input range) [Description:] When the C11 setting is set to T/C, RTD or O_{2} sensor, [----] is displayed and setting is not possible.
20	C 20	PV2 cold junction bias	0.0		$-1.0 \text { to }+1.0^{\circ} \mathrm{C}$

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
21	C 21	Control output system (CH1)	1		$0: 5 \mathrm{~S}$ output (current proportional SP output) 1:5G output (current proportional control output) $2: 6 \mathrm{D}$ output (voltage time proportional control output) system A $3: 6 \mathrm{D}$ output (voltage time proportional control output) system B $4: 8 \mathrm{D}$ output (open collector time proportional control output) system A $5: 8 \mathrm{D}$ output (open collector time proportional control output) system B [Description:] The difference between system A and system B is in the output system of ON-OFF control and auto-tuning.
22	C 22	Control output system (CH2)	1		System A: Output ON-OFF is performed regardless of time proportional output cycles and output limits. System B: The output limit upper limit value is output instead of on and the output limit lower value is output instead of off according to time proportional output cycles.
23	C 23	Control operation (CH1)	0		0: PID-A reverse operation 1: PID-A normal operation 2: PID-B reverse operation 3: PID-B normal operation [Description:] PID-A: deviation derivative PID (system where SP changes are affected by derivative action)
24	C 24	Control operation (CH2)	--		PID-B: derivative-based PID (system where SP changes are not affected by derivative action)
25	C 25	Unused	----		"pion.]
26	C 26	Unused	----		is displayed and setting is not possible.
27	C 27	Unused	----		
28	C 28	Unused	----		
29	C 29	Unused	----		
30	C 30	PV equalizer	0		0 : No 1: PV1 only 2: PV2 only 3: PV1 and PV2
31	C 31	End of operation (CH1)	0		0 : READY mode 1: END mode
32	C 32	Manipulated variable in READY mode (CH1)	0.0		-5.0 to +105.0 \%
33	C 33	Manipulated variable setting in PV overrange (CH1)	0		$\begin{array}{\|l\|l} \hline 0: \text { No } \\ \text { 1: Yes } \end{array}$
34	C 34	Manipulated variable in PV overrange (CH1)	0.0		-5.0 to +105.0 \%
35	C 35	Manual change mode (CH1)	0		$\begin{aligned} & 0 \text { 0: bias } \\ & \text { 1: preset } \\ & \hline \end{aligned}$
36	C 36	Preset MANUAL value (CH1)	0.0		-5.0 to +105.0 \%
37	C 37	End of operation (CH2)	0		0 : READY mode 1: END mode
38	C 38	Manipulated variable in READY mode (CH 2)	0.0		-5.0 to +105\%

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
39	C 39	Manipulated variable setting in PV overrange (CH2)	0		$\begin{array}{\|l\|} \hline 0: \text { No } \\ 1: ~ Y e s ~ \end{array}$
40	C 40	Manipulated variable in PV overrange (CH2)	0.0		-5 to +105\%
41	C 41	Manual change mode (CH 2$)$	0		0: smooth 1: preset
42	C 42	Preset manual value (CH2)	0.0		-5 to +105\%
43	C 43	Length of outage permitting continuous operation	0		0 to 3600 sec When set to 0 , operation continues regardless of outage time. [Description:] The HOLD mode is invoked when the outage is longer than set time. The measurement of a power outage may vary by about 10 seconds.
44	C 44	CP computation type (varies with sensor manufacturer)	1		0 : oxygen pressure $\left(\mathrm{PO}_{2}\right)$ computation 1: CP computation for NKG sensor 2: CP computation for Marathon monitors and Cambridge sensors 3: CP computation for Corning sensors 4: CP computation for AACC sensors 5: CP computation for Barber-Coleman sensors 6: CP computation for Furnace Control sensors [Description:] "------" is displayed for a model without CP compensation and setting is not possible.
45	C 45	Auxiliary output type 1	0		0: SP1 1: PV1 : Deviation (DEV1) 3: Manipulated variable 1 (MV1) 4: SP2 5: PV2 6: Deviation 2 (DEV2) 7: Manipulated variable 2 (MV2) 8: O_{2} sensor mV input value [Description:] "-----" is displayed and setting is not possible on model without auxiliary output.
46	C 46	Auxiliary output 1 lower limit (4mA)	0 SPU		$\begin{aligned} & -19999 \text { to }+20000 \text { SPU (C45 not equal to } 3,7) \\ & -1999.9 \text { to }+2000.0 \text { SPU (C45 set to } 3,7) \end{aligned}$
47	C 47	Auxiliary output 1 upper limit (20 mA)	10000SPU		[Description:] \qquad ' is displayed and setting is not possible on model without auxiliary output.
48	C 48	Auxiliary output type 2	0		0: SP1 1: PV1 2: Deviation (DEV1) 3: Manipulated variable 1 (MV1) 4: SP2 5: PV2 6: Deviation 2 (DEV2) 7: Manipulated variable 2 (MV2) 8: O_{2} sensor mV input value [Description:] "-----" is displayed and setting is not possible on model without auxiliary output or with one auxiliary output.
49	C 49	Auxiliary output 2 lower limit (4mA)	0 SPU		$\begin{aligned} & -19999 \text { to +20000 SPU (C48 not equal to 3, } 7 \text {) } \\ & \text {-1999.9 to +2000.0\% (C48 set to 3, } 7 \text {) } \\ & \text { [Description:] } \\ & \text { "--"." is displayed and setting is not possible on model } \\ & \text { without auxiliary output or with one auxiliary output. } \end{aligned}$
50	C 50	Auxiliary output 2 upper limit (20 mA)	10000SPU		
51	C 51	Unused	----		[Description:]
52	C 52	Unused	----		
53	C 53	Unused	----		
54	C 54	Unused	----		
55	C 55	Unused	---		
56	C 56	Unused	----		

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
57	C 57	Programming item event	0		0: Displayed 1: Not displayed
58	C 58	Programming item PID group, output limiter group	0		0: Displayed 1: Not displayed
59	C 59	Programming item G.SOAK, PV shift, repeat	0		0: Displayed 1: Not displayed
60	C 60	Programming item PV start, cycle, pattern link	0		0: Displayed 1: Not displayed
61	C 61	Programming system	0		0 : RAMP-X and RAMP-T (θ) ${ }^{\circ}$ combined 1: RAMP-X and RAMP-E ('SP) combined
62	C 62	Programming time unit	0		0: hours, \min (SPU/hour for RAMP-T) 1: min, sec (SPU/min for RAMP-T) 2: 0.1 sec (SPU/sec for RAMP-T)
63	C 63	Time display (display panel 1 and 2)	0		0 : remaining segment time 1: total operation time (after READY \rightarrow RUN start)
64	C 64	Event no. division (first CH2 number)	0		0 to 16 0 indicates no CH 2 event [Description:] When a change in set values cause multiple output points for a code event to overlap the CH 1 and CH 2 division, the event configuration setting output points is changed so that only CH 1 is used.
65	C 65	SP decimal point position (CH1)	1		0 to 4 A setting of 0 means no decimal point and a setting between 1 and 4 indicates the number of decimal digits. [Description:] This setting is reflected in PVU (SPU (CH1)) units.
66	C 66	SP limit lower limit (CH1)	PV1 range lower limit		$-19999 \text { to }+20000 \text { SPU (CH1) }$ [Description:]
67	C 67	SP limit upper limit (CH1)	PV1 range upper limit		automatically set as the upper limit and lower limit of the range.
68	C 68	SP decimal point position (CH2)	1 or 3		0 to 4 on a model without CP compensation 0 to 3 on a model with CP compensation A setting of 0 means no decimal point and a setting between 1 and 4 indicates the number of decimal digits. [Description:] This setting is reflected in PVU (SPU (CH2)) units. The factory default setting for models without CP compensation is 1 . The factory default setting for models without CP compensation is 3 .
69	C 69	SP limit lower limit (CH2)	PV2 range lower limit		-19999 to +20000 SPU (CH2) on a model without CP compensation 0 to 2000 SPU (CH2) on a model with CP compensation [Description:]
70	$C 70$	SP limit upper limit (CH2)	PV2 range upper limit		When C11 to C16 are set, C69 and C70 are automatically set as the upper limit and lower limit of the PV1 range. The factory default setting for models with CP compensation is $C 69=0.000, C 70=2.000$.
71	C 71	External switch input RSW5	0		0 : NOP (does not function) 1 : RAMP-E 2 : FAST 3 : G.SOAK is cleared using OR 4: G.SOAK is cleared using AND 5 : MANUAL/AUTO 6 : AT start/stop 7 : NOP (does not function)
72	$C 72$	External switch input RSW6	0		8 : Auto load
73	C 73	External switch input RSW7	0		9 : NOP (does not function) 10: NOP (does not function)
74	C 74	External switch input RSW8	0		11: O_{2} sensor check
75	C 75	External switch input RSW9 to 14 (program selection)	0		$\begin{aligned} & \text { 0: BCD4 bits + BCD2 bits } \\ & \text { 1: binary } 7 \text { bits } \\ & \hline \end{aligned}$

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
76	C 76	Communication address	0		0 to 127 [Description:] "----" is displayed for model without communications and when $C 97$ is set to a value that is not equal to 0 and setting is not possible. When C76 is set to 0 , the communication function is not activated.
77	C 77	Transmission rate	0		0: 9600bps 1: 4800bps 2: 2400bps 3: 1200bps [Description:] "----" is displayed for model without communications and when C97 is set to a value that is not equal to 0 and setting is not possible.
78	C 78	Transmission code	0		$0: 8$ bits, even parity, 1 stop bit 1: 8 bits, no parity, 2 stop bits [Description:] "----" is displayed for model without communications and when C97 is set to a value that is not equal to 0 and setting is not possible.
79	$C 79$	Communication	0		$0: \mathrm{CPL}$ 1: ST221 (no PV trend) 2: ST221 (PV trend) [Description:] "----" is displayed for model without communications and when C97 is set to a value that is not equal to 0 and setting is not possible.
80	C 80	Communication method	0		$0 \text { : RS-485 }$ 1 : RS-232C [Description:] "----" is displayed for model without communications and when C97 is set to a value that is not equal to 0 and setting is not possible.
81	C 81	ROM ID	-		[Description:] Can only be referenced for mechanical service use.
82	C 82	ROM ITEM	-		
83	C 83	ROM revision	-		
84	C 84	Data version	-		
85	C 85	CPU board ID	-		
86	C 86	I/O board ID	-		
87	C 87	Unused	--		[Description:] "-----" is displayed and setting is not possible.
88	C 88	Unused	----		
89	C 89	Unused	----		
90	C 90	PID type	1		0: Improved 1: Compatible with Mark I
91	C 91	PV1 burnout	0		$\begin{array}{\|l} \hline 0: \text { Yes } \\ \text { 1: No } \end{array}$
92	C 92	PV2 burnout	0		$\begin{aligned} & \text { 0: Yes } \\ & \text { 1: No } \end{aligned}$
93	C 93	Time proportional output	0		0: Does not go on a second time off in time proportional cycle. 1: Goes on a second time in time proportional cycle.
94	C 94	Time proportional output	0		0 : Does not go on a second time off in time proportional cycle 1: Goes on a second time in time proportional cycle
95	C 95	Voltage output control (CH1)	15		2 to 22mA
96	C 96	Voltage output control (CH2)	15		2 to 22 mA
97	C 97	Communications port	0		0 to 15 The backplate terminal is used when set to 0 . The loader jack is used for settings 1 to 15. [Description:] When set to 0 , communications is not possible on model without communications. When set to 0 , communications conditions are selected using C76 to C80. The communication address is used for settings 1 to 15. 4800 bps , 8 bits, even parity, 1 stop bit
98	C 98	Special function	0		0 to 255 [Description:] A setting of 0 is normally used.

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
99	C 99	Unused	----		[Description:] "----" is displayed and setting is not possible.
100	C100	Unused	---		[Description:] "----" is displayed and setting is not possible.

Detailed descriptions of setup data settings

- C07 (PV1 cold junction compensation)
- C17 (PV2 cold junction compensation)
- This is a selection for cold junction compensation for thermocouples.
- When set to 1 , perform $0^{\circ} \mathrm{C}$ compensation using a cold junction compensation device outside the DCP552.
- $\mathbf{C 0 8}$ (PV1 square root extraction)
- $\quad \operatorname{Cog}$ (PV1 square root extraction dropout)
- C18 (PV2 square root extraction)
- C19 (PV2 square root extraction dropout)
- Flow pressure detected by the orifice of a normal differential pressure type flowmeter is proportional to the power 2 of the flow rate signal. Consequently, square root extraction is used when a uniform signal is needed.
When the input in the square root extraction is $C 09$ or less than the dropout set in C19, an output of 0% can be obtained in the square root process.
- Square root extraction is not performed when C08 and C18 are set to 0 .

Output of root extraction (Y)

- C46 (auxiliary output 1 lower limit)
- C47 (auxiliary output 1 upper limit)
- C49 (auxiliary output 2 lower limit)
- C50 (auxiliary output 2 upper limit)
- This is the scaling setting of the auxiliary output. The high and low values for the upper and lower limits can be reversed.
- The example below shows that the output from auxiliary output 1 is 12 mA when MV is 100% and 20 mA when MV is 0%. As shown, a 200% MV value is required to generate an output of 4 mA .
Thus $C 46$ is set to 200.0 and $C 47$ is set to 0.0 .

- C63 (time display)

0 : remaining segment time
1: total operation time

- These are selections for display panel 1 and 2 in the normal display mode in the program run mode.
- In the READY mode a setting of 0 displays the set time values for the selected segments.
- In the RUN, HOLD, FAST and END modes a setting of 0 displays the remaining time in rounded hours.
For example, when the time unit hours $/ \mathrm{min}$ is selected a remaining time of 1 hour 30 minutes and 59 seconds is displayed as " 1.30 ".
- In the READY mode a setting of 1 displays the time as " 0.00 ".
- In the RUN, HOLD, FAST and END modes a setting of 1 means that the time is displayed in rounded hours after a change from the READY mode to the RUN mode. In G.SOAK wait, repeat, cycle and pattern link, time is displayed as integrated values.
When the time unit is hours $/ \mathrm{min}$ or $\mathrm{min} / \mathrm{sec}$, the display returns to " 0.00 " after " 499.59 ". When the time unit is 0.1 sec , the display returns to " 0.0 " after "2999.9".
When the time unit is hour $/ \mathrm{min}$, a total operating time of 501 hours 30 minutes and 59 seconds is displayed as " 1.30 ".
- In FAST mode a setting of 0 or 1 displays the time according to FAST X.

- C66 (SP limit lower limit)

- C67 (SP limit upper limit)
- C69 (SP limit lower limit)
- C70 (SP limit upper limit)
- These settings operate as limiters when SP is set or changed in the program setting pattern items.
- In the program run mode these settings operate as limiters when SP and SP bias (variable parameter) set in a program are added to produce the resulting SP.
- These settings operate as limiters when SP is set or changed in constant value control data settings.
- In the constant value control mode these settings operate as limiters when SP and SP bias (variable parameter) set in constant value control data settings are added to produce the resulting SP.

- C93 (time proportional output system)

- C94 (time proportional output system)

0: Does not go on again within time proportional cycle
1: Goes on again within time proportional cycle

- This setting determines whether the output is to go on again after the result of a PID computation has changed in a time proportional cycle (cycle time) and the output has been turned off.
- The difference between the two settings is illustrated below.

- C95 (voltage output control)
- C96 (voltage output control)
[Constant current type]
- Input current (maximum):

Check that the input current is within the maximum allowable current or less, then the parallel connection can be made.

- Operating voltage range (input): Check that the voltage between the terminals of the voltage pulse output is within the specified range.

This example shows the calculation for the connection of this unit and the PGM10N015.
(Note: For connection with other model number, check the specifications of each model.)

- Input current(maximum): Since the input current is 10 mA or less, up to two units ($10 \mathrm{~mA} \mathrm{X} 2=20 \mathrm{~mA}<24 \mathrm{~mA}$
[maximum allowable current]) can be connected in parallel.
- Operating voltage range (input): The rating voltage is 3.5 to 30 Vdc . Therefore, terminal voltage when terminals are opened, is within the range.

Connection diagram

Example: Number of connectable units and settings

Settings	Model:6D(in case of C21,C22=2 or 3)		
	C95	C96	
PGM10N	1unit	10 or more	10 or more
	2units(Parallel)*	20 or more	20 or more
	1unit	12 or more	12 or more

*: Connectable units for each channel

[Resistor type]

In a voltage time proportional output driven by SSR, the DCP552 must enter the SSR rated input voltage (optimum striking voltage of arc).
The DCP552 employs a newly developed variable output system that can output optimum striking voltage of arc to accommodate multiple SSR drives. A suitable current value is set on the DCP552 to obtain optimum striking voltage of arc for the internal impedance of the SSR. An equivalent circuit with related equations is shown below.

- Description of symbols
(1)Settings

Io : set DCP552 output current (range: 2 to 22 mA)
$V_{0} \quad$: end-to-end load voltage (13.2V)
$V_{S S R^{\prime}}$: actual voltage input to SSR
VSSR : rated input voltage range for SSR ($\mathrm{V}_{\text {SSR/MIN }}$ to $\mathrm{V}_{\text {SSR/MAX }}$)
VSSR/MIN : minimum SSR rated input voltage
VSSR/MAX : maximum SSR rated input voltage
Z : internal SSR impedance
$V_{D} \quad$ internal SSR voltage drop (normally about 1 to 2 V)
(2)Equivalent circuit showing connection of one SSR

Equations (1) and (2) below must be satisfied.
$\mathrm{V}_{\text {ssRmin }} \leq \mathrm{I}_{0} \mathrm{XZ}+\mathrm{V}_{\mathrm{D}} \leq \mathrm{V}_{0} \quad$ Equation (1)
$\mathrm{V}_{\text {SSR }} \leq \mathrm{V}_{\text {SSR/MAX }} \quad$ Equation (2)
$\left(V_{S S R}=I_{0} X Z+V_{D}\right)$
(3)Equivalent circuit showing connection of n SSRs

Equations (3) and (4) below must be satisfied.

$\mathrm{V}_{\text {ssR/Min }} \leq \mathrm{I}_{0} \times \mathrm{Z}+\mathrm{V}_{\mathrm{D}} \leq \mathrm{V}_{0} / \mathrm{N}$
$V_{\text {ssR }} \leq \mathrm{V}_{\text {ssR/max }}$
$\left(V_{S S R}{ }^{\prime}=I_{0} X Z+V_{D}\right)$

Equation (3)
Equation (4)
(4)Equivalent circuit showing parallel connection of n SSRs

Equations (5) and (6) below must be satisfied.
$\mathrm{V}_{\text {SSR/MIN }} \leq \mathrm{I}_{0} / \mathrm{N} \times \mathrm{Z}+\mathrm{V}_{\mathrm{D}} \leq \mathrm{V}_{0} \quad$ Equation (5)
$\mathrm{V}_{\text {SSR }} \leq \mathrm{V}_{\mathrm{SSR} / \mathrm{MAX}} \quad$ Equation (6)
(vssR' $\left.=\mathrm{I}_{0} / \mathrm{NXZ}+\mathrm{V}_{\mathrm{D}}\right)$
(5)Example showing use of Azbil Corporation PGM
$V_{\text {sse }}$: 3 to 6 V
Z : $260 \Omega \pm 5 \%$
$V_{D}: 0.8$ to 1.3 V

- lo required in connecting one PGM

As shown in the figure below, a constant current system is employed in the voltage output of the DCP552. The input voltage range of the PGM is as follows.
" $8.9 \mathrm{~mA} \leq \mathrm{I} \leq \mathbf{1 7 . 2 m A}$ " can be established:
Imin $X Z_{\text {min }}+V_{\text {dimin }}>3$
$I_{\text {min }}>8.9 \mathrm{~mA}$
$I_{\text {max }} X Z_{\text {max }}+V_{\text {dmax }}<6$
$I_{\text {max }}<17.2 \mathrm{~mA}$

- Each PGM requires 8.9 mA ; the maximum output current of the DCP552 is 22 mA . Thus two PGMs can be connected in parallel.
When connected in series, the maximum output current of the DCP552 is 22 mA , the allowable load resistance is 600Ω and the maximum voltage that can be applied to a load is $13.2 \mathrm{~V}(22 \mathrm{~mA} \times 600 \Omega)$. When 8.9 mA is applied to a PGM, the maximum voltage of the input terminals end-to-end is 3.7 V .

$0.0089 \times 260 \times 1.05+1.3=3.7 \mathrm{~V}$

Since $13.2 \div 3.7=3.5$, three PGMs can be connected in series.
The calculation above is a "worst case scenario." For example, assuming that 3 V or more is applied to each PGM, four PGMs should operate normally.

Constant value control data (CH1) setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	ConSt	Control mode	0		0: Program run mode 1: Constant value control mode
2	SP	Setpoint	0		Within the range of setup C66 to C67 (SP limit)
3	P	Proportional band	100.0		0.0 to 1000.0\% A setting of 0.0 turns on ON-OFF control
4	1	Integral time	0		0 to 3600sec No integral operation when set to 0 . [Description:] When P is set to $0.0, ~ "-----"$ is displayed and setting is not possible.
5	d	Derivative time	0		0 to 1200 sec No integral operation when set to 0 . [Description:] When P is set to $0.0, ~ "-----$ " is displayed and setting is not possible.
6	$r E$	Manual reset	50.0		0.0 to 100.0\% [Description:] When P is set to 0.0 , "-----" is displayed and setting is not possible. When I is not equal to 0 , "-----" is displayed and setting is not possible.
7	oL	Manipulated variable lower limit	0.0		-5.0 to upper limit \%
8	oH	Manipulated variable upper limit	100.0		Lower limit to +105\%

Constant value control data (CH 2) setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	ConSt	Control mode	0		0: Program run mode 1: Constant value control mode
2	$S P$	Setpoint	0		Within the range of setup C 69 to C 70 (SP limit)
3	P	Proportional band	100.0		0.0 to 1000.0% A setting of 0.0 turns on ON-OFF control
4	1	Integral time	0		0 to 3600 sec No integral operation when set to 0 . [Description:] When P is set to $0,[---]$ is displayed and setting is not possible.
5	d	Derivative time	0		0 to 12600 sec No integral operation when set to 0 . [Description:] When P is set to $0.0,[---]$ is displayed and setting is not possible.
6	$r E$	Manual reset	50.0		0.0 to 100% [Description:] When P is set to $0.0,[---]$ is displayed and setting is not possible. When I is not equal to $0,[---]$ is displayed and setting is not possible.
7	oL	Manipulated variable lower limit	0.0		-5.0 to upper limit \%
8	oH	Manipulated variable upper limit	100.0		Lower limit to +105\%

Chapter 8. PROGRAM SETUP

8-1 Program Setup

Programming is enabled in the normal display mode. When the DCP552 is not in the normal mode display, press the DISP key to invoke it. Programming is simpler if you set down the objectives of the program on a program work sheet before you start programming.

For ease of use, please enlarge the copy of the DCP551/552 Program Work Sheet located after page 12-8.

- Selecting number of program to operate

Numbers can be selected in one of two ways.

- before programming
- during programming
- Selecting program number before programming

Press the PROG key in the normal display mode in the READY mode. When the program number starts flashing, use the PROG key or the $\uparrow, \downarrow, \leftarrow$, or \rightarrow key to select a number.

! Handling Precautions

Program numbers cannot be selected during external switch input. See "Section 6-3 Selecting Programs" (page 6-11) for details.

- Selecting program number during programming

Press the FUNC and PROG keys in program setting state so that the program number starts to flash. Use the $\uparrow, \downarrow, \leftarrow$, or \rightarrow key to make the desired changes and press the ENTER key to enter them. Note, however, that you must after exiting the registration state (when set values flash) with the ENTER key, press the FUNC and PROG keys. When programs are selected in this way, the pattern items are displayed on the programming map.
This allows you to select a program number of a program other than the one processed in the RUN mode. It also allows you to select the number of another program using the external switches.

Selecting channel of program to operate

Channels can be selected in one of two ways.

- before programming
- during programming
- Selecting channel before programming

Press the FUNC and DISP keys in the normal display mode to change channels.

- Selecting channel during programming

Press the FUNC and DISP keys in the program setting mode, to change
channels. The system is set to the program setting mode for a different channel with the same program number and the pattern item in the first segment is displayed.

Starting programming

- Key operations

Start programming by pressing the FUNC and PROG keys in the normal display mode.
In the program setting state, PRG LED on the console lights and the decimal points in the program number display and the segment number display lights.
Note, however, that the program setting state cannot be entered in the following cases.

- In the constant value control mode (and the constant value control data ConSt is set to 1)
- When keylock is engaged (and variable parameters PA01 is set to 2 or 3)

In the following condition changes cannot be made in the program setting state.

- When a program is protected (and variable parameter PAO2 is set to 1,3 or 5)

- Start of display items

When programming is started, the number of the started program and its segment are displayed.

State transition

The figure below shows the transition of states during programming.
The numbered items (1) to (20) are described on the following page.

- Description of numbered items in the figure illustrating the program setting state

(1) Programming is started. Up to about 1 second after the programming state is entered, the remaining number of segments is displayed in display panel 1 and the remaining number of subfunctions is displayed in display panel number 2. The display can be held by pressing the FUNC key.
(2) Move the setting items on the programming map.
(3) Move the segments on the programming map.
(4) Register the first setting.
(5) Increase or decrease the values in the first setting and move the flashing digits.
(6) Complete the registration of the first setting. Pressing the ENTER key registers the set value in memory.
For items with a second setting, the registration state for the second item is displayed. The display reverts to display set values for items without a second setting. Pressing the FUNC and CLR keys returns a segment to its initial state.
(7) Use the FUNC and ENTER keys in pattern items to go between RAMP-X \Leftrightarrow RAMP-T and RAMP-X \Leftrightarrow RAMP-E. The setting in setup data C61 determines the changeover that is actually performed. Note, however, that a changeover cannot be made when a segment is running.
(8) Use the FUNC and CLR keys in pattern items to display "CLEAr" to delete the program beyond that segment.
Note, however, that the FUNC and CLR keys are invalid when a program is running.
(9) When the ENTER keys is used, the program beyond the point where the key was pressed is deleted. Pressing the DISP key does not delete any data but causes the display to show set values.
(10)Increase or decrease the values in the second setting and move the flashing digits.
(11)Complete the registration of the second setting. Pressing the ENTER keys registers the set value in memory. Pressing the FUNC and CLR keys returns a segment to its initial state.
(12)Complete the registration without entering the value in memory.
(13)Pressing the FUNC and ENTER keys in pattern items displays the segment insertion and deletion panel " $n S$." flashes. Note, however, that the FUNC and ENTER keys are invalid when a program is running.
(14)Use the \downarrow key to delete and the \uparrow key to insert the flashing item.
(15)Pressing the ENTER keys when "InS." is displayed inserts the segment. Pressing the ENTER keys when " $d E L$." is displayed deletes the segment. Pressing the DISP key neither deletes or inserts the segment.
(16)Press the FUNC and PROG keys so that the program number starts to flash.
(17)Program numbers and segment numbers can be increased or decreased and the moving digits can be moved.
(18)Pressing the ENTER keys completes the registration of program and segment numbers.
(19)The normal display mode appears.
(20)Change channels.

Programming map

As shown below, a programming map consists of columns of segment numbers and rows of program setting items.
In the program setting state, the items in the solid lines indicated by the segment numbers and program setting items are displayed.
\leftarrow key,\rightarrow key $\quad:$ moves segments right and left
\uparrow key, \downarrow key $\quad:$ moves segments up and down
The figure shows a programming map from the first to the 10th segment.
Programming map example:

				Settings in the gray		area are shared with segment 1.		
Segment number		1	2	10	11	12 to 99	Remarks
Program item	(1) No. 1 setting							
	(2) No. 2 setting							
Pattern	(1) SP	100	100		100	-----		*1
	(2) Time	0:30	3:00		10:00	-----		
Event 1	(1) Operating point	1100	---. -		--.-. -			*2
Event 2	(1) Operating point	---.-	30		-----			
Event 3	(1) On Time	0:00	0:00		0:00			
	(2) Off Time	0:01	0:01		0:01			
Event 4	(1) On Time	------	0:00		\cdots			
	(2) Off Time	----	1:00		-----			
Event 5	(1) Code	1	2		3			
Event 7-1	(1) Code	1	---		2			
	(2) Time	0:10	---		5:00			
Event 7-2	(1) Code	0	---		3			
	(2) Time	0:20	--		9:00			
PIG group, output	(1) PID group	3	A		1			
limiter group	(2) Output limiter group	3	1		7			
G.SOAK	(1) Type	0	2		1			
	(2) G.SOAK width	--.--	5		10			
PV shift	(1) Shift value	-----	-----		-----			
Repeat	(1) Return destination segment	0	0		0			
	(2) Count	---.-	-.-.-		---.-			
PV start	(1) Type	0	0		0			*3
Cycle	(1) Count	0	0		0			
Pattern link	(1) Link destination program	0	0		0			
Tag	(1) 8 character tag	PROG9999	PROG9999		PROG9999			

*1: Items up to segment 10 has been entered.
*2 : The event types of each event are listed below.
Event 1/2 : PV upper limit (event type setting 2)
Event 3/4 : time event (event type setting 1)
Event 5 : code event using two points (event type setting 18 , auxiliary setting 2)
Event $7 \quad$: time code event using two points (event type setting 23, auxiliary setting 2)
Event 9 to 16: assigned to CH2 events (when setup C64 is set to 9)
*3: These are settings used in each program and are shared by all segments.

Display items

Items displayed are shown in the figure below.

Setting pattern items

(1) In the set value display state, move to the segment pattern item to be set on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to set the first setting (SP).

Setting range: SP limit lower limit to upper limit (SP limit is set using setup data C66, C67, C69 and C70.)
(4) Pressing the ENTER key stops display panel 1 from flashing and causes display panel 2 to start flashing. (This starts start registration of the second setting.) Instead of pressing the ENTER key, press the FUNC and ENTER keys to switch between RAMP types (selecting RAMP-X \Leftrightarrow RAMP-T, or RAMP-X \Leftrightarrow RAMP-E is made with setup data C61).
(5) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the second setting (time).

Setting range: 0:00 to 500:00, 0.0 to 3000.0
(Time units are selected using setup data C62 to set Hour/min, Min/sec, 0.1 sec. Since a colon " : " cannot be displayed, the decimal point is used instead.)
(6) Press the ENTER key to stop display panel 2 from flashing.

- Display

Segments that have not been set and unset values for SP and time are indicated by
"-----".
Note
Event settings are displayed in the two rows of the message panel. Events 1 to 8 are displayed in the top left row and events 9 to 16 are displayed in the lower left row. The meaning of the codes used are listed below.

- : event off

T: time event
P: PV/PV deviation rate event
D: Deviation/absolute deviation
M : MV event
S: SP event
C : code/time code event

Setting event items

! Handling Precautions

Events assigned to the selected channel can be displayed.
Note that when setup data C57 is set to 1, event items on the programming map are skipped and not displayed.

- When the event is a PV event
(1) In the set value display state, move to the segment event item to be set on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the \uparrow, \downarrow, \leftarrow, and \rightarrow keys to make the first setting - setting the event operating point.
Setting range : OFF -19999 to +20000 SPU
: OFF 0 to 20000 SPU (for absolute value deviation events)
: OFF -5.0 to $+105.0 \%$ (for MV events)
(4) Press the ENTER key to stop the flashing on display panel 1. (Pressing the FUNC and CLR keys causes display panel 1 to return to unset state "-----" and the flashing stops.)
- Display (PV events)

Unset values are indicated as " \qquad ".

A PV event setting consists of a setting (including OFF) and a subfunction. A subfunction cannot be used when a setting has not been made " \qquad ".

- When the event is a time event

(1) In the set value display state, move to the event item to be set for the segment on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting (On Time setting). Setting range: 0:00 to 500:00, 0.0 to 3000.0
(Time units are selected using setup data C62 to set Hour/min, Min/sec, 0.1 sec. Since a colon ": " cannot be displayed, the decimal point is used instead.)
(4) Press the ENTER key to stop the flashing on display panel 1 and display panel 2 starts flashing. (Start of second setting)
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state "-----" and the flashing stops.)
(5) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the second setting (Off Time setting). Setting range: On time setting $+0: 01$ to 500:00, Off time setting +0.1 to 3000.0
(6) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 2 to return to unset state "-----" and the flashing stops.)

- Display (time event)

- Unset values are indicated as "-----".
- When the On Time is set to 500:00 or 3000.0, an Off Time cannot be set.

Note

A time event setting consists of one setting, an On Time, or two settings, an On Time and an Off Time. When both settings are made a subfunction can be used. In unset state "-----" a subfunction cannot be used.

! Handling Precautions

In a time event, an On Time or Off Time setting that is the same as or exceeds the segment time is invalid.
Note, however, that when there is a G.SOAK wait at the end of a segment or an END mode at the end of a program, an On Time or Off Time setting that is the same as the segment time is valid.

- When the event is a code event

(1) In the set value display state, move to the event item to be set for the segment on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting - setting the event output code.
Setting range : 0 to $2^{\mathrm{n}}-1$
(n indicates the number of output points set in event configuration 1 auxiliary setting 1.)
(4) Press the ENTER key to stop the flashing on display panel 1.
(Pressing the FUNC and CLR keys causes display panel 1 to return to unset state "-----" and the flashing stops.)

- Display (code event)

Unset values are indicated as " \qquad ".

Code events use one subfunction. A subfunction cannot be used when a setting has not been made "- \qquad -".
Events that follow the event number of a code event (number of output points less 1) are skipped and not displayed.

- When the event is a timer code event

(1) In the set value display state, move to the event item to be set for the segment on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting (output code). Setting range: 0 to $2^{\mathrm{n}}-1$
(n indicates the number of output points set in event configuration 1 auxiliary setting 1.)
(4) Press the ENTER key to stop the flashing on display panel 1 and display panel 2 starts flashing. (Start of second setting)
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state "-----" and the flashing stops.)
(5) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the second setting (time).

Setting range: $\quad 0: 00$ to $500: 00,0.0$ to 3000.0
(Time units are selected using setup data C64 to set Hour/min, Min/sec, 0.1 sec. Since a colon ": " cannot be displayed, the decimal point is used instead.)
(6) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state "-----" and the flashing stops.)

- Display (Code event with a timer function)

Unset values are indicated as "-----".

텽 Note

Timer code events use one subfunction. A subfunction cannot be used when a setting has not been made " \qquad -".
Events that follow the event number of a timer code event (number of output points less 1) are skipped and not displayed.

$!$ Handling Precautions

In a timer code event, an On Time or Off Time setting that is the same as or exceeds the segment time is invalid.
Note, however, that when there is a G.SOAK wait at the end of a segment or an END mode at the end of a program, an On Time or Off Time setting that is the same as the segment time is valid.

- When the event is an event off

Such event items on the programming map are skipped and not displayed.

- When the event is an instrument event

Such event items on the programming map are skipped and not displayed.

Setting PID groups and output limiter group number items

(1) In the set value display state, move to the PID group, output limiter group number item to be set for the segment on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting (PID group number). Setting range: ON-OFF, PID 0 to 9, PID A
(4) Press the ENTER key to stop the flashing on display panel 1 and display panel 2 starts flashing. (Start of second setting)
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state "Pld O/otL 0 " and the flashing stops.)
(5) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the second setting (output limiter group number).
Setting range: 0 to 9
(6) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 2 to return to unset state "Pld O/otL 0 " and the flashing stops.)

- Display

- Unset values are indicated as "Pld O/otL 0 ".
- When setup data C58 is set to 1, PID groups, output limiter group number items are skipped and not displayed.

Note
When a PID group or output limiter group number is not 0 or both are something other than 0 , they use a subfunction. A subfunction cannot be used when a setting has not been made "Pld 0/otL 0 ".

$!$ Handling Precautions

- When a set value for a PID group number is 0 , it is a sequel to a PID number in a previous segment. When the set value for a PID group number in the first segment is 0 , the set value is 1 .
- When a set value for an output limiter group number is 0 , it is a sequel to an output limiter group number in a previous segment. When the set value for an output limiter group number in the first segment is 0 , the set value is 1 .

Setting G.SOAK (guaranteed soak) items

(1) In the set value display state, move to the G.SOAK item to be set for the segment on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting - setting the G.SOAK type.
Setting range: 0 to 3
0: No G.SOAK
1: First G.SOAK segment
2: Last G.SOAK segment
3: Entire G.SOAK segment
(4) Press the ENTER key to stop the flashing on display panel 1 and display panel 2 starts flashing. (Start of second setting)
Note, however, that when the first setting is 0 , "-----" is shown in the second panel which does not flash.
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state " $g . S . O /----$ " and the flashing stops.)
(5) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the second setting (G.SOAK width). Setting range: 0 to 1000 SPU
(6) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state " $g . S . O /----$ " and the flashing stops.)

- Display

- Unset values are indicated as "g.S.O/-----"
- When setup data C59 is set to 1, a G.SOAK item on the programming map is skipped and not displayed.

When a G.SOAK setting is something other than 0 , it uses a subfunction.
A subfunction cannot be used when a setting has not been made " $g . S .0 /-----$ "

Setting PV shift items

(1) In the set value display state, move to the PV shift item to be set for the segment on the programming map.
(2) Press the ENTER key to make display panel 2 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting - setting the PV shift set value.
Setting range: -10000 to +10000 SPU
(4) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 1 to return to unset state "-----" and the flashing stops.)

- Display

- Unset values are indicated as "-----".
- When setup data C59 is set to 1 , a PV shift item on the programming map is skipped and not displayed.

PV shift uses a subfunction. A subfunction cannot be used when a setting has not been made "- \qquad -".

$!$ Handling Precautions

When PV shift is not set, it is a sequel to a PV shift value in a previous segment. When PV shift is not set in the first segment, the set value is 0 .

Setting repeat items

(1) In the set value display state, move to the repeat item to be set for the segment on the programming map.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting - setting the number of the return segment.
Setting range: 0 to segment number in setting
(4) Press the ENTER key to stop the flashing on display panel 1 and display panel 2 starts flashing. (Start of second setting)
Note, however, that when the first setting is 0 , "-----" is shown in the second panel which does not flash.
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state " r P. $0 /-----$ " and the flashing stops.)
(5) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the second setting (repeat segment times).
Setting range: 1 to 10000
(6) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 1 and 2 to return to unset state " r P. $0 /-----$ " and the flashing stops.)

- Display

- Unset values are indicated as "rP. $0 /-----$ ".
- When setup data C59 is set to 1 , a repeat item on the programming map is skipped and not displayed.

When the number of return segment is something other than 0 , it uses a subfunction.
A subfunction cannot be used when a setting has not been made " r P. $0 /----$-".

Setting PV start items

(1) In the set value display state, move to the PV start item to be set for the segment on the programming map.
(A PV start item is a program setting and is the same for each segment.)
(2) Press the ENTER key to make display panel 2 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting - setting the PV start value.
Setting range: 0 to 3
0 : no PV start
1: descending PV start
2: ascending PV start
3: bi-directional PV start
(4) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 2 to return to unset state " 0 " and the flashing stops.)

- Display

- A PV start item is a program setting and is the same for each segment.
- When setup data $C 60$ is set to 1 , a PV start item on the programming map is skipped and not displayed.

Note

A PV start item setting does not use subfunctions.

Setting cycle items

(1) In the set value display state, move to the cycle item to be set for the segment on the programming map.
(A cycle item is a program setting and is the same for each segment.)
(2) Press the ENTER key to make display panel 2 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting - setting the cycle value.
Setting range: 0 to 10000
(4) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 2 to return to unset state " 0 " and the flashing stops.)

- Display

- A cycle item is a program setting and is the same for each segment.
- When setup data $C 60$ is set to 1 , a cycle item on the programming map is skipped and not displayed.

A cycle item setting does not use subfunctions.

Setting pattern link items

(1) In the set value display state, move to the pattern link item to be set for the segment on the programming map.
(A pattern link item is a program setting and is the same for each segment.)
(2) Press the ENTER key to make display panel 2 flash (registration of first setting).
(3) Use the $\uparrow, \downarrow, \leftarrow$, and \rightarrow keys to make the first setting - setting the pattern link value.

Setting range: 0 to 49
0 : no pattern link
1 to 49: program number at pattern link destination
(4) Press the ENTER key to stop the flashing on display panel 2.
(Pressing the FUNC and CLR keys causes display panel 2 to return to unset state " 0 " and the flashing stops.)

- Display

- A pattern link item is a program setting and is the same for each segment.
- When setup data C60 is set to 1 , a pattern link item on the programming map is skipped and not displayed.

Note

A pattern link item setting does not use subfunctions.

Setting tag items

（1）In the set value display state，move to the tag item to be set for the segment on the programming map．
（A tag item is a program setting and is the same for each segment．）
（2）Press the ENTER key to display the cursor＂＿，＂below the leftmost of the 8 characters in the message panel＂［ ］＂field（registration of first setting）．
（3）Use the $\uparrow, \downarrow, \leftarrow$ ，and \rightarrow keys to make the first setting－selecting the 8 characters for the tag．The table below shows the 128 characters that can be used．
（4）Press the ENTER key and the cursor in the message panel disappears．
（Pressing the FUNC and CLR keys causes the message panel return to displaying an 8－character tag consisting of＂PROG＂，a two－digit program number and two space characters．The cursor is turned off．）
－Display

，key	，	1	7	？	G	0	W	－	ア	ッ	キ	ソ	又	マ	ラ	
	\＆	．	6	＞	F	N	V		F	ヨ	力	セ	ニ	ホ	ヨ	＊
	\％	－	5	$=$	E	M	U	］	－	ユ	オ	ス	ナ	へ	ユ	ン
\checkmark	\＄	，	4	＜	D	L	T	\ddagger	，	ヤ	エ	シ	卜	フ	ヤ	$ワ$
	\＃	＋	3	；	C	K	S	［	」	才	ウ	サ	テ	ヒ	モ	口
	＂	＊	2	：	B	J	R	Z	「	工	1	コ	ツ	ハ	x	レ
	！	）	1	9	A	1	Q	Y	－	ウ	ア	ケ	チ	ノ	ム	ル
		$($	0	8	＠	H	P	X		ィ	－	ク	タ	ネ	ミ	リ

A tag item setting does not use subfunctions．
The tag of CH1 program and CH2 program with same program number is common．

Deleting programs

(1) In the set value display state, move to the start of the segment pattern item to be deleted on the programming map.
Move to the first segment of the program to delete the entire program.
(2) Press the ENTER key to make display panel 1 flash (registration of first setting). (This the same as for pattern item settings.)
(3) Press the FUNC and CLR keys and you are prompted to confirm program deletion. "CLEAr" flashes in display panel 1.
(4) Press the ENTER key to delete the program.
(5) The set value display state appears and "-----" is shown in both display panel 1 and 2.

- Display

- Segments that have not been set and unset values for SP and time are indicated by "-----".
- A program that is running (in RUN, HOLD, FAST, END or READY FAST mode) cannot be deleted.

Inserting and deleting segments

(1) In the set value display state, move to insert segment or delete segment segment pattern item on the programming map.
(2) Press the FUNC and ENTER keys and you are prompted to confirm segment insertion. "InS." flashes in display panel 1.
(3) Press the \uparrow key and you are prompted to confirm segment insertion. "InS." flashes in display panel 1 . Press the \downarrow key and you are prompted to confirm segment deletion. " $d E L$." flashes in display panel 1.
(4) Pressing the ENTER key when " $/ n S$." is displayed in display panel 1 inserts the segment. Pressing the ENTER key when " $d E L$." is displayed in display panel 1 deletes the segment.
(5) The set value display state appears.

- Display (segment insertion)

- Display (segment deletion)

- When a segment is inserted, a new segment is automatically created and the numbers of subsequent segments are incremented by one.

The set value of the inserted segment is as follows:
Set SP value : same value as the original segment before insertion Set time value : 0:10, 1.0
Event items, PID groups, output limiter group number items, G.SOAK items, PV shift items and repeat items are not set.

- When the 99th segment has already been set, the segment insertion indication " $\ln S$." is not displayed.
- When 2000 segments have already been set, pressing the ENTER key to execute an insertion cannot be used to insert a segment.
- When segments are deleted, the following segments are moved up and the numbers of subsequent segments are decremented by one. When the final segment is deleted, the displayed segment becomes an unset segment.
- A program that is running (in RUN, HOLD, FAST, END or READY FAST mode) cannot be deleted.

8-2 Copying Programs

The DCP552 allows you to copy programs when it is in the READY program run mode. If not in this mode, press the DISP key to invoke the normal display mode.

Program copy procedures

(1) Invoke the program run READY program run mode. Set variable parameter PA01 to 0 or 1 and set variable parameter PA02 to 0 .
(2) Press the PROG key and the \uparrow, \downarrow, \leftarrow, or \rightarrow keys in the normal display mode to select the number of the program to be copied.
This is not possible when the program number is selected using external switch inputs.
See " Section 6-3 Selecting Programs" (page 6-11tfor details.
(3) Press the \uparrow key and the PROG key to display "COPY" in display panel 1. The number of the program to be copied starts to flash in display panel 2.
(4) Press the \uparrow, and \downarrow keys and currently unset program numbers that can be used as numbers for the program to be copied start to flash.
When there are no unset numbers, "------" is displayed in display panel 2.
(5) Press the ENTER key to start program copy and display panel 2 stops flashing. Programs in CH1 and CH2 are copied simultaneously. Repeat steps r and t to copy more programs.
Repeat steps (4) and (5) to copy more programs.
(6) When a program has been copied, press the DISP key.

- Display

8-3 General Reset

A general reset can be performed when the controller is in the READY AUTO mode in the normal display mode. If not in the normal display mode, press the DISP key to invoke it. A general reset has the following functions.
Program settings such as program numbers 1 to 49 are all deleted. Parameters are reset to their factory defaults and the READY AUTO program run mode is invoked.

General reset procedures

(1) Invoke the READY AUTO mode for both CH 1 and CH 2 . Or set variable parameters PA01 and PAO2 to 0 .
(2) Press the FUNC, CLR and MESSAGE keys and you are prompted to confirm a general reset. "g.rESt" is displayed in display panel 1.
(3) Press the ENTER key to execute the general reset and start startup operations that occur after a power up.
Press the DISP key cancels the general reset and returns the normal display mode.

- Display

In the constant value control mode, program number, segment number and profile display go off.

- When the RAM backup fails at startup, the controller automatically prompts you to confirm a general reset - no key input is required - and " $g . r E S t$ " flashes in display panel 1.
Press the ENTER key to execute the general reset. All other keys are invalid.
- A general reset does not return the following settings to factory default values. C01, C02, C11, C12, C21 C22: these values are stored.
Note, however, that a general reset resulting from a RAM failure at startup resets also these settings to factory default values.

Chapter 9. MEMORY CARD OPERATIONS

9-1 Memory Card Type and Functions

A memory card can be used to store the setup data, variable parameters, PID parameters (including constant value control data), event configuration data and multiple programs required by one DCP552.

䀦 NOTE

-This chapter is not applicable to the DCP552B***** model.

- Memory card types

The following memory cards can be used by the DCP552:

Model No.	Memory type	Battery	Capacity (Byte)	No. of programs
SKM008A	RAM	Not replaceable	7.00 K	Max. 10
SKM016A	RAM	Not replaceable	14.50 K	Max. 26
SKM064A	RAM	Not replaceable	61.75 K	Max. 49
SKM256C	RAM	Replaceable	251.00 K	Max. 49
SKM008E	EEPROM	Not necessity	7.00 K	Max. 10
SKM032E	EEPROM	Not necessity	29.75 K	Max. 49

- Memory card functions
- Save: (write)

Saves selected DCP552 data on the memory card.

- Load: (read)

Loads selected memory card data onto the DCP552.

9-2 Save Procedures

Insert a memory card when the DCP552 is in the READY mode and the normal display mode. Press the SAVE key to start a save operation. "CArd" is displayed in display panel 1 and "SAVE" is displayed in display panel 2. An error code appears if something should go wrong during the save operation.

Save menu

When the SAVE key is pressed in the normal display mode, the save menu panel is displayed. Use the \uparrow and \downarrow keys to select the desired menu.
Press the ENTER key to display the desired menu in the message display panel.
The DISP key returns you to the normal display mode.

Formatting cards

This procedure is used to format memory cards so that they can be used with the DCP552. A card has to be formatted once only. Note that any programs or parameters on a card that is formatted are deleted in this process.

Saving single programs

This procedure is used to save one program on the DCP552 to a memory card.

Saving all programs

This procedure saves all programs on the DCP552 on a memory card. The program numbers used in the DCP552 are converted to file names on the memory card.
When the "Overwrite" save function is selected, files on the card that have the same number as those in the DCP552 are overwritten by the DCP552 files.
When the "Skip" save function is selected, files on the card that have the same number as those in the DCP552 are left as they are and the next number file is selected for processing.

Saving setup data

This procedure saves the DCP552 setup data on a memory card.

Saving variable parameters

This procedure saves the DCP552 variable parameter data on a memory card.

Saving PID parameters

This procedure saves PID parameters and constant value control data on a memory card.

Saving event configuration data

This procedure saves event configuration data on a memory card.

Saving all parameters

This procedure saves all parameters on a memory card.

9-3 Load Procedures

Insert a memory card when the DCP552 is in the READY mode and the normal display mode, and variable parameter PA05 has been set to 0 . Press the LOAD key to start a load operation. "CArd" is displayed in display panel 1 and "LOAd" is displayed in display panel 2. An error code appears if something should go wrong during the save operation.

Load menu

When the LOAD key is pressed in the normal display mode, the load menu panel is displayed. Use the ENTER key to select the desired menu.
Press the ENTER key to display the desired menu in the message display panel. The DISP key returns you to the normal display mode.
Note, however, that an autoload operation is performed when the LOAD key is pressed and variable parameter PA05 is set to 1 .
For details, see "Section 9-4 Autoload" (page 9-10).
A RAM memory card whose internal batteries are too low, cause a card battery alarm panel to be displayed before the Load menu panel is displayed.

Card battery alarm panel

When the voltage of the internal battery in a RAM card is too low, the data saved on the disk may be corrupted. Loading corrupted data onto the DCP552 will cause maloperation. Do not use a card whose battery voltage is too low. If you want to load the data anyway, select "Ignore" in this panel and press the ENTER key. This displays the load menu. To return to the normal display mode, select "Quit" or press the ENTER key or the DISP key.

Card battery alarm screen

Loading individual programs

This procedure loads single memory card files on the DCP552.

Loading all programs

This procedure loads all programs on the memory card in the DCP552. The file numbers used on the memory card are converted to file numbers used in the DCP552.
When the "Overwrite" load function is selected, programs in the DCP552 that have the same number as those on the card are overwritten by the card programs. When the "Skip" load function is selected, programs in the DCP552 that have the same number as those on the card are left as they are and the next number is selected for processing.

Loading setup data

This procedure loads setup data on the memory card onto the DCP552.
Data delete check

Loading variable parameters

This procedure loads variable parameters on the memory card onto the DCP552.
Data delete check

- Procedures for loading PID parameters

This procedure loads PID parameters and constant value control data on the memory card onto the DCP552.

Data delete check

Loading event configuration data

This procedure loads event configuration data on the memory card onto the DCP552.
Data delete check

Loading all parameters

This procedure loads all parameters on the memory card onto the DCP552.

! Handling Precautions

The DCP552 Mark II and the old model, DCP552, differ in how some setup data items are processed and the range of variable parameter PA15. Thus the following changes have to be made when setup data, variable parameters or all parameters saved on a DCP552 are loaded onto a DCP552 Mark II.

- Setup data : C21, C22, C45 to C50, C80, C90 to C97
- Variable parameters: PA15, PA25

Setup data and all parameters stored on a DCP552 Mark II cannot be loaded onto a DCP552. (A loading attempt generates card error 16.)

9-4 Autoload

Insert a memory card, press the LOAD key or use external switch inputs in the READY mode and the normal display mode to load file number 1 in CH 1 and CH 2 on the memory card as program 1 onto the DCP552.

Key operated autoload procedure

- Conditions

Memory card : Program has been saved to file number 1
Variable parameter : PA05 set to 1
Mode : READY mode, normal display mode

- Operation and action

Insert a memory card and press the LOAD Key.
The DCP552 operates as follows.

- "AUtO" is displayed in display panel 1 and "LOAd" is displayed in display panel 1.
- When program number 1 has been loaded onto the DCP552, program number 1 disappears.
- File number 1 on a memory card is loaded onto the DCP552 as program number 1.
- When a load operation is successful, the "AUtO" and "LOAd" indications go off and the normal display mode appears. Unless the number of a program is selected using external switch inputs, program 1 in segment 1 is selected.
- If the load operation fails, the " $A U t O$ " and "LOAd" indications stay on and an error code is displayed in the message panel.
When an error has occurred, press the DISP key to return to the normal display mode.

! Handling Precautions

A normal load operation is not possible when variable parameter PA05 is set to 1. A normal load operation requires that parameter PA05 is set to 0.

Auto load using external switch inputs

- Conditions

Memory card : Program saved to file number 1
Setup data : any of C71 to C74 is set to 8 (autoload)
Mode : READY mode, normal display mode

- Operation and action

Insert a memory card and turn off the external switch used for autoload and turn it back on again.
The DCP552 operates as follows.

- "AUtO" is displayed in display panel 1 and "LOAd" is displayed in display panel 2.
- When program number 1 has been loaded onto the DCP552, program number 1 disappears.
- File number 1 on a memory card is loaded onto the DCP552 as program number 1.
- When a load operation is successful, the "AUtO" and "LOAd" indications go off and the normal display mode appears.
Unless the number of a program is selected using external switch inputs, program 1 in segment 1 is selected.
- If the load operation fails, the "AUtO" and "LOAd" indications stay on and an error code is displayed in the message panel.
When an error has occurred, press the DISP key to return to the normal display mode.

$!$ Handling Precautions

Variable parameter PA05 can be set to 1 or 0 .

9-5 Error Message List

When an error occurs, error messages such as "Card Error-XX" (XX denotes error code) are displayed on the message panel during memory card operations. The table below lists the error codes and explain their meaning. Memory card operations are aborted when an error occurs.
To return to the normal display mode, press the DISP key.

Code	Meaning	Remedial measures
1	Card insertion failure or card removed	Do over.
2	Card write protect	Replace the card, or reset the protect by SLP550.
3	Card read protect	Replace the card, or reset the protect by SLP550.
4	Bad card	Replace the card.
5	Invalid card format	Initialize the card.
6	Card data full	Erase unnecessary files, or initialize the card.
7	Card busy	Do over.
8	File write protect	Initialize the card.
9	Card access error	Do over.
11	Card access sequence error	Do over.
12	FAT abnormal	Initialize the card.
14	Card access sequence error (in file control)	Do over.
15	Card battery voltage drop (warning)	Replace the card, replace the card battery (If replaceable).
16	Wrong file version	Create new file, and create new data.
17	Data or file are missing.	Create new file, and create new data.
18	DCP552 data full (program load)	Delete unnecessary programs in the DCP552.
19	DCP552 hardware error (load error)	Do over.
20	Card data invalid	Do over.
21	Card data check sum error (program data)	Operate the instrument again, or check the program setting of the DCP552.
22 to 36	Card data check sum error (parameter data)	Operate the instrument again, or check the parameter setting of the DCP552.
37	Memory protect error (loading the data is protected by the variable parameter PAO2.)	SetDCP552 variable parameter PAO2 to 0 to cancel protection.
43	No alternate areas remain on the E 2 PROM card	Replace the card.
44	Error occurred in writing to alternate area on E^{2} PROM card	Replace the card.
63	Card battery voltage drop (error)	Replace the card, replace the card battery (If replaceable).
64	File abnormal (card was removed)	Create new file, and create new data.

Chapter 10.MAINTENANCE AND TROUBLESHOOTING

10-1 Self-Diagnostic Functions and Alarm Code Displays

The DCP552 is equipped with the self-diagnostic functions described below. Alarm codes and the result of selfdiagnostics are listed on the following pages.

Maintenance

- Cleaning

If the device is dirty, wipe it with a soft dry cloth. Never use an organic solvent like benzene or thinner

■ Power ON self-diagnostic routines

- RAM backup failures

This routine is designed to detect errors in the RAM backup function. When a failure is detected, a general reset is performed. No alarm code is displayed.

- Board configuration failures

This routine detects failures caused when boards (circuit boards) not designed to be used with the DCP552. Alarm codes are displayed when errors are detected.

Self-diagnostic routines performed each sampling cycle

- Analog input failures

Failures are detected when the analog input signal due to disconnection or other cause lies outside the -10.0 to $+110.0 \%$ range.
Alarm codes are displayed when errors are detected.

Self-diagnostic routines performed continuously during operation

- PROM failures

This routine is designed to detect errors in system programs stored in the PROM. Not totally infallible, there are cases where errors go undetected and result in measuring device operation failure.
Alarm codes are displayed when errors are detected.

- Adjustment data failures

This routine detects errors in analog inputs and output adjustment data stored in non-volatile memory. Alarm codes are displayed when errors are detected.

- Program failures

This routine detects failures in program setting data stored in a backup RAM. Alarm codes are displayed when errors are detected.

- Parameter failures

This routine detects failures in parameters stored in a backup RAM. Alarm codes are displayed when errors are detected.

- Low battery voltage

Alarm code display

The DCP552 is designed to alternate display of the following alarm codes and normal display items in one-second intervals on display panel 1 when input failures or instrument system failures are detected.
In cases of multiple alarm codes, display of the codes is alternated with normal display items, starting in order from the alarm code with the smallest number.

Alarm classification

$$
\begin{array}{ll}
\text { PV range alarm group } & : A L 01 \text { to } A L 04 \\
\text { Measuring instrument alarm group }: & A L 90 \text { to } A L 99, \text { and battery voltage drop } \\
& \text { (In case of battery voltage drop, BAT LED } \\
& \text { of the console is flickered.) }
\end{array}
$$

Alarm code	Alarm name	Contents	Countermeasure
AL01	PV1 overrange	PV1 is more than 110% FS.	Check PV1.
ALO2	PV1 underrange	PV1 is less than -10% FS.	
ALO3	PV2 overrange	PV2 is more than 110% FS.	Check PV2
AL04	PV2 underrange	PV2 is less than -10% FS.	
AL07	Oxygen sensor impedance error	Oxygen sensor impedance exceeded 130Ω.	Replace the oxygen sensor.

*1: When $A L 90$ is generated, the alarm code stays on and continued operation is disabled.
*2: Data checks performed by AL93 and AL97 may fail to detect corrupted data. When this happens, the alarm can be turned off by entering normal data.

Display behavior and alarm code upon input burnout

Display behavior (upscale/downscale) and alarm code upon input burnout differ depending on the input type.

Input type	Display behavior	Alarm code
Thermocouple	Upscale(110\%)	ALO1 or ALO3
Resistance temperature detector	Upscale (110%)	ALO1 or ALO3
DC voltage 1V or less	Upscale (110%)	ALO1 or ALO3
DC voltage 5V or more	Downscale (-10%)	ALO2 or ALO4
DC current	Downscale((-10%)	ALO2 or ALO4

Procedures to correct key input related problems are described below.

Normal display mode problems

- Modes and channels cannot be changed using keys

Cause	Measure
Normal display mode not on	Press DISP key to invoke normal display mode.

- Program number does not start flashing when PROG key is pressed

Cause	Measure
Program selection of external switch input is not 0.	Turn off all external switch inputs SW9 to 14.
Not set to READY mode.	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Set to fixed command control mode.	Set fixed command control data ConSt setting to 0.
Set to key lock.	Set variable parameter PA01 between 0 to 2.

- RUN mode cannot be invoked with the RUN/HOLD key

Cause	
Program selected in READY mode is unset. It is not possible to change to the RUN mode if CH1 and CH2 programs are not set in synchronous mode (variable parameter PA04 set to 1)	Select the set program.
Set to END mode.	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Set to key lock.	Set variable parameter PA01 between 0 to 2.

- HOLD mode cannot be invoked with the RUN/HOLD key

Cause	Measure
Set to READY or FAST mode.	The HOLD mode is available from READY and FAST modes by pressing the RUN key. Press the RUN/HOLD key once again.
Set to END mode.	Perform a reset operation (press the PROG, RUN and HOLD keys). Invoke the READY mode and perform a RUN operation (press the RUN/HOLD key) to go to the RUN mode.
Set to fixed command control mode.	Set fixed command control data ConSt to 0.
Set to key lock.	Set variable parameter PA01 between 0 to 2.

- RESET is not possible with the PROG, RUN and HOLD keys.

RESET is available in the READY program run mode and returns operations to the first segment.

Cause	Measure
Set to READY mode.	Perform a RUN operation (press the RUN/HOLD key) to go to the RUN mode. (A reset operation can also be performed in the READY mode using external switch inputs or transmission.
Set to key lock.	Set variable parameter PAO1 between 0 to 2.

- ADV cannot be invoked with PROG and DISP keys

Cause	Measure
Set to READY mode.	Perform a RUN operation (press the RUN/HOLD key) to go to the RUN mode. (ADV operation can be performed in the READY mode with external switches or through transmission.)
Set to END mode.	Perform a reset operation (press the PROG, RUN and HOLD keys.). Invoke the READY mode and perform a RUN operation (press the RUN/HOLD key) to go to the RUN mode.
Set to fixed command control mode.	Set fixed command control data ConSt setting to 0.
Set to key lock.	Set variable parameter PAO1 between 0 to 2.

- FAST mode cannot be invoked with FUNC and \rightarrow keys

Cause	Measure
Set to program time unit as 0.1 sec.	Set 0 or 1 setup data C62 setting.
Set to END mode.	Perform a reset operation (press the PROG, RUN and HOLD keys). Invoke the READY mode and perform a RUN operation (press the RUN/HOLD key) to go to the RUN mode.
Set to fixed command control mode.	Set fixed command control data ConSt setting to 0.
Set to key lock.	Set variable parameter PA01 between 0 to 2.

MANUAL mode cannot be invoked with A/M key

Cause	Measure
On-off control is set in P setting $=0.0$.	Set the P setting for a currently used PID group to something other than 0.0 to switch from ON-OFF control to PID control.
On-off control is set with segment PID group number $=$ on-off.	Set the segment PID group number between 1 to 9 or to A to switch to PID control.
Set to key lock.	Set variable parameter PAO1 between 0 to 2.

- AUTO mode cannot be invoked with A/M key

Cause	Measure
Set to key lock.	Set variable parameter PAO1 between 0 to 2.

- Autotuning (AT) cannot be started with AT key

Cause	Measure
Set to READY mode. (With variable parameter PA08 and PA93 setting $=1$ or 2)	Set RUN mode to execute RUN operation (RUN/HOLD key).
Set to except READY mode. (With variable parameter PA08 and PA93 setting $=3$ or 4)	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Set to MANUAL mode.	Set AUTO mode to execute AUTO operation (A/M key).
PV overrange.	Connect PV input correctly to obtain normal input conditions.
AT is set to off	Set variable parameter PA08 and PA93 to something other than 0.
Set to key lock.	Set variable parameter PA01 between 0 to 2.

- Autotuning cannot be canceled with AT key

Cause	Measure
Set to key lock.	Set variable parameter PA01 between 0 to 2.

- PID parameter setting state cannot be invoked with PID key
- Event configuration setting state cannot be invoked with FUNC and PARA keys

Cause	Measure
Normal display mode not on	Press DISP key to invoke normal display mode.
Set to key lock.	Set variable parameter PA01 to 0 or 1.
The programmer function is set.	Set setup data C21 to any value other than 0.

- Setup data setting state cannot be invoked with SETUP key

Cause	Measure
Normal display mode not on	Press DISP key to invoke normal display mode.
Mode other than READY	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Set to key lock.	Set variable parameter PA01 to 0.

- Constant value control data setting state cannot be invoked with FUNC and PID keys

Cause	Measure
Normal display mode not on	Press DISP key to invoke normal display mode.
Mode other than READY	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Set to key lock.	Set variable parameter PA01 to 0 or 1.

- Program setting state cannot be invoked with FUNC and PROG keys

Cause	Measure
Normal display mode not on	Press DISP key to invoke normal display mode.
Set to fixed command control mode.	Set fixed command control data ConSt setting to 0.
Set to key lock.	Set variable parameter PAO1 to 0 or 1.

- Program copy is not possible with \uparrow and PROG keys

Cause	Measure
Mode other than READY	Press DISP key to invoke normal display mode.
Set to be except READY mode.	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Program selected in READY mode is unset.	Select number of a set program.
Fixed command control mode is on.	Set fixed command control data ConSt to 0.
Program protected	Set variable parameter PAO2 to 0, 2 or 4.
Set to key lock.	Set variable parameter PAO1 to 0.

General reset is not possible with FUNC, CLR and MESSAGE keys

Cause	Measure
Normal display mode not on	Press DISP key to invoke normal display mode.
Mode other than READY mode	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Set to MANUAL mode.	Set AUTO mode to execute AUTO operation (A/M key).
Set to memory protect.	Set variable parameter PAO2 to 0.
Set to key lock.	Set variable parameter PAO1 to 0.

Parameter setting related problems

- Registration state cannot be invoked with ENTER key

Cause	Measure
---- displayed in display panel 2	This item cannot be displayed or set. To change setting connection item, it may be able to change or set.
Data displayed in display panel 2 cannot be changed.	This item is display only.
Set to memory protect.	Set variable parameter PA02 to 0.

Program setting related problems

- Registration state cannot be invoked with ENTER key

Cause	Measure
Set to memory protect.	Set variable parameter PA02 to 0,2 or 4.

Item changes cannot be made with \uparrow and \downarrow keys

Cause	Measure
Not pattern item set.	Set SP and time data.

- SP values in program settings cannot be changed with \uparrow and \downarrow keys

Cause	Measure
SP limit sets error value.	Set correct value for setup data $C 66, C 67, C 69$ and $C 70$.

- Event items cannot be displayed with \uparrow and \downarrow keys

Cause	Measure
Event type is something other than segment type.	Set the event type in the event configuration data to a value between 1 and 23.
No event has been assigned to selected channel.	Set correct value for setup data C64.
Programming item sets no display.	Set setup data C57 to 0.

- PID group, output limiter group number items cannot be displayed with \uparrow and \downarrow keys

Cause	Measure
Programming item display off	Set setup data C58 to 0.

- G.SOAK items, PV shift items and repeat items cannot be displayed with \uparrow and \downarrow keys

Cause	Measure
Programming item display off	Set setup data C59 to 0.

- PV start items, cycle items and pattern link items cannot be displayed with \uparrow and \downarrow keys

Cause	Measure
Programming item display off	Set setup data C60 to 0.

- Segment insertion and deletion cannot be confirmed with FUNC and ENTER keys

Cause	Measure
Set to memory protect.	Set variable parameter PAO2 to 0, 2 or 4.
Program being set is running (in RUN, HOLD, FAST, END, READY FAST).	Set READY mode to execute RESET operation (PROG + RUN/HOLD keys).
Not set to pattern item on programming map.	Move to the pattern item on the programming map.
This segment is not set on the programming map.	Move to a set segment or set the segment.

- Program deletion cannot be confirmed with FUNC and ENTER keys during pattern item registration

Cause	Measure
Program being set is running (in RUN,	Set READY mode to execute RESET operation (PROG + HOLD, FAST, END, READY FAST).

10-3 When the BAT LED Flashes

$!$ Handling Precautions

Batteries that have been stored for long periods have been subject to selfdischarge and have a short service life. If required, buy new batteries.

BAT LED flashes

The BAT LED starts flashing when low battery voltage is detected. The voltage level set in memory that trigger the LED is higher than minimum level required for storing data.
Thus data loss is thus not imminent when the LED starts flashing.
Note, however, that memory data corruption has probably occurred when the BAT LED starts flashing at power up after the DCP552 has been stored for long periods disconnected from the power line.

Replacing the battery

Parameter settings and program settings are stored in RAM memory. The RAM is backed up by a battery and data persist through a power down. When the battery is depleted, turning off the DCP552 causes the data stored in RAM to be lost.

\triangle CAUTION

(1)
Be sure to turn off the power supply when you are replacing the batteries. Failure to heed this warning may lead to electric shock.

Be sure not to touch internal components during battery replacement or just after the power has been turned. This may result in burn injuries.

- Make sure that the batteries are inserted with the plus (+) and minus (-) poles correctly oriented.
- Do not use damaged batteries or batteries that leak.
- Do not throw batteries into a fire, recharge, disassemble or expose them to heat.
- Store batteries in a cool, dry place.

Failure to heed these cautions may result in burns or battery leakage.
Batteries should be kept out of reach of children, since they may swallow them. Should a child swallow a battery, contact a doctor immediately.

Do not throw used batteries into a fire or discard them as general garbage.

Before you touch internal components, be sure to discharge any static electricity on your body by touching a metal ground connector. Failure to heed this caution may lead to equipment damage.

- Items to be provided by the user

[^1]
Battery replacement procedures

Handling Precautions

- Replace the old battery with a lithium battery (model no.:81446140-001). Batteries can be ordered from Azbil Corporation sales or service office.
- Do not use metal tools to remove or attach battery connectors as this could short-circuit electric circuits inside.
- A capacitor backs up the memory during battery replacement. To charge this capacitor, supply power to the DCP552 for about 10 minutes.
Replace the battery less than 24 hours after the power supply has been turned off.

When the BAT LED starts flashing, replace the battery according to the following instructions.
(1) Leave the power on for 10 minutes.
(2) Turn off the power
(3) Open the console key cover and remove the lock screw under the ENTER key using a Phillips screwdriver.
>> Slide the controller out of the case.

(4) To prevent static discharges, remove all static electricity from your body.
(5) Slide the controller completely out of the case.
\gg The battery is located on the right side as seen from the front of the controller.

(6) Place the controller on a desk upside-down so that the battery is easily accessible.
(7) Disconnect the connectors.
(8) Open the tab on the black clip that secures the battery and lift out the battery.

(9) Remove the old battery from the clip.
(10)Insert the new battery in the clip.
(11)Orient the positive pole of the battery forwards and press the clip with the battery into the square opening.
(12)Insert the connectors in the printed circuit board.
(13)Slide the controller back into the case.
(14)Open the key cover and firmly tighten the lock screw under the ENTER key using a Phillips screwdriver.
(15) When all procedures have been completed, affix a label giving the date when the battery should be replaced next time in an easy to see location on the controller.
(16)Turn on the power to make sure that the BAT LED does not go on.

Note

- Guidelines for battery service life are given below.

When the DCP552 is stored with the power off under standard conditions (ambient temperature $23 \pm 2^{\circ} \mathrm{C}$): 5 years
When the DCP552 is stored with the power on under standard conditions (ambient temperature $23 \pm 2^{\circ} \mathrm{C}$): 10 years
Battery life is reduced when stored at higher temperatures.

- When the BAT LED is flashing, memory data is protected if the power is on.
- When the data in memory is corrupted, one of the following two conditions will occur.
(1) "g.rESt" is displayed at power up and normal operation is not possible. (Press the ENTER key to perform a general reset and reset parameters to their factory default values and delete all program settings.)
(2) Normal operation can be started at power up but one of the alarm codes AL93 to AL97 are displayed.

10-4 External Switch Operation Problems

- RUN mode cannot be started with SW1

Cause	Measure
Program pattern is not set on one channel.	Change the ON/OFF settings of SW15 and SW16 so that the unset channel is disabled. For details, see "External switch input" on page 6-12.
Set a program pattern on both channels.	

- Program cannot be correctly selected with SW9 to SW14

Cause	Measure
The setting for BCD/binary bits does not match the external switch operation.	Make sure the external switch input matches the C75 setup data setting. For details, see "External switch input" on pages 6-12 and $6-13$.

Chapter 11. DISPOSAL

When discarding, remove the battery and dispose of both the product and the battery as industrial waste, following local regulations.

- Battery removal method

See ■ Replacing the battery in Chapter 10. MAINTENANCE AND TROUBLESHOOTING of this user's manual.

Chapter 12. SPECIFICATIONS

12-1 Specifications

Item		Specifications
Program section	No. of programs	49 programs $\times 2$ channels
	No. of segments	99 segments/1 program, or a total of 2000 segments
	Segment setting system	RAMP-X: Setting by set points (SP) and time. RAMP-T: Setting by set points (SP) and slope (θ). RAMP-E: Setting by set points (SP) or \triangle SP per pulse of external switch input.
	Segment time	0 to 500 hours $00 \mathrm{~min}, 0$ to 500 min 00 sec , or 0.0 to 3000.0 sec (Time unit is switchable.)
	Segment slope	1 to $10000 \mathrm{U} / \mathrm{hours}, 1$ to $10000 \mathrm{U} / \mathrm{min}$, or 1 to $10000 \mathrm{U} / \mathrm{sec}$ (Time unit is switchable.)
	Segment \triangle SP	1 to $10000 \mathrm{U} / 1$ pulse
	No. of sub-function	4000 settings
	Sub-function function	Event, PID group, output limiter group, G.SOAK, PV shift, repeat
	Event (16 point)	Operating point set as specified by event type.
	PID group setting	Group 0 (continuing from previous segment), groups 1 to 9 , group A (automatic changeover) and ON-OFF control settable.
	Output limiter group	Group 0 (continuing from previous segment), groups 1 to 9 settable
	G.SOAK	Type (start point, end point, all) and G.SOAK width 0 to 1000U settable
	PV shift	-10000 to +10000 U settable
	Repeat	Return segment number and repeat count settable.
	PV start	Type settable for each program (ascending, descending and bi-directional)
	Cycle	Cycle count number settable for each program
	Pattern link	Program numbers 0 to 49 (program 0 without link) settable for each program
	Tag	8 characters consisting of alphanumerics, katakana and symbols settable for each program
	Basic time accuracy	$\pm 0.01 \%$ (segment time setting $=0$, repeat; each cycle and repeat slows the process by 0.1 sec)
Input section	Input type	```Thermocouple: K,E,J,T,B,R,S (JIS C1602-1981) WRe5-26 (Hoskins Data) PR40-20 (Johnson Matthey Data) N (N.B.S. Monograph 161) PLII (Engelhard Industries Data (IPTS68)) \(\mathrm{Ni}-\mathrm{NiMo}\) (General Electric Data) Gold iron chromel (Hayashidenko Data) Resistance temperature detector (RTD): Pt100,JPt100 (JIS C1604-1989) DC current: \(\quad 4\) to \(20 \mathrm{~mA}, 2.4\) to 20 mA DC voltage: 0 to \(10 \mathrm{mV},-10\) to \(+10 \mathrm{mV}, 0\) to \(100 \mathrm{mV}, 0\) to \(1 \mathrm{~V},-1\) to +1 V , 1 to \(5 \mathrm{~V}, 0\) to \(5 \mathrm{~V}, 0\) to 10 V O2 sensor: PV2 in models with carbon potential compensation is tied to the O 2 sensor. Multi-range of thermocouple, resistance temperature detector, DC voltage, and DC current(see page 2-8).```
	Input sampling cycle	0.1 s
	Input bias current	Thermocouple, DC voltage input: Max. $\pm 1.3 \mu \mathrm{~A}$ (peak value, under standard conditions). The range higher than 1 V is Max. $-3 \mu \mathrm{~A}$.
	Input impedance	DC current input: approx. 50Ω (under operating conditions)
	Measurement current	RTD input: approx. 1mA, Current input on terminal A. (under operating conditions)
	Influence of wiring resistance	Thermocouple, DC voltage input: Thermocouple $: 0.5 \mu \mathrm{~V} / \Omega$ DC voltage (lower than 1 V range) $: 0.5 \mu \mathrm{~V} / \Omega$ DC voltage (5V range) $: 3 \mu \mathrm{~V} / \Omega$ DC voltage (10V range) $: 6 \mu \mathrm{~V} / \Omega$ Resistance temperature detector input: Max. $\pm 0.01 \% \mathrm{FS} / \Omega$ within wire resistor 0 to 10Ω The ranges of F01, F33, P01, and P33 are $\mathrm{Max} . \pm 0.02 \% \mathrm{FS} / \Omega$.
	Allowable wiring resistance (Resistance temperature detector input)	- The ranges except F01, F33, P01, and P33 are lower than 85Ω. - The ranges of F01, F33, P01, and P33 are lower than 10Ω.
	Allowable parallel resistance	Thermocouple disconnection detection allowable parallel resistance : Higher than $1 \mathrm{M} \Omega$
	Max. allowable input	Thermocouple, DC voltage input: -5 to +15 V dc DC current input $: 50 \mathrm{~mA} \mathrm{dc}, 2.5 \mathrm{~V}$ dc

Item		Specifications
Input section	Burn out	Burnout on/off selectable
	Range over assessment	100% FS or more: upscaled -10% FS or less : downscaled (However, inputs in the F50 range are not downscaled.)
	Cold junction compensation accuracy	$\pm 0.5^{\circ} \mathrm{C}$ (under standard conditions)
	Cold junction compensation system	Internal or external compensation (at $0^{\circ} \mathrm{C}$) selectable
	Scaling	-19999 to +20000U (Only linear input settable. Reverse scaling and optional decimal point position settable.)
	Root extraction	Drop out 0.2 to 10.0%. DC current and DC voltage range settable.
	PV equalizer (linearization)	PV1: 9 brend lines (10 settings) PV2: 9 brend lines (10 settings) CP : 9 brend lines (10 settings)
	Input bias	-1000 to +1000 U variable
	Digital filter	0.0 to 120.0 sec variable (0.0: Filter off)
External switch input section	Number of input point	16 points
	Connectable output type	No-voltage contact (relay contact), and open collector (sink current toward OV)
	Open terminal voltage	$8.5 \mathrm{~V} \pm 0.5 \mathrm{~V}$ during common terminal ((12) and (40) terminals) and every input terminal (under operating conditions)
	Terminal current in case of short circuit	Current to run every terminal is about 6 mA (under operating conditions)
	Allowable contact resistance (no-voltage contact)	On condition: Lower than 250Ω (under operating conditions) Off condition: Higher than $100 \mathrm{k} \Omega$ (under operating conditions)
	Allowable residual current (open collector ON)	Lower than 2 V (under operating conditions)
	Leakage current (open collector OFF)	Lower than 0.1 mA (under operating conditions)
	Parallel connection to other instrument	Connectable with Azbil Corporation SDC40 or SDC10 series
	Allocation (fixed)	RUN, HOLD, RESET, ADV, program number, CH 1 and CH 2 operation canceled
	Allocation (variable)	RAMP-E, FAST, AT, AUTO/MANUAL, G.SOAK reset, auto load, O2 sensor check
	Input sampling cycle	0.1 s
	On detection Min. hold time	0.2 s (program number is 0.4 s)
Display and setting section	Display panel 1	Digital 5 digits, 7 segments, green Indicates PV and other data in basic display status, indicates an item code in parameter setting status.
	Display panel 2	Digital 5 digits, 7 segments, orange Indicates SP, output \%, and other data in basic display status, indicates a set point of item in parameter setting status.
	Program number display	Digital 2 digits, 7 segments, green Indicates a program number in basic display status.
	Segment number display	Digital 2 digits, 7 segments, green Indicates a segment number in basic display status, indicates a item number in parameter setting status. Indicates an alarm code number when an alarm occurs.
	Message display panel	Indicates output graph, deviation graph, event status, program tag, and other data in basic display status, Displays reference messages during parameter and program settings. Indicates operations and operation results during memory card operation.
	Profile display	7 flat LED, orange Indicates the rising, soaking, and falling tendencies of program pattern.
	Each status display	22 flat LED Mode $:$ RUN, HLD, MAN, PRG (green) Display contents: PV, SP, OUT, TM, CYC, SYN, DEV (green), EG1, EG2 (red) Battery voltage $:$: BAT (red) (flickers when the battery voltage has dropped.) Status : AT (green)
	Operating keys	18 rubber keys (DCP552A***** model), 16 rubber keys (DCP552B***** model)
	Loader connection port	1 (Using exclusive connection cable, stereo pin jack)

Item		Specifications	
Mode	Program run mode	READY : Preparation state (control stop, select of program number is possible.) RUN : Advancing run state HOLD : Hold run state FAST : Fast feed run state END : End point run state READY FAST : Preparation and the fast feed state	
		AUTO : Automatic run state MANUAL : Manual run state (output is operatable to console)	
	Fixed command control mode	READY : Preparation state (control stop) RUN Run state	
		AUTO : Automatic run state MANUAL : Manual run state (Enables manual output from system console.)	
Control section	PID control	Proportional band (P)	0.0 to 1000.0\% (0.0: On-off control)
		Integral time (I)	0 to 3600s (0: PD control)
		Derivative time (D)	0 to 1200s (0: Pl control)
		Manipulated variable limit	Low-limit : -5.0% to high-limit High-limit : Low-limit to $+105.0 \%$
		Manual reset	0.0 to 100.0\%
		No. of PID groups	16 groups for program operation (9 segment specific and 7 automatic zone selecting)
		PID groups selection	Segment specified, automatic zone selectable during program run
		Manipulated variable change	0.1 to $110.0 \% / 0.1 \mathrm{~s}$
		Auto tuning	Automatic setting of PID value by limit cycle method
		On-off control differential	0 to 1000U
	Normal reverse operation selection	Selection is settable	
Output section	Auxiliary output	Type	SP1, PV1, deviation 1, MV1, SP2, PV2, deviation 2, O 2 sensor mV value
		Scaling	Possible
	Current output (5G) CH1,CH2 Auxiliary output $\mathrm{CH} 1, \mathrm{CH} 2$	Output current $: 4$ to 20 mA dc Allowable load resistance $:$ Lower than 600Ω (under operating conditions) Output accuracy $:$ Lower than $\pm 0.1 \%$ FS (under standard conditions) Output resolution $: 1 / 10000$ Max. output current $: 21.6 \mathrm{~mA}$ dc Min. output current $: 2.4 \mathrm{~mA}$ dc Output update cycle $: 0.1 \mathrm{~s}$ Open time terminal voltage $:$ Lower than 25 V	
	Voltage output (6D) $\mathrm{CH} 1, \mathrm{CH} 2$	Allowable load resistance : Lower than 600Ω (under operating conditions) Load current adjustment $: 2$ to 22 mA variable Open time terminal voltage Off time leakage current Lower than 25 V Output response time Lower than $100 \mu \mathrm{AA}$ Lower than 0.5 ms on to off at 600Ω load Output resolution Lower than 0.5 ms off to on at 600Ω load Time proportional cycle $: 1 / 1000$ $: 1$ to 240 s variable	

Item		Specifications	
Output section	Open collector output (8D) $\mathrm{CH} 1, \mathrm{CH} 2$	External supply voltage Max. load current Off time leakage curren On time residual voltage Output resolution Time proportional cycle	: 12 to 24 V dc $100 \mathrm{~mA} /$ point : Lower than 0.1 mA : Lower than 2V : 1/1000 : 1 to 240s variable
Event output section	Open collector output	External supply voltage Max. load current Max. common current Off time leakage current On time residual voltage	: 12 to 24 V dc : $70 \mathrm{~mA} /$ point : 500mA : Lower than 0.1 mA : Lower than 2V
	Event type	PV-based	PV, deviation, deviation with standby, absolute value deviation, absolute value deviation with standby, PV deviation rate, SP, MV, G.SOAK absolute value deviation, G.SOAK absolute value deviation with standby, normal PV1 operation, normal PV2 operation
		Time-based	Time event, RAMP-E time monitoring, segment time, program time
		Code-based	Code event, timer-bearing code event, program number binary code, segment number binary code, program number BCD code, segment number BCD code
		Mode-based	Specified segment, RUN + HOLD + END + FAST, HOLD, READY + READY FAST, END, G.SOAK wait, MANUAL, AT execution, FAST + READY + FAST, console operation, RUN, advance, all alarm, PV range alarm, O 2 sensor error, voltage drop
	Event hysteresis	Set 0 to 1000U with PV-based	
	Event on delay	0.0 to 3000.0 are settable for 4 point event	
Communication	RS-485	Network	Multidrop (DCP552 provided with only slave node functionality.) 1 to 16 units max. (DIM), 1 to 32 units max. (CMC, SCM)
		Data flow	Half-duplex
		Sync. system	Start-stop sync.
		Transmission system	Balanced type (differential)
		Data line	Bit serial
		Signal line	Transmit and receive 5 lines (3 wires are connectable)
		Communication speed	1200, 2400, 4800, 9600 bps selectable
		Communication distance	Max. 500m (sum total) 300 m in case of MA500 DIM connection
		Others	Conforms to RS-485 standard
		Character composition	11 bits/characters
		Format	1 start bit, even parity, 1 stop bit or 1 start bit, no parity, 2 stop bits
		Data length	8 bits
		Isolation	All inputs and outputs except external switch inputs are completely isolated.
	RS-485 communications can be performed by connecting to a computer equipped with an RS-485 interface or to Azbil Corporation's MX200, MA500 (DK link II DIM) or CMC10 controllers.		

Item		Specifications	
General specifications	Insulated resistor	Higher than $50 \mathrm{M} \Omega$ under DC 500 V megger during power supply terminal (39) or (40) and FG terminal ((52) or (53))	
	Withstand voltage	1500 V AC $50 / 60 \mathrm{~Hz}$ for 1 min across power terminal and frame ground terminal Note: Primary and secondary sides are capacitive coupled inside the DCP552. Thus disconnect the ground wire from the secondary side terminal (for example, when using a grounded thermocouple) before performing a withstand voltage test. Failure to do so may result in equipment damage.	
	Standard conditions	Ambient temperature	$23 \pm 2^{\circ} \mathrm{C}$
		Ambient humidity	$60 \pm 5 \%$ RH
		Rated power supply voltage	105 V AC $\pm 1 \%$
		Power supply frequency	$50 \pm 1 \mathrm{~Hz}$ or $60 \pm 1 \mathrm{~Hz}$
		Vibration resistance	Om/s ${ }^{2}$
		Shock resistance	Om/s ${ }^{2}$
		Mounting angle	Reference plane (vertical) $\pm 3^{\circ}$
	Operating conditions	Ambient temperature range	0 to $50^{\circ} \mathrm{C}$ (the ambient temperature at the bottom of the case when hermetically sealed inside case)
		Ambient humidity range	10 to 90% RH (without-condensation)
		Rated power supply voltage	100 to 240V AC
		Allowable power supply voltage	90 to 264 V AC
		Power supply frequency	$50 \pm 2 \mathrm{~Hz}$ or $60 \pm 2 \mathrm{~Hz}$
		Vibration resistance	0 to $1.96 \mathrm{~m} / \mathrm{s}^{2}(10$ to 60 Hz in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions for 2 hours)
		Shock resistance	0 to $9.80 \mathrm{~m} / \mathrm{s}^{2}$
		Mounting angle	Reference plane (vertical) $\pm 10^{\circ}$
		Altitude	2000m max.
	Transportation and storage conditions	Ambient temperature range	-20 to $+70^{\circ} \mathrm{C}$
		Ambient humidity range	10 to +95\% RH (without-condensation)
		Vibration resistance	0 to $4.90 \mathrm{~m} / \mathrm{s}^{2}$ (10 to 60 Hz in $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ directions for 2 hours each)
		Shock resistance	0 to $490 \mathrm{~m} / \mathrm{s}^{2}$ (in vertical direction, 3 times)
		Package drop test	Drop height 60cm (Free drop at 1 corner, 3 edges, 6 faces)
	Terminal screw	M3.5 self-up screw	
	Terminal screw tighten torque	0.78 to $0.98 \mathrm{~N} \cdot \mathrm{~m}$	
	Mask and case material	Mask : Multiron Case : Multiron	
	Mask and case color	Mask: Dark gray (Munsell 5Y3.5/1)Case: Light gray (Munsell 2.5Y7.5/1)	
	Mounting	Panel flush-mount	
	Mass	Approx. 1.5kg	
	Standards compliance	EN61010-1, EN61326-1 (For use in industrial locations) During EMC testing, the reading or output may fluctuate by $\pm 10 \%$ FS. However, PV reading is within $\pm 30 \%$ FS.	

Attachment/auxiliary devices list

	Article name	Model No.	Quantity
Standard attachment	Engineering unit indicator label		1
	Mounting bracket	81446044-001	1 group (2 pcs.)
	Terminal cover	81446176-001	
Auxiliary devices and others (Optional)	Lithium battery set	81446140-001	
	Memory card (RAM, battery not replaceable)	SKM008A SKM016A SKM064A	$\begin{aligned} & \text { Available on the } \\ & \text { DCP552A***** } \\ & \text { model only } \end{aligned}$
	Memory card (RAM, battery replaceable)	SKM256C	
	Memory card (EEPROM, no battery required)	SKM008E SKM032E	
	DCP552 MarkII User's Manual	CP-SP-1033E	
	DCP551/552 program work sheet	CP-SP-1002E	

12-2 External Dimensions

DCP552

Unit: mm

DCP552 Parameter Work Sheet

Variable parameter setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	PA 01	Key lock	0		0 : Keylock disabled 1 : Display of setup data settings disabled 2: Display of all settings disabled 3: Display of all settings disabled. Operation keys disabled.
2	PA 02	Memory protect	0		0 : Disabled 1: Program settings are protected. 2: Setup, variable parameters and event configuration settings are protected. 3: Setup, variable parameters, event configurations and program settings are protected. 4: Setup, variable parameters, event configurations and PID parameter settings are protected. 5: Program settings and all parameter settings are protected.
3	PA 03	Display channel setting	0		$0: 2$ items are displayed for the selected CH 1: Simultaneous 2CH display of the same item
4	PA 04	Synchronous 2 channel operation	1		0 : asynchronous 1: synchronous
5	PA 05	Program auto load *	0		$\begin{aligned} & \hline 0: \text { OFF } \\ & 1: O N \end{aligned}$
8	PA 08	Auto-tuning (CH1)	0		0 : AT not performed 1: Standard AT performed on currently used PID group in mode other than READY mode 2: AT writing overshoot-proof PID values to currently used PID groups in mode other than READY mode performed 3: Standard AT performed on PID groups A1 to A7 in READY mode 4: AT writing overshoot-proof PID values to PID groups A1 to A7 in READY mode continuously performed
9	PA 09	Auto-tuning MV lower limit (CH1)	0.0		-5.0 to upper limit \%
10	PA 10	Auto-tuning MV higher limit (CH1)	100.0		Lower limit to +105\%
11	PA 11	SP bias (CH 1)	0 SPU		-10000 to +10000 SPU (CH1)
12	PA 12	PV digital filter (CH1)	0.0		0.0 to 120.0 sec
13	PA 13	PV bias (CH1)	0 PVU		-1000 to +1000 PVU(PV1)
14	PA 14	Manipulated variable deviation limit (CH1)	110.0		0.1 to 110.0\% OUT / 0.1sec
15	PA 15	Time proportional output cycle (CH1)	10		1 to 240sec
16	PA 16	On-off control differential (CH1)	50 SPU		0 to 1000 SPUm (CH1)
17	PA 17	PID computation initialize manipulated variable (CH 1)	0.0		-5.0 to +105.0\%
21	PA 21	SP bias (CH2)	0		-10000 to +10000 SPU (CH2)
22	PA 22	PV digital filter (CH2)	0.0		0.0 to 120.0 sec
23	PA 23	PV bias (CH2)	0 PVU		-1000 to +1000 PVU(PV2)
24	PA 24	Manipulated variable deviation limit (CH2)	110.0		0.1 to 110.0\% OUT/0.1 sec
25	PA 25	Time proportional output cycle (CH2)	10		1 to 240 sec
26	PA 26	ON-OFF control differential (CH2)	50		0 to 1000 SPU (CH2)
27	PA 27	PID computation initialize manipulated variable (CH2)	0.0		-5.0 to $+105.0 \%$
31	PA 31	Group 1 event number	0		0 to 16 (0 : No delay is specified.)
32	PA 32	Group 1 delay time	0.0		0.0 to 3000.0 sec
33	PA 33	Group 2 event number	0		0 to 16 (0: No delay is specified.)
34	PA 34	Group 2 delay time	0.0		0.0 to 3000.0 sec
35	PA 35	Group 3 event number	0		0 to 16 (0 : No delay is specified.)

*: This function is available on the DCP552A***** model only.

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
36	PA 36	Group 3 delay time	0.0		0.0 to 3000.0 sec
37	PA 37	Group 4 event number	0		0 to 16 (0: No delay is specified.)
38	PA 38	Group 4 delay time	0.0		0.0 to 3000.0sec
39	PA 39	FAST \times	0		$\begin{aligned} & \hline 0: 2 \times \\ & 1: 10 \times \\ & 2: 60 \times \\ & 3: 120 \times \end{aligned}$
40	PA 40	CP computation for temperature compensation	0		-1000 to +1000 PVU (CH1)
43	PA 43	PID operation initialize (CH1)	0		0 : No initialization during advance processing and PID group change 1 : Initializes during advance processing but not during PID group change. 2 : No initialization during advance processing but initializes during PID group change. 3 : Initializes both during advance processing and PID group change.
44	PA 44	PV2 message display mode	0		0 : CP or PO_{2} display $1: \mathrm{mV}$ value display 2: O_{2} sensor impedance value display
45	PA 45	G. SOAK time (CH 1$)$	2.0		0.1 to 60.0sec
46	PA 46	G.SOAK time (CH2)	2.0		0.1 to 60.0sec
51	PA 51	PV1 equalizer compensation point No. 1	Range lower limit value		PV1 range lower limit value (tied)
52	PA 52	PV1 equalizer compensation amount No. 1	0 PVU		-1000 to +1000 PVU(PV1)
53	PA 53	PV1 equalizer compensation point No. 2	500 PVU		-19999 to +20000 PVU(PV1)
54	PA 54	PV1 equalizer compensation amount No .2	0 PVU		-1000 to +1000 PVU(PV1)
55	PA 55	PV1 equalizer compensation point No. 3	1000 PVU		-19999 to +20000 PVU(PV1)
56	PA 56	PV1 equalizer compensation amount N . 3	0 PVU		-1000 to +1000 PVU(PV1)
57	PA 57	PV1 equalizer compensation point No. 4	1500 PVU		-19999 to +20000 PVU(PV1)
58	PA 58	PV1 equalizer compensation amount No. 4	0 PVU		-1000 to +1000 PVU(PV1)
59	PA 59	PV1 equalizer compensation point No. 5	2000 PVU		-19999 to +20000 PVU(PV1)
60	PA 60	PV1 equalizer compensation amount No. 5	0 PVU		-1000 to +1000 PVU(PV1)
61	PA 61	PV1 equalizer compensation point No. 6	2500 PVU		-19999 to +20000 PVU(PV1)
62	PA 62	PV1 equalizer compensation amount No. 6	0 PVU		-1000 to +1000 PVU(PV1)
63	PA 63	PV1 equalizer compensation point No. 7	3000 PVU		-19999 to +20000 PVU(PV1)
64	PA 64	PV1 equalizer compensation amount N 0.7	0 PVU		-1000 to +1000 PVU(PV1)
65	PA 65	PV1 equalizer compensation point No. 8	3500 PVU		-19999 to +20000 PVU(PV1)
66	PA 66	PV1 equalizer compensation amount No. 8	0 PVU		-1000 to +1000 PVU(PV1)
67	PA 67	PV1 equalizer compensation point No. 9	4000 PVU		-19999 to +20000 PVU(PV1)
68	PA 68	PV1 equalizer compensation amount N 0.9	0 PVU		-1000 to +1000 PVU(PV1)
69	PA 69	PV1 equalizer compensation point No. 10	Range lower limit value		PV1 range upper limit value (tied)
70	PA 70	PV1 equalizer compensation amount No. 10	0 PVU		-1000 to +1000 PVU(PV1)
71	PA 71	PV2 equalizer compensation point No. 1	Low-limit value of range		PV2 range lower limit value (tied)
72	PA 72	PV2 equalizer compensation amount No. 1	0 PVU		-1000 to +1000 PVU(PV2)
73	PA 73	PV2 equalizer compensation point No. 2	500 PVU		-19999 to +20000 PVU(PV2)
74	PA 74	PV2 equalizer compensation amount N . 2	0 PVU		-1000 to +1000 PVU(PV2)
75	PA 75	PV2 equalizer compensation point No. 3	1000 PVU		-19999 to +20000 PVU(PV2)
76	PA 76	PV2 equalizer compensation amount No. 3	0 PVU		-1000 to +1000 PVU(PV2)
77	PA 77	PV2 equalizer compensation point No. 4	1500 PVU		-19999 to +20000 PVU(PV2)
78	PA 78	PV2 equalizer compensation amount No. 4	0 PVU		-1000 to +1000 PVU(PV2)

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
79	PA 79	PV2 equalizer compensation point No. 5	2000 PVU		-19999 to +20000 PVU(PV2)
80	PA 80	PV2 equalizer compensation amount No. 5	0 PVU		-1000 to +1000 PVU(PV2)
81	PA 81	PV2 equalizer compensation point No. 6	2500 PVU		-19999 to +20000 PVU(PV2)
82	PA 82	PV2 equalizer compensation amount No. 6	0 PVU		-1000 to +1000 PVU(PV2)
83	PA 83	PV2 equalizer compensation point No. 7	3000 PVU		-19999 to +20000 PVU(PV2)
84	PA 84	PV2 equalizer compensation amount No. 7	0 PVU		-1000 to +1000 PVU(PV2)
85	PA 85	PV2 equalizer compensation point No. 8	3500 PVU		-19999 to +20000 PVU(PV2)
86	PA 86	PV2 equalizer compensation amount №. 8	0 PVU		-1000 to +1000 PVU(PV2)
87	PA 87	PV2 equalizer compensation point No. 9	4000 PVU		-19999 to +20000 PVU(PV2)
88	PA 88	PV2 equalizer compensation amount №. 9	0 PVU		-1000 to +1000 PVU (PV2)
89	PA 89	PV2 equalizer compensation point No. 10	Range upper limit value		PV2 range upper limit value (tied)
90	PA 90	PV2 equalizer compensation amount No. 10	0 PVU		-1000 to +1000 PVU(PV2)
93	PA 93	Auto-tuning (CH2)	0		0 : AT not performed 1 : standard AT performed on currently used PID group in mode other than READY mode. 2: AT writing overshoot-proof PID values to currently used PID groups in mode other than READY mode performed. 3 : Standard AT performed on PID groups A1 to A7 in READY mode. 4 : AT writing overshoot-proof PID values to PID groups A1 to A7 in READY mode continuously performed.
94	PA 94	Auto-tuning MV lower limit (CH2)	0.0		-5.0 to upper limit \%
95	PA 95	Auto-tuning MV upper limit (CH2)	100.0		Lower limit to +105\%
96	PA 96	PID computation initialize (CH 2$)$	0		0 : No initialization during advance processing and PID group change 1 : Initializes during advance processing but not during PID group change 2: No initialization during advance processing but initializes during PID group change 3 : Initializes both during advance processing and PID group change
97	PA 97	CPU computation compensation	0		0 : no compensation 1: compensates
98	PA 98	CP value (PV) display lower limit value	0.000		0 to upper limit SPU (CH2)
99	PA 99	CP value (PV) display upper limit value	4.000		lower limit to 4000 SPU (CH2)
100	PA100	Gas constant	23.5		10.0 to 50.0
101	PA101	CP computation compensation No. 1 compensation point	0.000		0 SPU (CH2) (tied)
102	PA102	CP computation compensation No. 1 compensation amount	0.000		-1000 to +1000 SPU (CH2)
103	PA103	CP computation compensation No. 2 compensation point	0.200		0 to 2000 SPU (CH2)
104	PA104	CP computation compensation No. 2 compensation amount	0.000		-1000 to +1000 SPU (CH2)
105	PA105	CP computation compensation No. 3 compensation point	0.400		0 to 2000 SPU (CH2)
106	PA106	CP computation compensation No. 3 compensation amount	0.000		-1000 to +1000 SPU (CH2)
107	PA107	CP computation compensation No. 4 compensation point	0.600		0 to 2000 SPU (CH2)
108	PA108	CP computation compensation No. 4 compensation amount	0.000		-1000 to +1000 SPU (CH2)
109	PA109	CP computation compensation No. 5 compensation point	0.800		0 to 2000 SPU (CH2)
110	PA110	CP computation compensation No. 5 compensation amount	0.000		-1000 to +1000 SPU (CH2)

denotes items settable only on models with CP compensation

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
111	PA111	CP computation compensation No. 6 compensation point	1.000		0 to $2000 \mathrm{SPU}(\mathrm{CH} 2)$
112	PA112	CP computation compensation No. 6 compensation amount	0.000		-1000 to $+1000 \mathrm{SPU}(\mathrm{CH} 2)$
113	PA113	CP computation compensation No. compensation point	1.200		0 to $2000 \mathrm{SPU}(\mathrm{CH} 2)$
114	PA114	CP computation compensation No. 7 compensation amount	0.000		-1000 to $+1000 \mathrm{SPU}(\mathrm{CH} 2)$
115	PA115	CP computation compensation No.8 compensation point	1.400		0 to $2000 \mathrm{SPU}(\mathrm{CH} 2)$
116	PA116	CP computation compensation No.8 compensation amount	0.000	-1000 to $+1000 \mathrm{SPU}(\mathrm{CH} 2)$	
117	PA117	CP computation compensation No. 9 compensation point	1.600	0 to $2000 \mathrm{SPU}(\mathrm{CH} 2)$	
118	PA118	CP computation compensation No. 9 compensation amount	0.000	-1000 to $+1000 \mathrm{SPU}(\mathrm{CH} 2)$	
119	PA119	CP computation compensation No. 10 compensation point	2.000		0 to $2000 \mathrm{SPU}(\mathrm{CH} 2)($ tied $)$
120	PA120	CP computation compensation No. 10 compensation amount	0.000	-1000 to +1000 SPU (CH2)	

denotes items settable only on models with CP compensation

Event configuration data setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions 1
E01-t	Event 1 event type	0		-19999 to +253 (Setting range is variable according to the event types.)	
2	E01-1	Event 1 auxiliary setting 1	----		-19999 to +20000 (Setting range is variable according to the event types.)
3	E01-2	Event 1 auxiliary setting 2	-----		0 to 253

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
34	E12-t	Event 12 event type	0		0 to 253
35	E12-1	Event 12 auxiliary setting 1	-----		$\begin{array}{\|l\|} \hline-19999 \text { to }+20000 \\ \text { (Setting range is variable according to the event types.) } \\ \hline \end{array}$
36	E12-2	Event 12 auxiliary setting 2	-----		$\begin{array}{\|l} \hline-19999 \text { to }+20000 \\ \text { (Setting range is variable according to the event types.) } \end{array}$
37	E13-t	Event 13 event type	0		0 to 253
38	E13-1	Event 13 auxiliary setting 1	--		$\begin{aligned} & -19999 \text { to }+20000 \\ & \text { (Setting range is variable according to the event types.) } \end{aligned}$
39	E13-2	Event 13 auxiliary setting 2	-----		$\begin{aligned} & -19999 \text { to }+20000 \\ & \text { (Setting range is variable according to the event types.) } \end{aligned}$
40	E14-t	Event 14 event type	0		0 to 253
41	E14-1	Event 14 auxiliary setting 1	-----		$\begin{array}{\|l\|} \hline-19999 \text { to }+20000 \\ \text { (Setting range is variable according to the event types.) } \\ \hline \end{array}$
42	E14-2	Event 14 auxiliary setting 2	-----		$\begin{aligned} & -19999 \text { to }+20000 \\ & \text { (Setting range is variable according to the event types.) } \end{aligned}$
43	E15-t	Event 15 event type	0		0 to 253
44	E15-1	Event 15 auxiliary setting 1	-----		$\begin{array}{\|l\|} \hline-19999 \text { to }+20000 \\ \text { (Setting range is variable according to the event types.) } \\ \hline \end{array}$
45	E15-2	Event 15 auxiliary setting 2	-----		$\begin{aligned} & -19999 \text { to }+20000 \\ & \text { (Setting range is variable according to the event types.) } \end{aligned}$
46	E16-t	Event 16 event type	0		0 to 253
47	E16-1	Event 16 auxiliary setting 1	-----		$\begin{array}{\|l\|} \hline-19999 \text { to }+20000 \\ \text { (Setting range is variable according to the event types.) } \\ \hline \end{array}$
48	E16-2	Event 16 auxiliary setting 2	-----		$\begin{array}{\|l\|} \hline-19999 \text { to }+20000 \\ \text { (Setting range is variable according to the event types.) } \end{array}$

- Event type

Event type	Meaning	Setting category	Operation category	Auxiliary	settings
0	Event off	-----	-----	Auxiliary 1: None	Auxiliary 2 : None
1	Time event	Segment	Time	Auxiliary 1: None	Auxiliary 2 : None
2	PV upper limit	Segment	PV	Auxiliary 1: Hysteresis	Auxiliary 2 : None
3	PV lower limit				
4	Deviation upper limit				
5	Deviation lower limit				
6	Deviation upper limit with standby				
7	Deviation lower limit with standby				
8	Absolute value deviation upper limit				
9	Absolute value deviation lower limit				
10	Absolute value deviation upper limit with standby				
11	Absolute value deviation lower limit with standby				
12	PV deviation rate upper limit	Segment	PV	Auxiliary 1: Sampling cycle	Auxiliary 2 : None
13	PV deviation rate lower limit				
14	SP upper limit	Segment	PV	Auxiliary 1: Hysteresis	Auxiliary 2 : None
15	SP lower limit				
16	MV upper limit				
17	MV lower limit				
18	Code event	Segment	Code	Auxiliary 1: No. of output	Auxiliary 2 : None
19	SOAK absolute value deviation upper limit	Segment	PV	Auxiliary 1: Hysteresis	Auxiliary 2 : None
20	SOAK absolute value deviation lower limit				
21	SOAK absolute value deviation upper Iimit with standby				
22	SOAK absolut value deviaition lower limit with standby				
23	Code event with timer	Segment	Code time	Auxiliary 1: No. of output	Auxiliary 2 : None

Event type	Meaning	Setting category	Operation category	Auxiliary settings
24 to 63	Event off	-----	-----	Auxiliary 1: None Auxiliary 2: None
64	Normal PV1 upper limit operation	Measuring instument	PV	Auxiliary 2 : Operating point
65	Normal PV1 lower limit operation			
66	Normal PV2 upper limit operation			
67	Normal PV2 lower limit operation			
68	PV upper limit			
69	PV lower limit			
70	Deviation upper limit			
71	Deviation lower limit			
72	Deviation upper limit with standby			
73	Deviation lower limit with standby			
74	Absolute value deviation upper limit			
75	Absolute value deviation lower limit			
76	Absolute value deviation upper limit with standby			
77	Absolute value deviation lower limit with standby			
78	PV deviation rate upper limit	Measuring instument	PV	Auxiliary 1: Sampling cycle
79	PV deviation rate lower limit			Auxiliary 2 : Operating point
80	SP upper limit	Measuring instument	PV	Auxiliary 1: Hysteresis
81	SP lower limit			
82	MV upper limit			
83	MV lower limit			
84	SOAK absolute value deviation upper limit			
85	SOAK absolute value deviation lower limit			
86	SOAK absolute value deviation upper limit with standoy			
87	SOAK absolut value deviation lower limit with standby			Auxiliary 2 : Operating point
88	Program No. binary code	Measuring instument	Code	Auxiliary 1: No. of output Auxiliary 2 : None
89	Segment No. binary code			
90	Program No. BCD code			
91	Segment No. BCD code			
92	Specified segment	Measuring instument	Mode	Auxiliary 1: Segment specification Auxiliary 2 : None
93	RAMP-E monitoring time	Measuring instument	Time	Auxiliary 1: Operating point Auxiliary 2: None
94	Segment time	Measuring instument	Time	Auxiliary 1: On-time
95	Program time			
96 to 127	Event off	--	-----	Auxiliary 1: None Auxiliary 2: None
128	RUN, HOLD, END, FAST	Measuring instument	Mode	Auxiliary 1: Depends on channel conditions Auxiliary 2 : None
129	HOLD			
130	READY, READY FAST			
131	END			
132	G.SOAK wait			
133	MANUAL			
134	AT executing			
135	FAST, READY FAST			
136	Console setting operation	Measuring instument	Mode	Auxiliary 1: None Auxiliary 2: None
137	RUN	Measuring instrument	Mode	Auxiliary 1: Depends on channel conditions Auxiliary 2: None
138	Advance			
139	All alarms (logical OR)	Measuring instument	Mode	Auxiliary 1: None
140	PV range alarm			
141	Instrument alarm			
142	O_{2} sensor error			

Event type	Meaning	Setting category	Operation category	Auxiliary settings
143	Event off	----	----	

PID parameter (CH1) setting

No.	Item code	Item	Factory default settings	User settings	
1	P-1	Proportional band (PID group 1)	100.0		0.0 to 1000.0% $(0.0:$ On-Off control)
2	l-1	Integral time (PID group 1)	0	0 to 3600sec (0: no integral operation)	
3	d-1	Derivative time (PID group 1)	0	0 to 1200 sec (0: no derivative operation)	
4	rE-1	Manual reset (PID group 1)	50.0		0.0 to 100.0\%
5	oL-1	Manipulated variable lower limit (Output limiter group 1)	0.0		-5.0 to manipulated variable upper limit \%

The settings on this page are PID parameters for CH 1

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
36	oh-6	Manipulated variable upper limit (Output limiter group 6)	100.0		Manipulated variable lower limit to +105.0\%
37	$P-7$	Proportional band (PID group 7)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \end{array}$
38	1-7	Integral time (PID group 7)	0		0 to 3600sec (0: no integral operation)
39	d-7	Derivative time (PID group 7)	0		0 to 1200sec (0: no derivative operation)
40	$r E-7$	Manual reset (PID group 7)	50.0		0.0 to 100.0\%
41	oL-7	Manipulated variable lower limit (Output limier group 7)	0.0		-5.0 to manipulated variable upper limit \%
42	oh-7	Manipulated variable upper limit (Output limiter group 7)	100.0		Manipulated variable lower limit to +105.0\%
43	P-8	Proportional band (PID group 8)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \end{array}$
44	I-8	Integral time (PID group 8)	0		$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{sec} \\ \text { (0: no integral operation) } \\ \hline \end{array}$
45	d-8	Derivative time (PID group 8)	0		0 to 1200sec (0: no derivative operation)
46	rE-8	Manual reset (PID group 8)	50.0		0.0 to 100.0\%
47	oL-8	Manipulated variable lower limit (Output limiter group 8)	0.0		-5.0 to manipulated variable upper limit \%
48	oh-8	Manipulated variable upper limit (Output limiter group 8)	100.0		Manipulated variable lower limit to +105.0\%
49	P-9	Proportional band (PID group 9)	100.0		$\begin{aligned} & \hline 0.0 \text { to } 1000.0 \% \\ & (0.0: \text { On-off control }) \end{aligned}$
50	1-9	Integral time (PID group 9)	0		$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{sec} \\ \text { (0: no integral operation) } \end{array}$
51	d-9	Derivative time (PID group 9)	0		0 to 1200sec (0: no derivative operation)
52	rE-9	Manual reset (PID group 9)	50.0		0.0 to 100.0\%
53	oL-9	Manipulated variable lower limit (Output limiter group 9)	0.0		-5.0 to manipulated variable upper limit \%
54	oH-9	Manipulated variable upper limit (Output limiter group 9)	100.0		Manipulated variable lower limit to +105.0\%
55	P-A1	Proportional band (PID group A1)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \\ \hline \end{array}$
56	I-A1	Integral time (PID group A1)	0		$\begin{aligned} & 0 \text { to } 3600 \mathrm{sec} \\ & \text { (0: no integral operation) } \end{aligned}$
57	d-A1	Derivative time (PID group A1)	0		$\begin{array}{\|l\|} \hline 0 \text { to } 1200 \text { sec } \\ \text { (0: no derivative operation) } \\ \hline \end{array}$
58	$r E-A 1$	Manual reset (PID group A1)	50.0		0.0 to 100.0\%
59	$C P-A 1$	Switching point (PID group A1)	1000 SPU		-19999 to +20000 SPU
60	$t P-A 1$	Tuning point (PID group A1)	500 SPU		-19999 to +20000 SPU
61	$P-A 2$	Proportional band (PID group A2)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \\ \hline \end{array}$
62	I-A2	Integral time (PID group A2)	0		$\begin{array}{\|l} 0 \text { to } 3600 \mathrm{sec} \\ \text { (0: no integral operation) } \end{array}$
63	d-A2	Derivative time (PID group A2)	0		0 to 1200sec (0: no derivative operation)
64	$r E-A 2$	Manual reset (PID group A2)	50.0		0.0 to 100.0\%
65	$C P-A 2$	Switching point (PID group A2)	2000 SPU		-19999 to +20000 SPU
66	$t P-A 2$	Tuning point (PID group A2)	1500 SPU		-19999 to +20000 SPU
67	$P-A 3$	Proportional band (PID group A3)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \end{array}$
68	I-A3	Integral time (PID group A3)	0		$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{sec} \\ \text { (0: no integral operation) } \\ \hline \end{array}$
69	d-A3	Derivative time (PID group A3)	0		0 to 1200sec (0: no derivative operation)
70	$r E-A 3$	Manual reset (PID group A3)	50.0		0.0 to 100.0\%
71	CP-A3	Switching point (PID group A3)	3000 SPU		-19999 to +20000 SPU

The settings on this page are PID parameters for CH 1

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
72	$t P-A 3$	Tuning point (PID group A3)	2500 SPU		-19999 to +20000 SPU
73	$P-A 4$	Proportional band (PID group A4)	100.0		$\begin{aligned} & \hline 0.0 \text { to } 1000.0 \% \\ & \text { (0.0: On-off control) } \end{aligned}$
74	I-A4	Integral time (PID group A4)	0		$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{sec} \\ \text { (0: no integral operation) } \end{array}$
75	d-A4	Derivative time (PID group A4)	0		0 to 1200sec (0: no derivative operation)
76	$r E-A 4$	Manual reset (PID group A4)	50.0		0.0 to 100.0\%
77	CP-A4	Switching point (PID group A4)	4000 SPU		-19999 to +20000 SPU
78	$t P-A 4$	Tuning point (PID group A4)	3500 SPU		-19999 to +20000 SPU
79	$P-A 5$	Proportional band (PID group A5)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \end{array}$
80	I-A5	Integral time (PID group A5)	0		0 to 3600sec (0: no integral operation)
81	$d-A 5$	Derivative time (PID group A5)	0		0 to 1200sec (0: no derivative operation)
82	rE-A5	Manual reset (PID group A5)	50.0		0.0 to 100.0\%
83	CP-A5	Switching point (PID group A5)	5000 SPU		-19999 to +20000 SPU
84	$t P-A 5$	Tuning point (PID group A5)	4500 SPU		-19999 to +20000 SPU
85	$P-A 6$	Proportional band (PID group A6)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \end{array}$
86	I-A6	Integral time (PID group A6)	0		$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{sec} \\ \text { (0: no integral operation) } \end{array}$
87	$d-A 6$	Derivative time (PID group A6)	0		0 to 1200sec (0: no derivative operation)
88	$r E-A 6$	Manual reset (PID group A6)	50.0		0.0 to 100.0\%
89	CP-A6	Switching point (PID group A6)	6000 SPU		-19999 to +20000 SPU
90	$t P-A 6$	Tuning point (PID group A6)	5500 SPU		-19999 to +20000 SPU
91	$P-A 7$	Proportional band (PID group A7)	100.0		$\begin{array}{\|l} 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \end{array}$
92	I-A7	Integral time (PID group A7)	0		$\begin{array}{\|l\|} \hline 0 \text { to } 3600 \mathrm{sec} \\ \text { (0: no integral operation) } \\ \hline \end{array}$
93	d-A7	Derivative time (PID group A7)	0		0 to 1200sec (0: no derivative operation)
94	rE-A7	Manual reset (PID group A7)	50.0		0.0 to 100.0\%
95	$C P-A 7$	Switching point (PID group A7)	$\begin{array}{\|l\|} \hline \begin{array}{l} 20000 S P U \\ \text { (fixed) } \end{array} \\ \hline \end{array}$		20000 SPU (tied)
96	$t P-A 7$	Tuning point (PID group A7)	6500 SPU		-19999 to +20000 SPU

The settings on this page are PID parameters for CH 1

- PID parameter (CH2) setting

No.	Item code	Item	Factory default settings	User settings	
1	P-1	Proportional band (PID group 1)	100.0		0.0 to 1000.0% (0.0: On-off control)
2	I-1	Integral time (PID group 1)	0	0 to 3600sec (0: no integral operation)	
3	$d-1$	Derivative time (PID group 1)	0	0 to 1200sec (0: no derivative operation)	
4	rE-1	Manual reset (PID group 1)	50.0		0.0 to 100.0\%
5	oL-1	Manipulated variable lower limit (Output limiter group 1)	0.0		-5.0 to manipulated variable upper limit \%

The settings on this page are PID parameters for CH 2

No.	Item code	Item	Factory default settings	User settings	
36	oH-6	Manipulated variable upper limit (Output limiter group 6)	100.0		Manipulated variable lower limit to +105.0\%

The settings on this page are PID parameters for CH 2

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
72	$t P-A 3$	Tuning point (PID group A3)	2500 SPU		-19999 to +20000 SPU
73	$P-A 4$	Proportional band (PID group A4)	100.0		$\begin{array}{\|l\|} \hline 0.0 \text { to } 1000.0 \% \\ \text { (0.0: On-off control) } \\ \hline \end{array}$
74	I-A4	Integral time (PID group A4)	0		0 to 3600sec (0: no integral operation)
75	d-A4	Derivative time (PID group A4)	0		0 to 1200sec (0: no derivative operation)
76	rE-A4	Manual reset (PID group A4)	50.0		0.0 to 100.0\%
77	CP-A4	Switching point (PID group A4)	4000 SPU		-19999 to +20000 SPU
78	$t P-A 4$	Tuning point (PID group A4)	3500 SPU		-19999 to +20000 SPU
79	$P-A 5$	Proportional band (PID group A5)	100.0		$\begin{aligned} & \hline 0.0 \text { to } 1000.0 \% \\ & \text { (0.0: On-off control) } \end{aligned}$
80	I-A5	Integral time (PID group A5)	0		$\begin{aligned} & 0 \text { to } 3600 \mathrm{sec} \\ & \text { (0: no integral operation) } \end{aligned}$
81	$d-A 5$	Derivative time (PID group A5)	0		0 to 1200sec (0: no derivative operation)
82	rE-A5	Manual reset (PID group A5)	50.0		0.0 to 100.0\%
83	CP-A5	Switching point (PID group A5)	5000 SPU		-19999 to +20000 SPU
84	$t P-A 5$	Tuning point (PID group A5)	4500 SPU		-19999 to +20000 SPU
85	$P-A 6$	Proportional band (PID group A6)	100.0		$\begin{aligned} & 0.0 \text { to } 1000.0 \% \\ & \text { (0.0: On-off control) } \end{aligned}$
86	I-A6	Integral time (PID group A6)	0		$\begin{aligned} & 0 \text { to } 3600 \mathrm{sec} \\ & \text { (0: no integral operation) } \end{aligned}$
87	$d-A 6$	Derivative time (PID group A6)	0		0 to 1200sec (0: no derivative operation)
88	$r E-A 6$	Manual reset (PID group A6)	50.0		0.0 to 100.0\%
89	$C P-A 6$	Switching point (PID group A6)	6000 SPU		-19999 to +20000 SPU
90	$t P-A 6$	Tuning point (PID group A6)	5500 SPU		-19999 to +20000 SPU
91	$P-A 7$	Proportional band (PID group A7)	100.0		$\begin{aligned} & \hline 0.0 \text { to } 1000.0 \% \\ & \text { (0.0: On-off control) } \end{aligned}$
92	I-A7	Integral time (PID group A7)	0		$\begin{aligned} & 0 \text { to } 3600 \mathrm{sec} \\ & \text { (0: no integral operation) } \end{aligned}$
93	$d-A 7$	Derivative time (PID group A7)	0		0 to 1200sec (0: no derivative operation)
94	$r E-A 7$	Manual reset (PID group A7)	50.0		0.0 to 100.0\%
95	CP-A7	Switching point (PID group A7)	$\begin{array}{\|l} \hline 20000 S P U \\ \text { (fixed) } \end{array}$		20000 SPU (tied)
96	$t P-A 7$	Tuning point (PID group A7)	6500 SPU		-19999 to +20000 SPU

The settings on this page are PID parameters for CH 2

Setup data setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions 1

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
34	C 34	Manipulated variable in PV overrange (CH1)	0.0		-5.0 to $+105.0 \%$
35	C 35	MANUAL change mode (CH1)	0		0 : Smooth 1 : Preset
36	C 36	Preset MANUAL value (CH1)	0.0		-5.0 to +105.0\%
37	C 37	End of operation (CH2)	0		0 : READY mode 1 : END mode
38	C 38	Manipulated variable in READY mode (CH2)	0.0		-5.0 to +105.0\%
39	C 39	Manipulated variable setting in PV overrange (CH2)	0		$\begin{aligned} & 0: \text { No } \\ & 1: \text { Yes } \end{aligned}$
40	C 40	Manipulated variable in PV overrange (CH2)	0.0		-5.0 to +105.0\%
41	C 41	Manual change mode (CH2)	0		0 : smooth 1 : preset
42	C 42	Preset MANUAL value (CH2)	0.0		-5.0 to +105.0\%
43	C 43	Service interruption time when running can be continued	0		0 to 3600sec
44	C 44	CP computation type	1		0 : oxygen pressure $\left(\mathrm{PO}_{2}\right)$ computation 1: CP computation for NKG sensor 2: CP computation for Marathon monitors and Cambridge sensors 3 : CP computation for Corning sensors 4: CP computation for AACC sensors 5: CP computation for Barber-Coleman sensors 6: CP computation for Furnace Control sensors
45	C 45	Auxiliary output 1 type	0		0 : SP1 1: PV1 2 : Deviation (DEV1) 3 : Manipulated variable 1 (MV1) 4: SP2 5 : PV2 6 : Deviation 2 (DEV2) 7 : Manipulated variable 2 (MV2) 8: O_{2} sensor mV input value
46	C 46	Auxiliary output 1 lower limit (4mA)	0 SPU		$\begin{aligned} & -19999 \text { to }+20000 \text { SPU (C45 not equal to 3) } \\ & -1999.9 \text { to }+2000.0 \% \text { (C45 set to 3) } \end{aligned}$
47	C 47	Auxiliary output 1 upper limit (20mA)	10000 SPU		$\begin{aligned} & -19999 \text { to }+20000 \text { SPU (C45 not equal to 3) } \\ & -1999.9 \text { to }+2000.0 \% \text { (C45 set to 3) } \end{aligned}$
48	C 48	Auxiliary output 2 type	0		0 : SP1 1: PV1 2 : Deviation (DEV1) 3 : Manipulated variable 1 (MV1) 4: SP2 5 : PV2 6 : Deviation 2 (DEV2) 7 : Manipulated variable 2 (MV2) 8: O_{2} sensor mV input value
49	C 49	Auxiliary output 2 lower limit (4mA)	0 SPU		$\begin{aligned} & -19999 \text { to }+20000 \text { SPU (C48 not equal to 3) } \\ & -1999.9 \text { to }+2000.0 \% \text { (C48 set to 3) } \end{aligned}$
50	C 50	Auxiliary output 2 upper limit (20mA)	10000 SPU		$\begin{aligned} & -19999 \text { to }+20000 \text { SPU (C48 not equal to 3) } \\ & -1999.9 \text { to }+2000.0 \% \text { (C48 set to 3) } \end{aligned}$
57	C 57	Programming item Event	0		0 : Displayed 1 : Not displayed
58	C 58	Programming item PID group, output limiter group	0		0 : Displayed 1: Not displayed
59	C 59	Programming item G.SOAK, PV shift, repeat	0		0 : Displayed 1 : Not displayed
60	C 60	Programming item PV start, cycle, pattern link	0		0 : Displayed 1 : Not displayed

denotes items settable only on models with CP compensation

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
61	C 61	Programming system	0		0 : RAMP-X and RAMP-T (θ) combined 1: RAMP-X and RAMP-E ($\triangle \mathrm{SP}$) combined
62	C 62	Program time unit	0		0 : Hours, min (SPU/hour for RAMP-T) 1: Min, sec (SPU/min for RAMP-T) $2: 0.1 \mathrm{sec}$ (SPU/sec for RAMP-T)
63	C 63	Time display (display panel 1 and 2)	0		0 : Remaining segment time 1 : total operation time (after READY \rightarrow RUN start)
65	C 65	SP decimal point position (CH1)	1		0 to 4
66	C 66	SP limit lower limit	PV1 range lower limit		-19999 to +20000 SPU
67	C 67	SP limit upper limit	PV1 range upper limit		-19999 to +20000 SPU
68	C 68	SP decimal point position (CH 2$)$	1 or 3		0 to 4
69	C 69	SP limit lower limit (CH2)	PV2 range lower limit		-19999 to +20000 SPU (CH1)
70	C 70	SP limit upper limit (CH2)	PV2 range upper limit		
71	C 71	External switch input RSW5	0		0 : NOP (does not function) 1 : RAMP-E 2 : FAST
72	C 72	External switch input RSW6	0		3 : G.SOAK is cleared using OR 4 : G.SOAK is cleared using AND 5 : MANUAL/AUTO
73	C 73	External switch input RSW7	0		6 : AT start/stop 7 : NOP (does not function) 8 : Auto load
74	C 74	External switch input RSW8	0		9 : NOP (does not function) 10: NOP (does not function) 11: O2 sensor check
75	C 75	External switch input RSW9 to 14 (program selection)	0		$\begin{aligned} & 0 \text { : BCD4 bit + BCD2 bit } \\ & 1 \text { : Binary } 6 \text { bits } \end{aligned}$
76	C 76	Communication address	0		0 to 127
77	C 77	Transmission rate	0		$\begin{aligned} & \hline 0: 9600 \mathrm{bps} \\ & 1: 4800 \mathrm{bps} \\ & 2: 2400 \mathrm{bps} \\ & 3: 1200 \mathrm{bps} \\ & \hline \end{aligned}$
78	C 78	Transmission code	0		$0: 8$ bits, even parity, 1 stop bit $1: 8$ bits, no parity, 2 stop bits
79	C 79	Communication protocol	0		$\begin{array}{\|l\|} \hline 0: \text { CPL } \\ 1: S T 221 \text { (no PV trend) } \\ 2: \text { ST221 (PV trend) } \\ \hline \end{array}$
80	C 80	Communication method	0		$\begin{aligned} & 0: \text { RS-485 } \\ & 1: \text { RS-232C } \end{aligned}$
81	C 81	ROM ID	-		< Description >
82	C 82	ROM ITEM	-		Can only be referenced for mechanical service use.
83	C 83	ROM revision	-		
84	C 84	Data version	-		
85	C 85	CPU board ID	-		
86	C 86	I/O board ID	-		
90	C 90	PID type	1		0 : Improved 1: Compatible with Mark I
91	C 91	PV1 burnout	0		0 : Provided 1 : Not provided
92	C 92	PV2 burnout	0		0 : Provided 1 : Not provided
93	C 93	Time proportional output system (CH1)	0		0 : Does not go on a second time in time proportional cycle. 1: Goes on a second time in time proportional cycle.
94	C 94	Time proportional output system (CH2)	0		0 : Does not go on a second time in time proportional cycle 1: Goes on a second time in time proportional cycle

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
95	C 95	Voltage output tuning (CH1)	15		2 to 22 mA
96	C 96	Voltage output tuning (CH2)	15		2 to 22 mA
97	C 97	Communication port	0	0 to 15 Uses back plate terminal to setting 0. Uses loader jack to setting 1 to 15.	
98	C 98	Special function	0	0 to 255	

Constant value control data (CH1) setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	ConSt	Control mode	0		0 : Program run mode 1 : Fixed command control mode
2	$S P$	Set point	0		Within setup C66 to C67 setting (SP limit)
3	P	Proportional band	100.0		0.0 to 1000.0\% (0.0 : On-off control)
4	1	Integral time	0		0 to 3600sec (0: no integral operation)
5	d	Derivative time	0		0 to 1200 sec (0: no derivative operation)
6	$r E$	Manual reset	50.0		0.0 to 100.0\%
7	oL	Manipulated variable lower limit	0.0		-5.0 to upper limit \%
8	oH	Manipulated variable upper limit	100.0		Lower limit to +105.0\%

- Constant value control data (CH2) setting

No.	Item code	Item	Factory default settings	User settings	Settings and descriptions
1	ConSt	Control mode	0		0 : Program run mode 1: Fixed command control mode
2	$S P$	Set point	0		Within setup C69 to C70 setting (SP limit)
3	P	Proportional band	100.0		0.0 to 1000.0% (0.0 : On-off control)
4	1	Integral time	0		0 to 3600sec (0: no integral operation)
5	d	Derivative time	0		0 to 1200 sec (0: no derivative operation)
6	$r E$	Manual reset	50.0		0.0 to 100.0\%
7	oL	Manipulated variable lower limit	0.0		-5.0 to upper limit \%
8	oH	Manipulated variable upper limit	100.0		Lower limit to +105.0\%

Index

-A-
ADV 5-26, 5-27
Alarm 10-2
Attachment (orig) 12-7
AUTO 5-24, 5-26
Auto-tuning (AT) 6-16
Auxiliary device (orig) 12-7
Auxiliary output 4-10, 5-35, 7-31
-B-
Basic functions 1-2
BAT LED 10-8
Battery replacement procedures 10-9
-C-
Cable 4-3
Case 2-1
CH 1 control output 5-31
CH2 control output 5-32
Code event 5-11
Cold junction compensation 5-28, 5-29, 7-31
Communication connection 4-13
Compensating lead wire 4-3
Console 2-1, 2-2
Constant value control. 5-23
Constant value control data. 7-1, 7-36
Control output 4-9, 5-31
CPL communications. 1-4
CR filter 3-2
Crimp-style solderless wire connectors 4-4
Cycle 5-20, 8-17
-D-
Data 1-3, 5-1
DC current 2-9, 4-7, 4-8
DC voltage 2-9, 4-7, 4-8
Deleting programs 8-20
Display 2-2
Display panel 1 2-2, 2-3
Display panel 2 2-2, 2-3
-E-
EG1 LED. 2-3
EG2 LED. 2-3
END 5-24
Error message list (memory card) 9-12
Event 5-5, 8-7
Event configuration data 7-1, 7-12
Event on delay 7-11
Event output (open collector output) connection. 4-11
External dimensions. 12-8
External switch input connection 4-12
External switch operation. 6-12
FAST 5-24, 5-26
G.SOAK (guaranteed soak) 5-16, 8-13
General reset 2-6, 8-24
Grounding 4-6
HOLD 5-24, 5-26

- I -
Input process 5-28
Input type 2-8
Installation procedures 3-4
Interference. 3-2
Isolating inputs and outputs 4-18
-K-
Key chord functions 2-6
Key cover 2-1
Key input related problems 10-3
Key lock 7-9
Keys 2-4
Load procedures (memory card) 9-6
Loader jack 2-7
Lock screw 2-1
Main unit 2-1
Manipulated variable deviation rate limit 7-10
MANUAL 5-24, 5-26, 6-16
Memory card functions 9-1
Memory card operations. 2-6, 9-1
Memory card types 9-1
Memory protect 7-9
Message display 2-2, 2-3
Mode 5-23
Mode display LED 2-2, 2-3
Mode event 5-14
Mode transition 5-25 5-26, 5-27
Model number 1-5
Mounting bracket 3-4, 12-7
Mounting location. 3-1
$-\mathrm{N}$
Normal display mode 2-2, 2-5
Normal display mode LEDs 2-2
Normal display mode selection 6-2
On-off control differential 7-10
O_{2} sensor check 5-30
O_{2} sensor input 2-9, 4-8
Operation end 5-26
Output limiter group 5-15, 8-12
Output processing 5-31
-P-
Panel cutout dimensions 3-3
Parameter 1-3, 5-1
Pattern 5-2, 8-5
Pattern link 5-21, 8-18
PID automatic group selection 5-15
PID computation initialize 7-11
PID computation initialize manipulated variable. 7-11PID group.5-15, 8-12
PID parameter 7-1
PID parameter CH1 7-18
PID parameter CH2 7-21
Power supply 4-6
Power supply on 6-1
Profile display 2-2, 2-3, 6-2
Program 1-3, 5-1, 5-2
Program autoload 7-10, 9-10
Program copy 2-6, 8-23
Program no. display 2-2, 2-3
Program opertion 5-23
Programming map 8-4
Programming setup 2-5, 8-1
PV deviation rate event 5-10
PV event 5-8
PV input (analog input connection) 4-7
PV shift. 5-17, 8-14
PV start 5-19, 8-16
-R-
Range no. 2-8
READY 5-23
READY FAST 5-24
Repeat 5-18, 8-15
RESET. 5-26
Resistance temperature detector 2-8, 4-7
RS-232C. 1-4, 4-16
RS-485 1-4, 4-14, 4-15
RUN 5-24, 5-26
-S-
Save procedures (memory card) 9-2
Segment deletion 8-21
Segment insertion 8-21
Segment no. display. 2-2, 2-3
Selecting programs 6-11, 6-13
Self-diagnostic 10-1
Setting parameters 2-5, 7-1, 7-4
Setup data 7-1, 7-24
SP limit 7-32
Specifications. 12-1
Square-root extraction. 5-28, 5-29, 7-31
ST221 1-4, 4-17
SYN 2-2
Synchronous mode 2-2, 5-16, 5-27
-T-
Tag 5-22, 8-19
Terminal base 2-1,4-5
Terminal connection. 4-4
Terminal cover 2-1, 12-7
Terminal layout 4-5
Thermocouple 2-8, 4-7
Time display 7-32
Time events 5-5
Time proportional output system 7-33
-V-
Variable parameter. 7-1, 7-5
Varistor 3-2
Voltage output control. 7-33
-W-
Wiring 4-1

Revision History

Printed date	Manual Number	Edition	Revised pages	Description
May 1998	CP-SP-1033E	1st Edition		
Mar. 2001		2nd Edition	V $4-14$ $4-15$ $4-16$ $7-29$, $8-1$ $11-4$ Parameter Work Sheet 17	Company name changed Manual No. CP-SP-1002E deleted "Handling Precautions" deleted Illust. changed Deleted description of CMA50A105 "Handling Precautions" changed Illust. changed, "Handling Precautions" deleted Changed description of RS-232C connection C90 added NOTE changed CMA50 \rightarrow CMC10 changed
Oct. 2001		3rd Edition	Cover, v $1-4$ $1-5$ $2-9$ $4-16$	Corresponded to English fonts "DigitroniK" was changed to "DIGITRONIK" "CPL communications" was changed to "CPL communications (controller peripheral link: Yamatake host communications protocol)" "Traceability certificate" was changed to "Inspection Certificate provided" Accuracy unit added. Schematic diagram and handling precautions changed
Mar. 2004		4th Edition	i $4-2$ $4-14,4-15$ $6-4$ $7-5$, Parameter Work Sheet $7-33$ $11-6$	RESTRICTION ON USE changed. SAFETY REQUIREMENTS changed based on EN revision. Handling Precautions 1 item added. Handling Precautions added. \bullet Display A6 Illust $\mathrm{PV} \rightarrow$ SP changed. No. 4 Factory default settings 0 connected to 1 . -C93, -C94 setting definition 0 and 1 changed. Figures when set to 0 and when set to 1 changed each other. -C95, C96 explanation about SSR, constant current type added. Altitude: 2000 m max. added.
Oct. 2004		5th Edition	$\begin{aligned} & 4-3 \\ & 4-9 \\ & 11-1 \end{aligned}$	Note 1st item polyethylene insulated vinyl sheathed cable for JCS-364 \rightarrow instrument cable for JCS4364 changed. - Voltage output(6D) Setup data C91,C92 \rightarrow C95,C96 corrected. Input type changed.
Mar. 2005		6th Edition	11-7, 11-8	■Soft dust-proof cover set(optional) Model No. $81446141-001 \rightarrow 81446141$ changed.
Aug. 2006		7th Edition	v to xi $5-27$ $6-13$ $7-10$	The Role of This Manual deleted. Old v to xii page. Handling Precautions: one item added. External switch input: explanation added. -PA04 added.

Printed date	Manual Number	Edition	Revised pages	Description
Aug. 2006	CP-SP-1033E	7th Edition	$\begin{aligned} & 10-12 \\ & 11-7 \end{aligned}$	Section of "10-4 External Switch Operation Problems" added. E2PROM changed to EEPROM.
Oct. 2006		8th Edition	2-9	Handling Precautions 1 item added.
Sep. 2007		9th Edition	$\begin{aligned} & \mathrm{i} \\ & \mathrm{ii} \\ & 4-3 \\ & 4-17 \\ & 5-9 \\ & 10-2 \end{aligned}$	Applicable standards added. Explanation of the display example changed. - Compensating lead wire specifications deleted. Note; 14pins and 25 pins added. Chart added. Display behavior and alarm code upon input burnout added.
Mar. 2008		10th Edition	$\begin{array}{\|l\|} 1-2,1-5,2-2,2-4, \\ 2-6,4-18,6-12,7-5, \\ 7-10,9-1,11-2, \\ 11-5,11-7 \end{array}$	DCP552B***** model added.
June 2012		11th Edition	$\begin{aligned} & \text { i } \\ & \text { ii, } 3-1,4-1,4-8 \\ & 2-8 \\ & 4-5 \\ & 10-5 \\ & 11-1 \\ & 12-1 \text { to } 12-8 \\ & 12-5 \\ & 12-6 \end{aligned}$	Company name changed. Power or current ratings: $25 \mathrm{VA} \rightarrow 40 \mathrm{VA}$ was changed. Warning was changed. The thermocouple table was crrected. The label was changed. A descriotion was added. Chapter 11. DISPOSAL added. Old page 11-1 to 11-8 Power consumption: $25 \mathrm{VA} \rightarrow 40 \mathrm{VA}$ was changed. Standard compliance added.
Dec. 2013		12th Edition	$\begin{aligned} & \text { i } \\ & 7-30 \\ & 7-35,7-36 \\ & 12-1 \\ & 18 \end{aligned}$	Description of built-in fuse was added. "C99" and "C100" were changed. "C99 (PV1 zener barrier adjustment)" and "C100 (PV2 zener barrier adjustment)" were deleted. Specifications for "Allowable wiring resistance (Resistance temperature detector input)" were changed. "C99" and "C100" were deleted.
Mar. 2014		13th Edition	4-6	The line filter model No. was changed.
Feb. 2016		14th Edition	Cover i i, 12-6 $3-1$ $3-2,12-7,12-8$	A notice saying "Not for use in Japan" was added. Pollution degree, Installation location and Altitude were added. STANDARDS COMPLIANCE was changed. A location was added to Mounting position. Dust proof cover were deleted.

Advanced Automation Company

1-12-2 Kawana, Fujisawa
Kanagawa 251-8522 Japan
URL: http://www.azbil.com

[^0]: * : This function is available on the DCP552A***** model only.

[^1]: - Phillips screwdriver
 - New lithium battery: model number 81446140-001

