Jerguson's Tri-Magnet Level Switches deliver failure-free performance.
 The innovative use of repelling magnetic fields eliminates mechanical elements that are prone to failure in high temperatures, extreme vibration, or simply fatigue over time.

(Series JD)

FEATURES

- Tri-Magnet Switching for

Unparalleled Reliability

- Vibration Resistant
- Pump Control
- 316 Stainless Steel Trim
- Multi-Point Alarm
"The new switches are very rugged and dependable, and most importantly, they are mercury-free and safe for the environment. Dealing with spilled mercury is an extremely difficult task, but it is one we don't have to worry about with these new switches. The Jerguson Tri-Magnet Level Switches have been in operation in our facility since May 2007."
-Maintenance Superintendent, Major Utility Power Generation Plant

The Tri-Magnet Level Switch was endurance tested to over 850,000 cycles without failure.

JERGUSON® LEVEL SWITCHES THE SWITCH MECHANISM

Principle of Operation: Switch Mechanism

The switch mechanism is based on a unique three-dimensional magnet design where the snap action is accomplished by the utilization of magnetic repulsion and attraction. The primary magnet mounted on the float road causes the secondary magnet to rotate as it passes up and down. The switch magnet is repelled by the secondary and snaps to the opposite side. This causes the cradle to pivot, moving the push rods, which operate the switch contacts. The result is positive snap action interlock switching...no springs...no spring problems!

Schematic showing three-magnet system

	Choice of Switch Mechanisms
Type	Application
X4, X8	General purpose - 10 amp mechanisms for general purpose duties up to $480^{\circ} \mathrm{F}$
D4, D8	High temperature - 5 amp mechanisms for high temperature applications up to $750^{\circ} \mathrm{F}$
H4, H8	Hermetically sealed - 5 amp mechanisms suitable for temperatures up to $480^{\circ} \mathrm{F}$, contaminated atmosphere environments and intrinsically safe circuits. All moving parts and contacts enclosed in an inert gas filled stainless steel enclosure.
P4, P8	Low current - 0.25 amp gold-plated contact switch mechanism for use in intrinsically safe or low power circuits up to $750^{\circ} \mathrm{F}$
E4, E8	Encapsulated - 5 amp switch mechanism is sealed / encapsulated inside alluminum housing, suitable for temperatures to $850^{\circ} \mathrm{F}$

4 Contact Type D4, X4, P4, H4, E4	
$2 \times$ S.P.S.T AA Make on Rise BB Make on Fall	
	Link for SPDT/SPCO
8 Contact Type D8, X8, P8, H8, E8	
D.P.D.T. $4 \times$ S.P.S.T. AA Make on Rise BB Make on Fall	

Note: Max temperature of top mount displacer operated level switch $=400^{\circ} \mathrm{F}$

Principle of Operation: Displacer \& Spring

The displacer element made of stainless steel is suspended on a stainless steel cable from a spring. The displacer element is always heavier than its equivalent volume of the liquid in which it is to operate, and therefore will extend the tension spring at all times. Hanging freely, the spring will extend to a known length, controlled by a mechanical stop to prevent overstressing. Attached to the spring is the rod and magnet assembly, which is free to move up and down within the pressure tube as the spring extends or contracts, actuating the switch mechanism.

As rising liquid submerges the displacer, a buoyancy force is created equal to the weight of the displaced liquid volume. This force reduces the apparent weight of the displacer, contracting the spring and moving the magnet upwards inside the pressure tube, actuating the switch mechanism. On a falling liquid level, the displacer element is uncovered and the spring senses an increasing effective weight, extending the spring. The increased effective weight moves the magnet downward to re-set the switch mechanism.

This simple principle can be refined to operate a single switch over a very wide differential by providing the buoyancy force from two displacer elements instead of a single one.

Two switch models are available for applications with narrow differentials for pump control or with appropriate wide differentials.

In all cases, because the element(s) are suspended on a cable, switching or control levels may be many feet below the mounting flange, and are fully field adjustable to re-setting the displacer element(s) on the cable.

E min. $=$ Differential

ENCLOSURE DIMENSIONAL DATA

Type	Duty	Height G	Conduit Thread	Switch Adjustment	Weatherproof Rating
SA7, SI7	Explosion-proof	$131 / 4^{\prime \prime}$	$1 "$ NPT	$33 / 8^{\prime \prime}$	NEMA 4 \& 7
SA4	Weather-proof	$12 "$	$1 "$ NPT	$33 / 8^{\prime \prime}$	NEMA 4

MATERIALS OF CONSTRUCTION

Technical Specifications	Designed in accordance with the requirements of B31.1 \& B31.3. Pressure tested to $1.5 \times$ maximum working pressures.	
Materials of Construction	Carbon Steel Mounting Flange	Stainless Steel Mounting Flange
Flanges/Fittings	ASTM A105	ASTM A182F316
Displacer \& Trim	316 SS	316 SS
Spring	Inconel 600	Inconel 600
Options: \bullet L Low temperature carbon steel chambers \bullet Controls to meet NACE requirements \bullet	Acomprehensive NDT package	

OUR WARRANTY

All mechanical level devices are warranted free of defects in materials and workmanship for five years from the date of original factory shipment.

If returned within the stated warranty period, and upon factory inspection the cause of the claim is determined to be covered under the warranty, at option, the device will be repaired or replaced without cost to the purchaser (or owner), other than transportation.

Jerguson ${ }^{\circledR}$ shall not be liable for mis-application, labor claims, direct or consequential damage or expense arising from the installation or use of the equipment. There are no other warranties expressed or implied.

INTERNAL MOUNT DISPLACER TYPES

CODE	Function-Differential	Displacer	SPDT* *	DPDT* *	Tolerance
JDC1D	Single Switch-Narrow	$316-$ SST	$.50-1.2$	$.50-1.2$	N/A
JDC2D	Single Switch-Wide	$316-$ SST	$.50-1.5$	$.50-1.5$	$\pm 10 \%$
JDC3D	Dual Switch-Wide	$316-$ SST	$.60-1.2$	$.80-1.2$	$\pm 5 \%$
JDC8D	Dual Switch-Narrow	$316-$ SST	$.60-1.2$	$.80-1.2$	$\pm 10 \%$

NOTE: Max temperature of top mount displacer operated level switch $=400^{\circ} \mathrm{F}$

MOUNTING CONNECTION

CODE	SIZE	CARBON STEEL RATING	SST RATING
D71	$3^{\prime \prime} 150 \#$ R.F. ASME	285 PSIG @ $100^{\circ} \mathrm{F}$	275 PSIG @ $100^{\circ} \mathrm{F}$
D73	$3^{\prime \prime} 300 \#$ R.F. ASME	740 PSIG @ $100^{\circ} \mathrm{F}$	720 PSIG @ $100^{\circ} \mathrm{F}$
D76	$3^{\prime \prime} 600 \#$ R.F. ASME	1480 PSIG @ $100^{\circ} \mathrm{F}$	1400 PSIG @ $100^{\circ} \mathrm{F}$
D91	$4 " 150 \#$ R.F. ASME	285 PSIG @ $100^{\circ} \mathrm{F}$	275 PSIG @ $100^{\circ} \mathrm{F}$
D93	$4 " 300 \#$ R.F. ASME	740 PSIG @ $100^{\circ} \mathrm{F}$	720 PSIG @ $100^{\circ} \mathrm{F}$
D96	$4 " 600 \#$ R.F. ASME	1480 PSIG @ $100^{\circ} \mathrm{F}$	1400 PSIG @ $100^{\circ} \mathrm{F}$
DB1	$6^{\prime \prime} 150 \#$ R.F. ASME	285 PSIG @ $100^{\circ} \mathrm{F}$	275 PSIG @ $100^{\circ} \mathrm{F}$
D6M	$21 / 2 " \mathrm{MNPT}$	1000 PSIG @ $100^{\circ} \mathrm{F}$	1000 PSIG @ $100^{\circ} \mathrm{F}$
D7M	$3^{\prime \prime} \mathrm{MNPT}$	1000 PSIG @ $100^{\circ} \mathrm{F}$	1000 PSIG @ $100^{\circ} \mathrm{F}$

SWITCH MECHANISM TYPES

No. of NUMBER OF SWITCH MECHANISMS
Switches
Specify No. of Switches Requried

ENCLOSURE TYPES

Enclosure	Code	Duty	Material of cover	Material of base	Material of pressure	Material of screwed	Maximum number of switches
	SA4N	Weather-proof	Aluminum Alloy		316 Stainless Stee	To match chamber material	1-2
	LA4N	Weather-proof	Cast Iron				1-3
	SA7F	Explosion-proof Factory Mutual Cl.I,Div.1,Grps B,C \&D	Drawn Steel	Aluminum Alloy			1-2

JERGUSON® «FIT \& FORGET" PRODUGTS PROVIDE THE SOLUTION TO YOUR LIQUID LEVEL CONTROL PROBLEMS

Medium Pressures
ASME Class 150, 300, 600
SG 0.40

High Pressure
ASME Class 900, 1500, 2500
SG 0.40

Direct Mounting
ASME Class 150, 300, 600
SG 0.40

You can rely on us

The Jerguson range of liquid level controls is designed for operation in a wide variety of applications.

Typical Applications

Separators
Compressors
Knock Out Pots
Condensors
De-actuators
Storage Tanks
Service Tanks
Header Tanks
Effluent Sumps \& Tanks
Heat Exchanger
Lube Oil Tanks

Water Sumps
Scrubbers
Fractioning Columns
Process Vessels
Condensate Tanks
Drainpots
Accumulators
Flush Vessels
Fuel Tanks
Feedwater Heaters
Surge Drums

Jerguson level switches are used for the control of liquids by companies all over the world.

Shell	Bechtel
Exxon	Belliii
Amoco	Ontario Hydro
Fluor	Nissaci-Sangyo
Hyundai	Foster Wheeler
Hitachi	Siemens
British Petroleum	Mannesmann-Demag
Mobil	Catalytic
Texaco	Techni
Ingersoll Rand	Technipetrol
Compare	Nuovo Pignone
Honeywell	Dresser

Clark-Reliance

Instrumentation \& Control

Filtration \& Purification

