Manage flow and stay in control of your budget

SITRANS F US clamp-on ultrasonic flow technology offers exceptional performance with a low cost of ownership
Cost savings without compromise

In today’s volatile economy, companies worldwide are finding it increasingly necessary to cut costs in order to remain profitable. For an industrial facility, this includes making prudent choices when selecting process instrumentation. You face the formidable challenge of striking a balance between value and performance – and the decision you make can have long-lasting implications for your bottom line.

With SITRANS F US clamp-on ultrasonic flowmeters from Siemens, no compromises are necessary. Clamp-on flow measurement technology offers outstanding cost savings without sacrificing the high level of accuracy and reliability required by a wide variety of industries. The result: improved process efficiency with a smaller impact on your budget.

Siemens clamp-on flowmeters can enhance productivity and save money for a broad range of industries and applications, including:

- HVAC
- Power
- Water and wastewater
- Gas
- Hydrocarbon
- Chemical
- Mining

Why choose clamp-on?

Flow measurement determines the quantity of a material passing through a pipe at a particular location and point in time. It is a critical element of most industrial processes for the purposes of product quality control, efficiency and safety monitoring, and revenue-based custody transfer.

SITRANS F US clamp-on flowmeters are one of the most versatile and affordable flow measurement options available, offering a combination of advantages unmatched by other meters:

- Low cost of ownership since no cutting of the pipe or process downtime is required for installation or replacement
- Virtually no need for maintenance due to a lack of moving parts
- High level of accuracy comparable to alternative flow technologies
- No potential for leak points
- Comprehensive diagnostic menus for valuable insight into process characteristics
- High resistance to suspended solids and aeration
- Measurement of both conductive and non-conductive liquids
- Versatile communication options to suit nearly every industry, including HART, BACnet MSTP/BACnet IP, Modbus RTU/TCPIP, Ethernet IP, Johnson N2 and VT100 RS232 (offerings vary for SITRANS FST020 and SITRANS FUP1010)
Other benefits of SITRANS F US clamp-on technology include:

- Measurement of practically any liquid or gas
- Performance unaffected by viscosity, flow rate, pipe size, outside noise and presence of aeration or solids
- High accuracy and repeatability via automatic temperature compensation and zero drift correction
- Installation on pipe sizes up to DN 9140 (360”)
- Built-in algorithms compensate for many different upstream pipe configurations, including limited straight runs
- Bidirectional flow capability
- No pressure drop
- High turndown ratio
- Easy-to-use Si-Ware interface software

The sensors are key

The cost-effectiveness of SITRANS F US clamp-on flowmeters stems from their use of external sensors to measure flow. Unlike conventional flowmeters, which require shutting down the process to cut into the pipe, clamp-on meters are externally mounted — simplifying installation and eliminating the need for plant downtime. And, since the sensors never touch the fluid, they are practically maintenance-free.

But while the sensors are the key to the reasonable upfront and operating expenses of the SITRANS F US clamp-on line, they also play a crucial role in ensuring exceptional performance for almost any application. Their unique WideBeam (high precision) measurement capability uses the resonant frequency of the pipe to transmit the sound wave through the flowing liquid or gas, with the pipe wall acting as a waveguide. This method optimizes the signal-to-noise ratio to produce a particularly strong and focused signal for the highest possible measurement precision.

Sensor Selection

<table>
<thead>
<tr>
<th>Sensor Selection</th>
<th>Universal</th>
<th>High temp.</th>
<th>High precision</th>
<th>Doppler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogeneous liquids with moderate aeration</td>
<td>X</td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Moderately aerated liquids and multiple products</td>
<td></td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Highly aerated liquids or slurries</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Natural or process gases</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Liquid temperatures from +120...+230 °C (+250...450 °F)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel pipes and liquid temperatures below 120 °C (+250 °F)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-steel pipes and liquid temperatures below 120 °C (+250 °F)</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steel pipes with diameter/wall thickness ratio above 10</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Improved stability and repeatability on steel pipes</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Flexible solutions for every industry and application

No two industrial facilities are exactly the same – so why settle for a one-size-fits-all flow solution? Siemens offers a diverse portfolio of clamp-on ultrasonic flowmeters designed to meet every need, complemented by a highly customizable catalog of configuration options and accessories.

SITRANS FUS1010
The SITRANS FUS1010 is the most versatile clamp-on ultrasonic flowmeter available. Because it can operate in either WideBeam or Doppler mode, there is no need to change the meter when operating conditions change.

SITRANS FST020
The SITRANS FST020 performs basic flow functionalities and is an optimal and affordable alternative to more complex flow solutions. It features one-channel configuration options and a user-friendly design for quick and easy setup.

SITRANS FUP1010
The SITRANS FUP1010 offers maximum versatility and robustness plus 7 hours of battery power for portable field use. It is ideal for general flow survey work or as a check meter for existing conventional meters, and can also serve as a temporary replacement for inoperable flow devices.

SITRANS FUE1010
The SITRANS FUE1010 is designed for revenue-grade thermal energy submetering and energy efficiency distribution monitoring. Particularly suitable for large pipe sizes, it allows for measurement of both low flow rates and low differential temperatures.

SITRANS FUG1010
The SITRANS FUG1010 offers a number of advantages for the gas industry, including tolerance of challenging wet gas conditions. It also measures standard volume flow for fixed gas compositions without needing a separate flow computer.

SITRANS FUH1010
The SITRANS FUH1010 for hydrocarbon applications is available in three versions: Standard Volume, Precision Volume and Interface Detector. It demonstrates high-level performance under a wide range of viscosities and is ideal for pipelines carrying multiple products.

SITRANS FUT1010
The SITRANS FUT1010 is a perfect match for the hydrocarbon industry. With the unique TransLoc mounting system, the sensors are permanently installed on a supplied pipe section appropriately sized for the application, and lab calibrated to allow for use in high-performance applications.
Check metering kits
For added convenience, several SITRANS F US clamp-on flowmeters are also available as portable, pre-configured check metering kits with weatherproof rolling cases. The kits come in four versions: general liquid, water and wastewater, energy, and gas.

Thickness gauge
High-quality pipe dimensional data is essential for accurate clamp-on ultrasonic flow measurement, which makes the stand-alone digital pipe wall thickness gauge an indispensable tool. It operates at a 5 MHz frequency for extremely precise measurement of any pipe thickness.

Si-Ware
This free, multi-language software package combines the functions of five individual tools to interface with a SITRANS F US clamp-on flowmeter and assist in selecting the proper equipment for a given application.

Mounting options
Installation of SITRANS F US external sensors can be simplified and made more precise with one of several application-dependent mounting frames:

- **Standard.** Appropriate for most applications in non-challenging environments and constructed in anodized aluminum, standard mounting frames are attached to a pipe with stainless steel straps to maintain a fixed location. Sensors can then be installed or removed without moving the frames.

- **Hi-Precision.** Hi-Precision Mounts are manufactured in rugged 316 stainless steel to provide secure mounting and maximum protection for all C, D high-precision and E universal sensors. They are ideal for harsh or corrosive environments.

- **Magnetic.** Magnetic Mounts are a strap-free solution for large pipe sizes DN200 (8”) or greater where employing straps would be cumbersome and expensive. Compatible with all C, D and E universal and high-precision sensors, they feature powerful magnets to ensure quick and accurate setup, even for one person. Magnetic Mounts can also be paired with straps for permanent installations.

Check metering kits
For added convenience, several SITRANS F US clamp-on flowmeters are also available as portable, pre-configured check metering kits with weatherproof rolling cases. The kits come in four versions: general liquid, water and wastewater, energy, and gas.

Thickness gauge
High-quality pipe dimensional data is essential for accurate clamp-on ultrasonic flow measurement, which makes the stand-alone digital pipe wall thickness gauge an indispensable tool. It operates at a 5 MHz frequency for extremely precise measurement of any pipe thickness.

Si-Ware
This free, multi-language software package combines the functions of five individual tools to interface with a SITRANS F US clamp-on flowmeter and assist in selecting the proper equipment for a given application.

Mounting options
Installation of SITRANS F US external sensors can be simplified and made more precise with one of several application-dependent mounting frames:

- **Standard.** Appropriate for most applications in non-challenging environments and constructed in anodized aluminum, standard mounting frames are attached to a pipe with stainless steel straps to maintain a fixed location. Sensors can then be installed or removed without moving the frames.

- **Hi-Precision.** Hi-Precision Mounts are manufactured in rugged 316 stainless steel to provide secure mounting and maximum protection for all C, D high-precision and E universal sensors. They are ideal for harsh or corrosive environments.

- **Magnetic.** Magnetic Mounts are a strap-free solution for large pipe sizes DN200 (8”) or greater where employing straps would be cumbersome and expensive. Compatible with all C, D and E universal and high-precision sensors, they feature powerful magnets to ensure quick and accurate setup, even for one person. Magnetic Mounts can also be paired with straps for permanent installations.
HVAC & power: Enhancing energy efficiency

As energy costs and environmental concerns continue to increase exponentially, facility managers are being held more accountable for the energy consumption of the buildings they oversee. SITRANS FUS clamp-on flowmeters give you greater control over every system, making it easier to optimize efficiency and manage expenses.

The SITRANS FUE1010 is an ideal flow solution for thermal energy and power applications, and is particularly well-suited for large pipelines. It is available in a single- or dual-channel dedicated version as well as a dual-channel portable version. Dual-channel operation allows for simultaneous measurement of hot and chilled water lines or for enhanced accuracy on installations with convoluted piping runs.

The meter features a built-in data logger capable of accepting input from other sources. Time-stamped data can then be downloaded at any time to facilitate billing and efficiency analysis. The meter can be set to calculate kW usage for various functions, including cooling load (kW/ton), coefficient of performance (COP) and energy efficiency ratio (EER).

The SITRANS FUE1010 can also be ordered as a pre-configured check metering kit, which tracks both flow and BTU measurement to aid in conducting flow surveys or verifying the performance of any permanently installed energy meter. The kit includes a portable SITRANS FUE1010, a sturdy rolling case with a telescopic handle and all required accessories.

Key application areas for the HVAC and power industries include revenue-grade chilled and hot water submetering, condenser water, potable water, ammonia, glycol, river and lake water, lake source cooling, and energy efficiency monitoring of HVAC equipment and power plants.

SITRANS FUE1010: Additional benefits
- Precise computation of energy rate and total consumption
- Accurate measurement at low flow and low differential temperatures (delta T)
- 1000 ohm platinum RTDs for supply and return temperature measurements are precision-matched to within 0.01 °C (0.02 °F)
- Available configurations: IP65 (NEMA 4X) wall mount, IP40 (NEMA 1) portable
Water & wastewater: Conserving a precious resource

For the water and wastewater industry, the growing need for water conservation makes careful monitoring of treatment and distribution processes more important than ever. Integrating SITRANS F US clamp-on flowmeters into your applications can help you to reduce water wastage and better comply with stringent regulations.

Key application areas for the water and wastewater industry include raw and potable water, low-flow chemical dosing, raw sewage and effluent, mixed liquor and sludges, leak detection, consumption monitoring, billing, and plant testing and surveying.

The SITRANS FUS1010 is a versatile flow solution suitable for a diverse range of flow applications found in the water and wastewater industry. It can accommodate shifting measurement conditions by switching between WideBeam mode for homogenous liquids and Doppler mode for liquids with aeration or suspended solids – a feature that usually requires two separate meters.

A lower-cost yet still highly accurate option is the SITRANS FST020, which offers simplified flow measurement functionalities without sacrificing performance. The SITRANS FST020 offers a number of competitive advantages, including single-channel configuration options that make product selection straightforward, a user-friendly design to ensure easy setup, and rapid delivery times.

SITRANS FST020: Additional benefits

- Suitable for clean liquid applications
- Compact, integral design reduces installation costs
- Communication: BACnet MSTP, Modbus RTU, VT100 RS232
- Available configuration: IP65 (NEMA 4X) wall mount

For applications that do not require long-term monitoring, Siemens offers the SITRANS FUP1010. This convenient portable meter includes an internal battery that provides up to seven hours of continuous operation, with AC or DC power for backup. It comes in single- and dual-channel models and can operate in both WideBeam and Doppler mode.

SITRANS FUP1010: Additional benefits

- Rugged enclosure allows for outdoor use and protects against harsh environments
- Internal data logger stores extensive site data
- Also comes as a check metering kit for water and wastewater or general liquid applications
- Communication: VT100 RS232
- Available configuration: IP67 weatherproof
Gas: Maintaining control in any environment

At every stage of gas exploration and production lies a difficult yet fundamental reality: the need to exert tight control over your processes despite environments that are often adverse or even extreme. Trust SITRANS F US clamp-on flow technology to keep you “in the know” about how much gas is flowing each step of the way – even where other meters cannot.

The SITRANS FUG1010 is the flowmeter of choice for numerous natural, specialty and process gas applications. Thanks to the integrated WideBeam technology, the meter can tolerate the majority of wet gas environments in which most competing meters are incapable of performing, producing accurate readings despite the presence of heavy mist or water droplets. It is also immune to most pressure-reducing valve noises so that installation in very close proximity to valves and pumps is possible.

The SITRANS FUG1010 utilizes an internal AGA-8 table for fixed gas composition to compute standard volume flow without the need for a separate flow computer. It is in compliance with the American Gas Association’s AGA-10 speed of sound measurement practice, providing an industry-accepted approach to calculating the speed of sound in natural gas. Siemens also offers a SITRANS FUG1010 check metering kit for added portability, which makes it an invaluable tool in gas processing and storage plants.

Key application areas for the gas industry include lost and unaccounted for (LAUF) analysis, allocation, production well testing, underground storage and gas-fired power stations.

SITRANS FUG1010: Additional benefits

- Data extraction and analysis through Si-Ware diagnostics tool
- Relay alarms triggered when a change in gas composition is detected
- Can be paired with Hi-Precision Mounts for permanent and direct burial installations
- Available in single-, dual- and four-path versions
- Available configurations: IP65 (NEMA 4X) wall mount, IP66 (NEMA 7) wall mount explosion proof, IP65 (NEMA 7) compact explosion proof
Hydrocarbon: Taking flow measurement further

The hydrocarbon industry has unique needs when it comes to process instrumentation. Many liquid hydrocarbon processes are highly dynamic and therefore demand flow instrumentation capable of keeping up with constantly changing conditions. SITRANS F US clamp-on ultrasonic flowmeters offer the added advantages of viscosity compensation and differentiation between various liquids to maximize your output – and your safety.

The SITRANS FUH1010 Standard Volume performs accurate volume and mass flow measurement and is appropriate for high-end applications carrying multiple liquids and liquids of varying viscosities. It is also ideal for line balance applications requiring normalized volume or mass output. The meter accepts analog inputs from densitometers, temperature sensors, viscometers and pressure transmitters. The Standard Volume version features all functionalities of the Precision Volume and Interface Detector versions in addition to net volume correction.

For applications that require greater precision than normal gross volume flowmeters without the need for standard volume measurement, the SITRANS FUH1010 Precision Volume offers automatic Reynolds Number correction by compensating for viscosity changes as liquid properties change. It allows for analog outputs of inferred viscosity values in addition to providing valuable diagnostic data.

The SITRANS FUH1010 Interface Detector offers extremely precise interface and multi-product identification, making it the best choice for density indication as well as scraper and pig detection. Because the meter provides liquid density and API outputs, it eliminates the need for additional equipment by serving as a direct replacement for intrusive densitometers.

Key applications for the hydrocarbon industry include ship offloading, pipeline transportation, line balance and allocation, liquid quality monitoring, offshore production, water injection/recovery, storage tank inflow/outflow, scraper and pig detection, and leak detection.

SITRANS FUH1010: Additional benefits
- Choice of three versions provides a solution for any hydrocarbon application
- Maintains exceptional repeatability independent of changes in temperature, density or viscosity
- Eliminates straight run piping requirements
- Available in single-, dual-, and four-path versions
- Available configurations: IP65 (NEMA 4X) wall mount, IP66 (NEMA 7) wall mount explosionproof, IP65 (NEMA 7) compact explosionproof
Hydrocarbon: Making custody transfer a reality

When liquid or gas hydrocarbon is changing hands from a supplier to a purchaser, even the smallest supply discrepancy can result in a major loss of revenue – which is why every bit of the medium flowing through the pipe must be carefully accounted for. Siemens has developed an innovative flow solution for the hydrocarbon industry combining high-performance accuracy with the very low maintenance requirements of the rest of the SITRANS F US ultrasonic family.

The SITRANS FUT1010 features the unique TransLoc mounting system, in which the WideBeam transducers are permanently installed on the outside of the sensor to prevent contact with the medium and eliminate cavities that can lead to fouling. The SITRANS FUT1010 is available in two versions: one for liquids and another for gases. To accommodate varying accuracy requirements, both meters can be configured with two, three or four paths and are suitable for installation in Div 1/Zone 1 hazardous areas.

Since TransLoc allows for laboratory flow calibration, the performance of the liquid version meets API recommendations. With output options including liquid density and API, the dual-purpose meter also serves as a perfect replacement for intrusive densitometers.

The gas version is compliant with AGA-9 and features an internal fixed AGA-8 table that allows the meter to report standard volume flow without a separate volume-compensating flow computer. Its non-intrusive configuration and ability to operate at high frequencies mean that it can function in applications with valve-generated acoustic noise.

The SITRANS FUT1010 can be supplied with upstream and downstream pipe sections along with a flow conditioner to allow for the execution of calibrations on the entire meter run. This helps to ensure performance transfer between calibration and actual field conditions.

Key applications for the hydrocarbon industry include production wells, underground storage, transmission, electric power generation, gas processing plants, pipeline balancing, terminal transmix, refinery blending, airport facility management, petrochemical processing and plant optimization.

SITRANS FUT1010: Additional benefits
- Variety of approvals available, including CSA, FM, ATEX (PED) and CRN
- Spool diameters: DN100 to DN600 (4" to 24")
- Choice of three flange ratings (ANSI class 150, 300 or 600)
- Available configurations: IP65 (NEMA 4X) wall mount, IP66 (NEMA 7) wall mount explosionproof
The best flowmeter for the job

<table>
<thead>
<tr>
<th></th>
<th>SITRANS FUS1010</th>
<th>SITRANS FUP1010</th>
<th>SITRANS FUE1010</th>
<th>SITRANS FUG1010</th>
<th>SITRANS FUH1010</th>
<th>SITRANS FST020</th>
<th>SITRANS FUT1010</th>
<th>Check Metering Kits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water & Wastewater</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abstraction</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Water treatment</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Distribution</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Wastewater treatment</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Irrigation</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>HVAC & Power</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>District heating</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Distribution/transmission</td>
<td>●</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>District cooling and chillers</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Hydrocarbon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Upstream</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Midstream</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Downstream</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural gas</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Process gas</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Storage</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Allocation</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Check metering</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Others</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aerospace</td>
<td>○</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Chemical</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Mining</td>
<td>●</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

- ● Most often used
- ○ Often used
- ○ Can be used
Cross-industry success stories

Elimination of costly supply discrepancies
Industry: Hydrocarbon
Company: BKL A/S
Region: Copenhagen, Denmark
Technology: SITRANS FUT1010

Challenge: BKL A/S receives Jet A-1 fuel from a supplier at Prøvestenen oil terminal in eastern Copenhagen, Denmark, and transports the fuel via pipeline to a storage tank at Copenhagen International Airport, where it is held until needed by specific airplanes. The company has a level device inside the tank to measure the quantity of fuel for fiscal purposes, and they had noticed ongoing disparities between the volume being transferred by the supplier and the readings from the level device in the tank. It was very important for BKL to determine whether the supplier was truly providing the agreed-upon volume of fuel, and the most efficient way to accomplish this was to verify the readings from the level device using a different measurement technology. BKL chose to install a SITRANS FUT1010 ultrasonic flowmeter onto the pipeline. Flow readings confirmed that the level device was accurately measuring the quantity of fuel in the tank, which led BKL to conclude that the challenge was stemming from the supplier’s own measurement practices. The data derived from the meter helped BKL work with the supplier to ensure that all instrumentation was correctly calibrated and that measurement standards were identical for both supplier and receiver.

Enhanced chiller plant performance
Industry: HVAC
Company: Commercial real estate corporation
Region: New York City, USA
Technology: SITRANS FUE1010

Challenge: While in the design phase for a new building complex in New York City, a commercial real estate corporation began exploring alternative ways to address tenant utility billing, recognizing that their chiller plant would run more efficiently if they were able to determine individual tenant usage. Since the building’s chiller plant distributes chilled water to each of four towers individually, a single-channel SITRANS FUE1010 clamp-on ultrasonic energy meter was selected to measure the amount of water leaving the plant, and additional meters were installed to monitor what is received at each tower. Another device is used to track the amount of energy stored in the thermal storage tanks during the charging cycle and to monitor the amount drawn down during peak hours. With this setup, facility managers can keep track of the exact amount of water flowing from the chillers to the tenants and the difference in temperature between the supply and return water, which is all they need to accurately calculate how much energy is consumed by each tenant. This system also monitors the flow between the pumps and the chillers, a prerequisite for determining efficiency level and detecting performance issues.
Challenge: Welsh Water uses nearly 2,000 sewage pumping stations (SPSSs) to collect wastewater from customers throughout Wales and transport it to treatment works. Until recently, the majority of the SPSSs had no system in place to measure flow. In order to determine whether inflow was exceeding capacity within any of their pumps, the company relied on derived flow data and operator site visits, which was not only operationally inefficient but also posed a significant environmental risk, particularly in storm conditions. To combat this issue, Welsh Water surveyed 80 high-risk SPSSs using a portable SITRANS FUP1010 clamp-on ultrasonic flowmeter, which provided a true picture of the flow at locations where no previous metering existed. Survey results confirmed that the SITRANS FST020 would be appropriate for permanent installation. SITRANS FST020 flowmeters were installed on the majority of the SPSSs and are now performing highly accurate measurement. The meters have made it possible to monitor each SPSS remotely and perform routine checks of pump efficiency. They also provide a comprehensive audit trail for the governmental body that oversees spillage incidents.

Improved public safety
Industry: Gas
Company: Camuzzi Gas
Region: Patagonia, Argentina
Technology: SITRANS FUG1010

Challenge: Camuzzi Gas owns odorant stations across the Patagonian region of Argentina. These stations are responsible for dosing incoming gas lines with carefully controlled amounts of odorant, a noxious chemical mixture that provides natural gas with its characteristic odor and lessens the danger it presents to the human population. Knowing how vital it is to measure odorant addition with extreme precision and consistency, Camuzzi incorporated SITRANS FUG1010 clamp-on ultrasonic gas flowmeters into a number of new and existing stations. The wide range of diagnostic data provided by the meters is now used by Camuzzi to ensure proper functionality of their odorant stations, and they are reaping the financial benefits as well. For example, one meter was placed in a station that doses the gas lines into the city and suburbs of La Plata, the capital of Buenos Aires Province. In the winter, these lines distribute much higher quantities of natural gas per day than over the summer. If these seasonal differences in gas consumption were not measured and accounted for, an odorant overdose rate of nearly 30% would occur during the summer months. By utilizing a SITRANS FUG1010 at this particular station, Camuzzi is saving enough in odorant expenses to amortize the cost of the equipment in only one year.
<table>
<thead>
<tr>
<th>Meter</th>
<th>General SITRANS FUS1010</th>
<th>Basic SITRANS FST020</th>
<th>Portable SITRANS FUP1010</th>
<th>HVAC & Power SITRANS FUE1010 (dedicated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow range</td>
<td>±12 m/s (±40 ft/s), bidirectional</td>
</tr>
<tr>
<td>Flow sensitivity</td>
<td>0.0003 m/s (0.001 ft/s) of flow</td>
</tr>
<tr>
<td>Pipe size</td>
<td>DN 6.4...9140 (0.25...360")</td>
<td>DN 6.4...9140 (0.25...360")</td>
<td>DN 6.4...9140 (0.25...360")</td>
<td>DN 6.4...9140 (0.25...360")</td>
</tr>
<tr>
<td>Optional inputs (minimum)</td>
<td>Current: 2x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 4x SPDT relays Frequency: 2x 0-5 kHz HART, BACnet MstpIBACnet IP, Modbus RTU/TcPip, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
<td>Current: 1x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 1x relay 30V DC Pulse: 1x 10 mA BACnet Mstp, Modbus RTU, VT100 RS232</td>
<td>Current: 2x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 4x SPDT relays Frequency: 2x 0-5 kHz VT100 RS232</td>
<td>Current: 2x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 4x SPDT relays Frequency: 2x 0-5 kHz HART, BACnet MstpIBACnet IP, Modbus RTU/TcPip, Ethernet IP, Johnson N2, VT100 RS232</td>
</tr>
<tr>
<td>Outputs (minimum)</td>
<td>Current: 2x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 4x SPDT relays Frequency: 2x 0-5 kHz HART, BACnet MstpIBACnet IP, Modbus RTU/TcPip, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
<td>Current: 1x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 1x relay 30V DC Pulse: 1x 10 mA BACnet Mstp, Modbus RTU, VT100 RS232</td>
<td>Current: 2x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 4x SPDT relays Frequency: 2x 0-5 kHz VT100 RS232</td>
<td>Current: 2x 4-20 mA DC Voltage: 2x 0-10V DC Status alarm: 4x SPDT relays Frequency: 2x 0-5 kHz HART, BACnet MstpIBACnet IP, Modbus RTU/TcPip, Ethernet IP, Johnson N2, VT100 RS232</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.5-1% of flow at ≥0.3 m/s (1ft/s)</td>
<td>±0.5-1% of flow at ≥0.3 m/s (1ft/s)</td>
<td>±0.5-2% of flow at ≥0.3 m/s (1ft/s)</td>
<td>±0.5-1% of flow at ≥0.3 m/s (1ft/s)</td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.15% at ≥0.3 m/s (1ft/s)</td>
</tr>
<tr>
<td>Data refresh rate</td>
<td>5Hz</td>
<td>5Hz</td>
<td>5Hz</td>
<td>5Hz</td>
</tr>
<tr>
<td>Enclosure rating</td>
<td>IP65 (NEMA 4X), IP65 (NEMA 7), IP66 (NEMA 7)</td>
<td>IP65 (NEMA 4X)</td>
<td>IP67</td>
<td>IP65 (NEMA 4X)</td>
</tr>
<tr>
<td>Liquid temp. Optional</td>
<td>-40...+120 ºC (-40...+250 ºF)</td>
<td>-40...+120 ºC (-40...+250 ºF)</td>
<td>-40...+120 ºC (-40...+250 ºF)</td>
<td>-40...+120 ºC (-40...+250 ºF)</td>
</tr>
<tr>
<td>Power supply</td>
<td>90-240V AC, 50-60 Hz, 30 VA 9-36 V DC, 12W</td>
<td>90-240V AC, 15 VA max. 11.5-28.5V DC, 10W max.</td>
<td>100-240V AC, 50-60 Hz, 30 VA 9-36V DC, 12W Internal battery</td>
<td>90-240V AC, 50-60 Hz, 30 VA 9-36V DC, 12W</td>
</tr>
<tr>
<td>Approvals</td>
<td>CSA, FM, CE, ATEX, C-TICK</td>
<td>UL, ULc, CE, C-TICK</td>
<td>UL, ULc, CE</td>
<td>FM, CSA, CE</td>
</tr>
</tbody>
</table>

1) May vary dependent on model and channel selection
<table>
<thead>
<tr>
<th>Meter</th>
<th>HVAC & Power SITRANS FUE1010 (portable)</th>
<th>Hydrocarbon SITRANS FUH1010</th>
<th>Gas SITRANS FUG1010</th>
<th>Gas & Hydrocarbon SITRANS FUT1010 Gas & Liquid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Approvals</td>
<td>UL, ULc, CE</td>
<td>CSA, FM, CE, ATEX, C-TICK</td>
<td>CSA, FM, CE, ATEX, C-TICK</td>
<td>CSA, FM, ATEX (PED), CRN</td>
</tr>
<tr>
<td>Flow range</td>
<td>±12 m/s (±40 ft/s), bidirectional</td>
<td>±12 m/s (±40 ft/s), bidirectional</td>
<td>±30 m/s (±100 ft/s), bidirectional</td>
<td>Gas: ±30 m/s (±100 ft/s), bidirectional Liquid: ±12 m/s (±40 ft/s), bidirectional</td>
</tr>
<tr>
<td>Flow sensitivity</td>
<td>0.0003 m/s (0.001 ft/s) of flow</td>
</tr>
<tr>
<td>Pipe size</td>
<td>DN 6.4...9140 (0.25...360")</td>
<td>DN 6.4...9140 (0.25...360")</td>
<td>DN 25...152 (1...48")</td>
<td>DN 100...600 (4...24")</td>
</tr>
<tr>
<td>Optional inputs</td>
<td>Current: 2x 4-20 mA Voltage: 2x 0-10V DC Status alarm: 4x SPDT relays Frequency: 2x 0-5 kHz VT100 RS232</td>
<td>Current: 4x 4-20 mA Voltage: 2x 0-10V DC Pulse: 2x 0-5V TTL (1 forward, 1 reverse) Frequency: 2x open collector (1 forward, 1 reverse) 4x Form C relay HART, BACnet MSTP/BACnet IP, Modbus RTU/TCPIP, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
<td>Current: 4x 4-20 mA Voltage: 2x 0-10V DC Pulse: 2x 0-5V TTL (1 forward, 1 reverse) Frequency: 2x open collector (1 forward, 1 reverse) 4x Form C relay HART, BACnet MSTP/BACnet IP, Modbus RTU/TCPIP, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
<td>Current: 4x 4-20 mA Voltage: 2x 0-10V DC Pulse: 2x 0-5V TTL (1 forward, 1 reverse) Frequency: 2x open collector (1 forward, 1 reverse) 4x Form C relay HART, BACnet MSTP/BACnet IP, Modbus RTU/TCPIP, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
</tr>
<tr>
<td>Outputs (minimum)</td>
<td>Current: 2x 4-20 mA Voltage: 2x 0-10V DC Status alarm: 4x Form C relay VT100 RS232</td>
<td>Current: 4x 4-20 mA Voltage: 2x 0-10V DC Pulse: 2x 0-5V TTL (1 forward, 1 reverse) Frequency: 2x open collector (1 forward, 1 reverse) 4x Form C relay HART, BACnet MSTP/BACnet IP, Modbus RTU/TCPIP, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
<td>Current: 4x 4-20 mA Voltage: 2x 0-10V DC Pulse: 2x 0-5V TTL (1 forward, 1 reverse) Frequency: 2x open collector (1 forward, 1 reverse) 4x Form C relay HART, BACnet MSTP/BACnet IP, Modbus RTU/TCPIP, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
<td>Current: 4x 4-20 mA Voltage: 2x 0-10V DC Pulse: 2x 0-5V TTL (1 forward, 1 reverse) Frequency: 2x open collector (1 forward, 1 reverse) 4x Form C relay HART, BACnet MSTP/BACnet IP, Modbus RTU/TCPIP, Ethernet IP, Johnson N2, VT100 RS232 Excludes IP65 (NEMA 7) compact</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.5-1% of flow at ≥0.3 m/s (1 ft/s) Field calibratable to 0.15...0.3% of flow 0.05% of API No.</td>
<td>±0.5-1% of flow at ≥0.3 m/s (1 ft/s) Field calibratable to 0.15...0.3% of flow 0.05% of API No.</td>
<td>±1-2% of actual volume reading (higher accuracy is pipe condition and flow profile dependent)</td>
<td>Gas: <0.2% of flow at ≥0.3 m/s (1 ft/s) Liquid: <0.15% of flow at ≥0.3 m/s (1 ft/s) With lab calibration</td>
</tr>
<tr>
<td>Repeatability</td>
<td>±0.15% at ≥0.3 m/s (1 ft/s)</td>
<td>±0.05 - 1% at ≥0.3 m/s (1 ft/s)</td>
<td>±0.15% at ≥0.3 m/s (1 ft/s)</td>
<td>±0.05-0.1% of actual reading</td>
</tr>
<tr>
<td>Data refresh rate</td>
<td>5Hz</td>
<td>5Hz</td>
<td>5Hz</td>
<td>5Hz</td>
</tr>
<tr>
<td>Enclosure rating</td>
<td>IP40 (NEMA 1)</td>
<td>IP65 (NEMA 4X), IP65 (NEMA 7), IP66 (NEMA 7)</td>
<td>IP65 (NEMA 4X), IP65 (NEMA 7), IP66 (NEMA 7)</td>
<td>IP65 (NEMA 4X), IP66 (NEMA 7)</td>
</tr>
<tr>
<td>Liquid temp.</td>
<td>-40...+120 °C (-40...+250 °F)</td>
<td>-40...+120 °C (-40...+250 °F)</td>
<td>-40...+120 °C (-40...+250 °F)</td>
<td>-28...+93 °C (-20...+200 °F)</td>
</tr>
<tr>
<td>Power supply</td>
<td>100-240V AC, 50-60 Hz, 30 VA 9-36V DC, 12W Internal battery</td>
<td>IP65 (NEMA 4X) IP66 (NEMA 7) 90-240V AC, 50-60 Hz, 30 VA 9-36V DC, 12W IP65 (NEMA 7) compact 90-240V AC, 50-60 Hz, 15 VA 9-36V DC, 10W</td>
<td>IP65 (NEMA 4X) IP65 (NEMA 7) 0-240V AC, 50-60 Hz, 30 VA 9-36V DC, 12W IP65 (NEMA 7) compact 90-240V AC, 50-60 Hz, 15 VA 9-36V DC, 10W</td>
<td>90-240V AC, 50-60 Hz, 30 VA 9-36V DC, 12W</td>
</tr>
<tr>
<td>Approvals</td>
<td>UL, ULc, CE</td>
<td>CSA, FM, CE, ATEX, C-TICK</td>
<td>CSA, FM, CE, ATEX, C-TICK</td>
<td>CSA, FM, ATEX (PED), CRN</td>
</tr>
</tbody>
</table>
Your all-in-one-solution:
www.siemens.com/processinstrumentation

Siemens Process Instrumentation offers best-in-class measurement for your application.

We are your total solution provider for flow, level, pressure, temperature, weighing, positioners and more.

More information:
www.siemens.com/flow
www.siemens.com/pia-portal

Follow us on:
youtube.com/siemens
twitter.com/siemenssensors
facebook.com/siemenssensors