Control 101

The Process Control Loop

Controllers, Types of control

Dan Weise, presenting
What is a process?

Process industry vs discrete manufacturing

- Discrete manufacturing makes ‘things’, do assembly
 - iPhones, cars, pencils, clothing,
 - Package stuff
- Process industries make ‘stuff’
 - Chemicals, steel, medicines, ferment beer, process sewage
 - Process material into something else
 - Spouse’s cooking
- Can overlap
 - Automotive plant, primarily discrete manufacturing
 - Process loops in the paint booths:
 - controls temperature, humidity, air flow, positive pressure
What is a control loop?

Control is done in a control loop

• Control Loop is a “management system” to regulate the process
• Process: whatever you’re making/processing
• Measure the process value
 – Tells us whether process condition is too high or too low
• Controller decides whether to make an adjustment (sometimes, how much)
• The adjustment change affects the process
Start with a measurement

• To control anything you need to start with a measurement
• Process is measured by
 – Sensor
 – Transducer
 – Transmitter
What is a transducer?

- Transducer converts physical phenomenon into some other form of energy
 - Pressure sensor converts pressure to electrical signal
 - Thermocouple – converts heat to millivolts
 - RTD – changes resistance with temperature
 - Transducers are always the core of an industrial ‘transmitter’
What is a transmitter?

- Transmitter converts a weak, low level transducer signal into a robust, conditioned signal
 - Pneumatic signal (air)
 - Electronic signal (mV, volts, 4-20mA)
- Hardened for industrial environments
 - Useable over long distances (mile), relatively noise resistant
What is an indicator?

- Indicator
 - displays a measurement
 - analog – pressure gauge
 - Digital - numerical values
- Can be part of transmitter
- Can be part of a controller
- Can display only
- Might or might not be part of a control loop
What is a process variable?

• Process Variable (abbreviated ‘PV’)
 – Whatever’s being measured and controlled in the control loop
 – Signal coming from the field transmitter
 – Examples: Temperature, pressure, flow, level, pH, relative humidity, conductivity

• Dan calls it ‘What you got’
 – 485 gpm, 1005 Deg F, 105in w.c.

• The value in the upper display
 – Happens to be labeled PV on this controller
What is a setpoint?

- Setpoint (abbreviated ‘SP’)
 - The desired result of control
 - It’s where you set the thermostat

- Dan calls it ‘What you want’
 - 500 gpm, 1000 Deg F, 8in w.c.

- The value in the lower display
 - Happens to be labeled SP on this controller
The controller

- Reads the measured Process Variable
 - What you got
- Knows what you want
 - setpoint
- Compares what you got (PV) to what you want (SP)
- Makes a decision based on the comparison
 - Hold steady
 - Increase
 - Decrease
- Holds or changes its output
Process controller’s output

- Signal to the final control element
- Means of making an adjustment
- output is the manipulated variable (MV)
 - textbook word
 - commonly called ‘Output’ (everyday word)
 - common expression: ‘the output is calling for heat’
Final Control Element

- Physically controls a desired output variable (flow, electricity)
- Puts more or less energy or more or less stuff into the process
- Controller’s output signal drives a ‘final control element’
 - Tells Final Control Element
 - To Turn ON
 - To Turn OFF
 - Defines the magnitude of change the final control element should make
Final Control Element

- Examples of final control elements:
 - Electrical motors driving a pump
 - Variable speed drive or variable frequency drive to an electric motor
 - Contactor which turns pump’s motor on
 - Control valve
 - SCR/thyristor unit (industrial grade light dimmer)
Feedback

• What is feedback?
• Information that tells you how you’re doing
• Automatic controller uses feedback
 – Difference between the Process Variable and the Setpoint (the error) tells the controller how well it’s doing.
 – The less the error, the better the performance
• Open loop control does not use feedback
 – Example: timed lawn sprinkler system
 • Even if it rains, the sprinkler turns on because it has no feedback that tells it that the soil already has sufficient moisture
• Closed loop control depends on feedback
2 Control modes: Manual vs Auto

• Manual control
 – A person
 • makes the decision
 • makes the change

• Automatic
 – Unattended
 – automatic correction for disturbances
Auto/Manual

- Industry surveys say 35% of all control loops are manual loops
- Process tend to want to automate
 - Cut cost
 - Ensure consistency and quality
- automatic control systems generally have provision for ‘manual mode’
 - Hand-Off-Auto or Auto/Manual switch
 - Troubleshooting
 - Start-up
Types of Automatic Control

- Automatic control has 2 main control types
 - On-off
 - Proportional
- On-off
 - Final control element has only 2 states
 - 2 positions
 - On or Off
 - Open or closed
- Proportional
 - Final control modulates
Types of Control

• Why on-off control?
 – Simplicity – controlled by a switch
 – For many applications, it works well enough
 • Thermostat on your home furnace

• Fits like a glove
 – Staged pump control
 – Limit/safety control:
 • Flame safeguard controller and safety shutoff valve
 • High level shutdown
 – Thermostatic control like heat trace, ovens
 – Level control: pump up/pump down
 – Solid and liquid flow switches
 – Pressure control on simple compressors
On-Off Control

What characterizes on-off control?

- Simple control, no tuning
- 2 states: either on or off
- Sawtooth response over time – overshoot, undershoot

- Hysteresis/deadband
 - Gap between when output turns on and when it turns back off again.
 - Prevents “chattering”, turning on and off in quick sequence
- ‘deadband’ size can be critical
 - Pump action is wide deadband, alarm action is narrow deadband
Deadband

- Wide deadband between turn-on and turn-off points for pump-up sump level control
 - Single control relay output

- Narrow deadband for alarm action
How is deadband implemented?

- Honeywell on-off controller:
 - splits deadband above and below the setpoint:

- UE One Series Electronic pressure switch
 - Trips exactly at SP and deadband
Output: failsafe or normal?

- Normal or failsafe output actuation
- Failsafe: coil deenergized during alarm state
 - N.C. contact is closed in alarm state

Table 2-3 Alarm Relay Contact Information

<table>
<thead>
<tr>
<th>Unit Power</th>
<th>Alarm Relay Wiring</th>
<th>Variable NOT in Alarm State</th>
<th>Variable in Alarm State</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>N.O.</td>
<td>Open</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>N.C.</td>
<td>Closed</td>
<td></td>
</tr>
<tr>
<td>On</td>
<td>N.O.</td>
<td>Closed</td>
<td>Off</td>
</tr>
<tr>
<td></td>
<td>N.C.</td>
<td>Open</td>
<td>On</td>
</tr>
</tbody>
</table>
On-Off controllers

- Electromechanical temperature and pressure switches
- Thermostatic mechanical regulators
- Electronic pressure switches
- Ultrasonic level switches
- Electronic on-off controllers
- Solids level switches
- pH analytical controller
On-Off controllers

Precision Digital indicator/controllers
- Pump staging, alternating
- Tank level control
- Good illustrated descriptions
On-Off Control

- It’s simple, but it causes oscillations; sawtooth action
 - overshoot, undershoot, overshoot, undershoot

- How do we get straight line control?
Straight Line Control

- Some processes require straight line control
 - Not the sawtooth oscillating control inherent in on-off control
- Proportional control, known as PID, offers straight-line control

![Graph showing straight line control](graph.png)
Output Modulation

- Modulate: adjusts or regulates by incrementally varying the output
- Proportional output modulates continuously between 0% to 100%
 - not just 2 on/off states of on/off control
- An incremental response provides
 - Just the right amount
 - rather than full on (too much) or full off (too little)
- A typical modulating output is a 4-20mA signal
- Final control element (valve) provides incremental response
 - Controller output = 62% output. Valve goes to 62% open.
 - An On-off controller output is either on or off, nothing in between
How does PID work?

- PID looks at the error
- Error is difference between what you want (SP) and what you got (PV)
 - SP minus PV
- Goal is zero error, when PV = SP
How does PID work?

- PID has 3 modes
 - P: Proportional gain– response proportional to magnitude of error
 - I: Integral time – accounts for how long the error has existed
 - D: Derivative – accounts for how fast the error is changing
- P-only (proportional only) control
 - mechanical pressure regulator
 - P-only always has ‘droop’
- Reset (I term) corrects for droop in 2 mode PI control
How does PID work?

- **D term**
 - D: Derivative – accounts for how fast the error is changing
 - Also called ‘rate’
 - Backs off output more rapidly when approaching SP than P/gain

- Adds more response when PV drops from setpoint
PID can do straight-line control

- Sounds great, straight line control with PID. What’s the catch?
- The controller has to produce an ‘appropriate’ *response* to the error: not too much, not too little
- The wrong response produces fluctuations or sluggish response
 - Bad tuning can cycle worse than on-off control
Process capacity: tuning

- Each process load has a unique capacity to absorb or release energy or mass
- The task of matching the controller response to the process capacity is tuning
- Each mode, P, I, D has a numerical term associated with it
 - Tuning constants
 - Wrong tuning constants result in bad (not straight line) control
- Everyone wants to know what numbers or values to enter
 - It’s different for every process
 - We’re not withholding secret information, it’s just that it varies from process to process
Tuning constants

- Generally control loop types have an inherent ‘capacity’
- Tuning constant rules of thumb (based on generalities)

<table>
<thead>
<tr>
<th>Control loop</th>
<th>Proportional band</th>
<th>Time constant</th>
<th>Derivative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flow</td>
<td>High (250%)</td>
<td>Fast (1 to 15 sec)</td>
<td>Never</td>
</tr>
<tr>
<td>Level</td>
<td>Low</td>
<td>Capacity dependent</td>
<td>Rarely</td>
</tr>
<tr>
<td>Temperature</td>
<td>Low</td>
<td>Capacity dependent</td>
<td>Usually</td>
</tr>
<tr>
<td>Analytical</td>
<td>High</td>
<td>Usually slow</td>
<td>Sometimes</td>
</tr>
<tr>
<td>Pressure</td>
<td>Low</td>
<td>Usually fast</td>
<td>Sometimes</td>
</tr>
</tbody>
</table>

- But it all depends on the particulars
 - Way over-capacity gas fired temp loop with a 650% PB, 2 sec I, no D
 - Opposite of temperature on the chart above
- Is there an alternative to learning how to tune a loop?
What is autotune or accutune?

- Method of letting a PID controller determine its tuning constants
- A self-tuning algorithm that’s part of a PID controller
- Most stand-alone PID controllers have some form of autotune
- Honeywell’s Accutune:

 - Demand action, manually started each time
How does Accutune work?

– Push a button to start it running
– Output goes to 100%, then 0%, then 100%, then 0%
 – Introduces an upset in the process
– Controller observes the response to output changes
– Determines the tuning constants from the process response
– Saves new tuning constants, exits Accutune
– Controller resumes control using new tuning constants
– Caveats
 • Load has to be typical – it does no good to tune to an uncharacteristic load
 • Output swings might damage some loads – use a dummy load
How is electricity ‘modulated’?

• How is AC power modulated to electric heating elements for proportional straight line control?

• Vacuum furnaces use electric power (not gas) to keep products of combustion from polluting the load

• 3 techniques
 • Time proportional control
 • SCR/thyristor
 • Uses either time proportional or PWM
 • Variable Frequency drives
PID Time proportional control

- AC power is cycled/switched on or off over a ‘duty cycle’
- The duty cycle has a fixed time period
 - .2 seconds, 5 seconds, 20 seconds

- The On period is a proportion of the full time period
 - 0% is no power
 - 50% is power on for half the cycle, off for half the cycle
 - 100% is power on for the full time period
Time proportional control

- Packaged SCR/thyristor controllers
- Control input 4-20mA
- Package switches the high voltage, high current

- Choice of zero cross or phase angle
 - Phase angle chops each cycle (noise/harmonics)
 - Zero cross turns on or off when cycle starts at 0 or ends at 0 (little noise/harmonics)
- Sometimes referred to a PWM, or Pulse Width Modulation
Heat/Cool control

- A controller that automatically switches between heating and cooling
- Heat-cool controllers: 1 loop with 2 control outputs
 - Only one control loop (only one output is active at a time)
 - One output for heat
 - One output for cooling
 - Home thermostat has to be manually switched from heat to cool
- Jacketed vessel
Split Range control

Split Range control

- Single 4-20mA output splits to two final control elements (FCE)
 - Sometimes single operation (heat/cool)
 - Other times, staged operation
- Need
 - PID Controller with 1 linear output
 - Two final control elements (valves with positioners or E/I/P)
 - I/P or positioners ranged differently, 3-9 and 9-15 psi
 - Sometimes a loop repeater/splitter is needed (diagram) due to positioner loading
Position Proportional Control

- Position Proportional Output
 - Output to drive a electric actuator
 - Slidewire feedback for precision positioning
 - Slidewire tracks the rotation position of the motor shaft
 - Controller output, 2 relays
 - One relay drives motor Clockwise (CW)
 - Other relay drives motor counter-clockwise (CCW)
 - Slidewire feedback tells controller when to stop driving
 - Requires 6 wires CW, CCW, common, 3 wires for slidewire
 - Controller uses slidewire card
 - Adapter modules convert 4-20mA to position prop
 - Controllers: UDC3200, Truline, HC-900
Three Position Step Control (TPSC)

- Position Proportional minus the slidewire
 - Slidewire is the weak link, breaks first
 - Open feedback control, no slideware feedback
 - Uses the 2 relay, CW, CCW action
 - Times the duration the drive motor is on
 - Initializes first time by stroking full open, full closed
 - West calls is VMD (valve motor drive)
 - Requires setting the stop-to-stop time (30 seconds, 90 seconds)
 - UDC: can be configured and used when the slidewire fails
 - Relay output wiring is identical to position proportional
 - Costs less then Pos Prop (no slidewire card)
 - Better reliability (no slidewire to fail)
 - Assumes PI integral action makes up for minor position error
Setpoint Programming (SPP)

- Setpoints, dwell times entered, saved and recalled
 - *Profile, recipe or program*
- Continuous PID control with SPP
- Discrete output ‘Events’ synchronized to specific segments
- Improved batch processing capabilities and efficiencies
Ratio Control

Typical ratio control application - blending

• Single ratio controller
 – 2 PV inputs, wild flow and controlled flow

• Controls one flow rate as a ratio of the other
 – Wild flow X (A) (outside demand factor determines its flow rate)
 – Controlled flow (B) at x% of A
Batch Control

- Supplies exact amounts of material for batch
- “Make it easy for my operators”
- Operator enters a *preset* on the numerical keypad
- Hits *start* button
- Batch controller
 - reads the output of a flow meter
 - totalizes the flow
 - Shuts off when total reached
 - Dribble or bleed option
Cascade Control

- 2 interconnected control loops
 - 2 measured PVs, one for each control loop
 - Only ONE control output (4-20mA) to a final control element
 - 2nd loop’s output becomes setpoint of 1st loop
- Typically used when
 - primary PV is slow responding (relatively)
 - Secondary PV is fast responding (3-10x faster)
- One sensor is typically sensing the load

Annealing

Heat Exchanger
Feed Forward Control

- Disturbance is measured (upstream flowrate)
- Feedforward bypasses PID, doesn’t wait for disturbance effect on PV and resulting ‘error’
- Ratioed disturbance value is summed into PID output
 - Feedforward component added directly to PID output
- Comprehensive understanding of disturbance required
- below: heat exchanger: inflow rate fed forward to Temp controller
PLC control

- Originally discrete based, now most PLC’s do analog control in some form
- Modular I/O
- Can be Networked
- Ubiquitous (everywhere)
- Not Lesman’s strength (MasterLogic PLC/LX DCS)
SCADA Control

- SCADA means different things to different people
 - “collect lots of remote points” from remote RTU’s
 - Any data transferred over wireless or phone line
 - A HMI software package with great graphics
 - A remote I/O rack that talks digital back to a local processor
 - Data Concentrator

- Today’s RTUs do local control
Hybrid/PAC/multiloop Control

- **Process Automation Controller**
 - Modular like a PLC, but process based, not discrete based
 - Slower scan time, but deterministic (fixed certainty for timed events)
 - Hundreds of I/O: AI, AO, DI, DO, frequency/pulse points
 - Can be networked
 - Redundant power, control, networking
 - a Lesman strength – Honeywell HC-900
DCS control

- Distributed Control
 - The total integrated control solution
 - Server based, connects to enterprise level software
 - Advanced control algorithms, include existing PLC, SCADA, RTUs
FM Limit Control

- Limit control is a safety function
 - High Limit required by NFPA 86 (furnaces, kilns)
 - Prevents overheating and potential fire hazard
 - Controls against run-away conditions
 - Intended to protect the heater/furnace, not the load
 - Does NOT control the process variable (temperature)
- Control output (relay) enables/disables
 - the safety shutoff valve
 - Shunt trip circuit breaker upstream of an SCR
- FM Limit controller ‘latches out’
 - When tripped, requires a manual reset to re-enable the output
- Secondary, independent safety control
 - Does not share a temperature sensor (thermocouple)
 - Is separate from the primary temperature controller
Burner Management Control

- Control: air-fuel ratio combustion
 - Boiler/furnace/kiln/oven
 - Excess air
- Safety: FM approved Flame Safety
 - Flame detection (FM)
 - UV, IR, flame rod,
 - Multi-burner UV discriminator
 - Single burner controls (FM)
 - Multiburner controls (FM)
 - Safety Shutoff valves (FM)
 - Vent valve, Hi/Lo pressure switches (FM)
 - Limit control (FM)
Safety Instrumented Systems (SIS)

• Insurance and liability is driving process loop safety design
• Standards IEC 61511 and ISA84.01 outline how to analyze, design, realize, install, commission and maintain SIS loops in the process industries.
• Risk factor for a process loop is analyzed.
 – Result is a SIL (Safety Integrity Level) rating
• The higher the SIL level, the greater the impact of a failure and the lower the failure rate that is acceptable
• Implementation involves concepts like
 – Analysis of past performance
 – Redundancy – multiple sensors, voting logic
 – Diversity – using a different technology to avoid common mode failures
Safety Instrumented Systems

- Field instruments can have SIL ratings
 - Agency certified (Exida, TuV)
- A safety controller is a ‘logic solver’
 - Designed to not fail, but when it does fail, to fail predictably and safe
 - Fault tolerant
 - Incorporate fail-safe diagnostics
 - Voting logic to analyze redundant sensors
 - Designated by a SIL rating
Questions?
2 control modes

- **Manual control**
 - A person
 - makes the decision
 - makes the change

- **Automatic Control**
 - A controller controls the process variable
 - Reads the process variable = measures
 - Compares PV to SP = compares
 - Makes a decision: how much to change or not = computes
 - Changes output (manipulated variable) = changes
Regulating a process

• Manual control
 – Manually set the light dimmer

• Automatic
 – Unattended
 – automatic correction for disturbances