Intro to Air-Fuel Ratio Control

A.J. Piskor
Combustion and Controls Specialist

ajp@lesman.com
414-477-5357
Webinar Overview

- Intro to Air/Fuel Ratio
 - Combustion Terminology and Fundamentals
 - Importance of Air/Fuel Ratio Control
 - Methods of Air/Fuel Ratio Control
 - Pros and Cons of Each Method
- Advanced Air/Fuel Ratio Control – January 2015
 - Maintenance Dos and Don’ts
 - Adjustment Best Practices and Techniques
 - Sample Calculations
Combustion Terminology

- **Combustion** – The rapid oxidation of a fuel, usually via the oxygen present in air, resulting in the release of energy (heat and light).
 - Combustion is the **CONTROLLED** rapid oxidation of a fuel.
 - Explosion is the **UNCONTROLLED** rapid oxidation of a fuel.

- **Stoichiometric Ratio** – The perfect amount of oxygen and fuel mixed during combustion such that nothing is left over.

- Example Reaction with Natural Gas (CH\textsubscript{4}):
 - CH\textsubscript{4} + 2O\textsubscript{2} + 8N\textsubscript{2} \rightarrow CO\textsubscript{2} + 2H\textsubscript{2}O + 8N\textsubscript{2} + heat
Combustion Terminology (cont.)

- **Excess air / lean** – When more air (oxygen) is present than necessary to combust the fuel, resulting in leftover oxygen.

- Most industrial combustion applications are run with excess air to ensure that there is no wasted fuel.

- Example: A Natural Gas burner which receives 15 parts air for every part fuel is running with 50% excess air. This burner can be described as “running lean”.

- \[
\text{CH}_4 + 3\text{O}_2 + 12\text{N}_2 \rightarrow \text{CO}_2 + 2\text{H}_2\text{O} + \text{O}_2 + 12\text{N}_2 + \text{heat}
\]
Combustion Terminology (cont.)

- **Excess fuel / rich** – When less air is present than necessary to combust the fuel, resulting in unburned fuel.

- Certain applications that require a long, luminous flame or need to control the amount of oxygen within the combustion chamber would have burners set-up to run with excess fuel.

- Sometimes called “sub-stoich” since it’s below the stoichiometric air-to-fuel ratio.

- \[2\text{CH}_4 + 2\text{O}_2 + 8\text{N}_2 \rightarrow \text{CH}_4 + \text{CO}_2 + 2\text{H}_2\text{O} + 8\text{N}_2 + \text{heat}\]
Combustion Fundamentals

- All fuels have a lower and upper flammability limit.
- Combustion can only occur between these limits.
- When changing the firing rate of a burner, both the air and fuel need to travel together to stay between these limits.

<table>
<thead>
<tr>
<th>Type of Gas</th>
<th>LFL</th>
<th>UFL</th>
<th>Stoich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Natural Gas (CH₄)</td>
<td>5.0%</td>
<td>15.0%</td>
<td>(10:1) - 9.1%</td>
</tr>
<tr>
<td>Propane Gas (C₃H₈)</td>
<td>2.1%</td>
<td>9.5%</td>
<td>(25:1) - 3.8%</td>
</tr>
<tr>
<td>Butane Gas (C₄H₁₀)</td>
<td>1.8%</td>
<td>8.4%</td>
<td>(32:1) - 3.0%</td>
</tr>
</tbody>
</table>
Optimal Air/Fuel ratio control can...

- Prevent nuisance shut-downs
 - Improper air/fuel ratio can cause the flame safeguard to lose the flame signal
- Improve fuel efficiency
 - Improper air/fuel ratio can waste fuel
- Help obtain tighter control for emissions driven applications
 - Improper air/fuel ratio can increase NOx or CO production
- Help obtain better temperature control
 - Improper air/fuel ratio can make controlling temperature more difficult
Inspirators

- High pressure fuel is delivered to the inlet of the inspirator
- Venturi tube design pulls combustion air into the inspirator
- Ratio control dictated by the size of the fuel nozzle and an air adjustment damper
Inspirators (cont.)

- ~4:1 Turndown
- Pros: Low Cost, Simple Design, Available in many sizes
- Cons: Low turndown, Minimal characterization
- Critical Component: Gas Nozzle/Spud
Cross-Connected Ratio Regulators

- Composed of the following components:
 - Air Control Device (Control Valve or VFD)
 - Proportionator/Ratio Regulator
 - Limiting Orifice
- Control signal sent to the air control device, and an impulse line from air manifold feeds the fuel’s ratio regulator to adjust the fuel flow.
Cross-Connected Ratio Regs (cont.)

- ~20:1 Turndown
- Pros: Flexible Installation, Low Cost
- Cons: Minimal characterization
- Critical component: Impulse Line
Mechanically-Linked Control Valves

- Air Valve and Fuel Valve connected via mechanical linkage.
- Commonly found in boiler applications (jack-shaft)
- Characterizable fuel valves offer adjustment capabilities for the entire range of operation.
- Good for multi-fuel and oil-fired applications.
Mechanically-Linked Valves (cont.)

- ~40:1 Turndown
- Pros: Higher Turndown, More Characterization
- Cons: Higher Torque Requirements for Control Motors, Less Flexible Installation
- Critical Component: Linkage arm between air and fuel valves
Electronically-Linked Control Valves

- Sometimes referred to as “Parallel Positioning”
- System’s control interface receives single control signal, and controls multiple actuators (can control up to 4).
- Built-in safeties ensure that actuators travel together to maintain ratio.
- Actuators are characterizable, allowing for individually defined flow curves.
- Commonly used in emissions driven applications due to repeatability of control and level of characterization.
- Flexible to install since air and fuel valves do not need to be located near each other.
Electronically-Linked Valves (cont.)

- ~40:1 Turndown
- Pros: Flexible Installation, Great Control Resolution
- Cons: Increased Complexity and Cost with Additional Components
- Critical Component: Control Interface
Fully Metered Mass Flow Control

- Air and Fuel flow meters used in conjunction with electronically-linked control valves.
- Valve positions determined by central control interface based on heat requirement and flow feedback.
- Commonly used in emissions driven applications due to repeatability of control and level of characterization.
- Flexible to install since air and fuel valves do not need to be located near each other.
Fully Metered Mass Flow Control (cont.)

- ~20:1 Turndown
- Pros: Best Available Control Technology, Self-tuning/correcting with flow feedback
- Cons: More expensive, Can be slower to respond to aggressive control signals.
- Critical Component: Interface Panel
Any Questions?

ajp@lesman.com
414-477-5357