Mechanical Pressure Gauges 101
Today's Agenda

- Importance of Mechanical Gauges
- Gauge Design & Basic Principles
- Problematic Operating Conditions & Solutions
- Industry Trends
- FAST Services
- Summary & Questions
Importance of Mechanical Gauges

Why Maintain Them?
Importance of Mechanical Gauges

Why Maintain Them?

• Provide a local pressure indication

• Detect signs of degradation in process performance not otherwise tracked through DCS equipment

• Identify potential loss of process or loss of containment

• Predict how long a piece of equipment can be safely and economically run

• Diagnose causes of system and production disruptions
Pressure Gauges: Sole Source of Data

- Discharge pressure
- Suction pressure
- Differential pressure
- Mechanical seal flush pressure
- Steam quench pressure
Pressure Gauges: Calculating Risks

Pumps rank 1st in failure incidents and maintenance costs. And, repairs account for 27% of life cycle costs.

Source: Pump User’s Handbook
The Pressure Gauge: Current State

At least **25%** of pressure gauges require immediate replacement. And, and additional **40%** need corrective action.
Gauge Design & Basic Principles

Types of Gauges

- Bourdon Tube Process Gauge
- Direct Drive Process Gauge
- Process Gauge with Diaphragm Seal
Gauge Design & Basic Principles

Gauge Components

- Measuring element (Bourdon tube)
- Dial
- Movement
- Pull Rod (linkage)
- Pressure connection
- Pointer
- End piece of the tube

Pressure
Process Gauge

- Excellent load-cycle stability and shock resistance
- Standard 0.6 mm restrictor
- NEMA 4X/IP65 weather tight case
- Standard overload stop
- Liquid fillable
- Safety case design

Specifically designed for the chemical and petrochemical processing industries

Suitable for corrosive environments and gaseous or liquid media that will not obstruct the pressure system
Gauge Design & Basic Principles

Direct Drive Gauge

- A Direct Drive is ideal for heavy mechanical vibration
- Designed for high dynamic pulsation, vibration and shock
- Tube made of Inconel X-750 alloy, highly resistant to temperature extremes with excellent oxidation and corrosion properties
- No delicate internal movement
- No gears, linkages or springs to wear or break
- Safety case design
A diaphragm seal is ideal for severe duty applications:
- Pressure spikes
- Pulsation
- High temperatures
- Corrosive media
- Suspended solids
- Highly viscous, crystallizing or clogging media

Acts as a chemical barrier and/or thermal barrier.
Problematic Operating Conditions

Gauge Failures & Solutions
The most common gauge failures (in order of criticality):

- Spikes
- Overpressure
- Mechanical Vibration
- Pulsation
- Temperature
- Corrosion
- Clogging
- Mishandling and Improper Use
Problematic Operating Conditions & Solutions

Risk: Bourdon Tube Rupture

- Pressure Spikes
 - Indicators
 - Bent, broken, fish-hooked pointer
 - Knicked pointer (hitting stop pin)
 - Root Cause/Effects
 - Abrupt increase/decrease in pressure
 - Often caused by pump on/off or valve open/close
 - Bourdon tube rupture & media release
Problematic Operating Conditions & Solutions

Risk: Bourdon Tube Rupture

- Overpressure/High Pressure
 - Indicators
 - Operating near or past maximum pressure
 - Pointer pegged against stop pin
 - Root Cause/Effects
 - Using incorrect pressure range
 - Bourdon tube rupture & media release

Pictures from actual gauge failures
Problematic Operating Conditions & Solutions

Risk: Bourdon Tube Rupture

- Solutions/Recommendations
 - Investigate
 - Appropriate pressure range?
 - External factors?
 - Model – Process Gauge
 - Overload stop standard
 - Liquid case fill to reduce internal wear
 - Extreme cases – Diaphragm seal with internal super restrictor (0.3 mm)
 - Accessories
 - Snubber
 - Overpressure protector

Best Practice: 2X normal operating pressure
Risk: Bourdon Tube Fatigue

- Pulsation
 - Indicators
 - Pointer flutter
 - Root Cause/Effects
 - Media rapidly cycling through pressure system
 - Dynamic (cyclic) loading wears movement components down

Video recorded in the field
Risk: Bourdon Tube Fatigue

- **Pulsation**
 - **Root Cause/Effects**
 - Movement no longer anchors Bourdon tube
 - Thin wall of Bourdon tube fatigues and cracks
 - Media release

Picture from actual gauge failures

Elliptical Form

Bourdon Tube Crack

Worn Pinion Gear

Worn Segment Gear
Problematic Operating Conditions & Solutions

Risk: Bourdon Tube Fatigue

- **Vibration**
 - **Indicators**
 - Missing pointer
 - Black dust on dial
 - Scrapes on dial from loose pointer
 - Missing window, window ring or back plate
 - **Root Cause/Effects**
 - Misaligned pumps
 - Reciprocating compressors
 - Poor fixture mount
Vibration

- Root Cause/Effects
 - Vibration breaks movement
 - Movement no longer anchors Bourdon tube
 - Thin wall of Bourdon tube fatigues and cracks
 - Media release

Pictures from actual gauge failures
Problematic Operating Conditions & Solutions

Risk: Bourdon Tube Fatigue

Solutions/Recommendations

- Investigate
 - Determine root cause of vibration
 - Other equipment in disrepair?

Model – Process Gauge

- Liquid case fill
 - Reduce internal wear
 - Lubricates and cools moving parts
 - Dampens the effects of vibration
- Extreme cases of pulsation: Snubber or diaphragm seal with internal restrictor

Model – Direct Drive Gauge

- Made to withstand significant shock
- No internal movement
 - Direct connection between pressure system and pointer
Corrosion (Ambient)

- Indicators
 - Corroded dial or pointer
 - Build-up in case
 - Fogged window
 - Discolored liquid case fill

- Root Cause/Effects
 - Contaminants getting inside the case
 - Missing fill plug
 - Cracked case or window
 - Corrosion of the Bourdon tube - media release
Problematic Operating Conditions & Solutions

Risk: Material Deterioration

- Temperature (Media & Ambient)
 - Indicators
 - Breakdown of gauge components (window, dial and associated elastomers)
 - Discolored dial or liquid case fill
 - Root Cause/Effects
 - Incorrect mounting
 - Incorrect accessories
 - Elevated temperature stresses the pressure system
 - Media release
Problematic Operating Conditions & Solutions

Risk: Material Deterioration

- Solutions/Recommendations
 - Investigate
 - Determine cause of ambient corrosion or source of high temperature

- Model – Process Gauge
 - Hermetically sealed pressure gauge (weather protection IP65/NEMA 4X)
 - Liquid case fill
 - Insulates and protects internal components
 - Extreme cases – Diaphragm seal for media temperatures over 212°F

- Accessories
 - Mini-siphon
Problematic Operating Conditions & Solutions

Risk: Loss of Functionality

■ Clogging
 ■ Indicators
 • Gauge shows no pressure when system is operating
 ■ Root Cause/Effects
 • Media that is highly viscous, crystallizing, hardens, or contains particles or solids that can clog the socket orifice
 • Inoperable gauge
 • Shows no pressure
Problematic Operating Conditions & Solutions

Risk: Loss of Functionality

- General Maintenance/Mishandling & Abuse
 - Indicators
 - Cracked, broken or missing windows
 - Leaking case fill
 - Missing back plates or fill plugs
 - Root Cause/Effects
 - Old or neglected gauges
 - Accelerated degradation and corrosion of the internal components
Problematic Operating Conditions & Solutions

Risk: Loss of Functionality

- Solutions/Recommendations
 - Investigate
 - Implement maintenance plan
 - Inspect gauges on a routine basis
 - Determine if gauge should be on diaphragm seal to address clogging
 - Model – Process Gauge
 - Designed to be easily serviced in the field
 - Various spare parts available to address minor issues
Problematic Operating Conditions & Solutions

Accessories

- SS Gauge Tags
 - Mark each gauge with a stock number
 - Ensures correct gauge replacement

- Mini-Siphon
 - Water hammer (pressure spike) & high temperature (media)
 - Small form factor reduces gauge whip

- Over-Pressure Protector

- Snubber

- Individual Gauge Components
Industry Trends

Current state & Path Forward
Industry Trends

Complexity of Configurations

- Plants have unnecessary complexity from proliferation of configurations
 - Simplify configurations to reduce guesswork for operators and installers
 - Manufacturer, gauge type and model, pressure range, wetted materials, etc.
 - Develop an effective storeroom inventory that will:
 - Maximize field coverage
 - Minimize complexity of configurations
 - Eliminate redundant, obsolete or wasted inventory

Average Reduction in Unique Gauge Configurations*

- 75%
- Eliminate Duplicate Configurations
- Reduce Make/Model Complexity
- Standardize on Common Pressure Ranges

* Averages from WIKA FAST Instrument Audits
How did we get here?
Aging Infrastructure
More than 40% of all oil and gas professionals will retire in the next 10 years.

Source: Cambridge Energy Research Associates
Compounding the Issue of Instrument Failure

AGING INFRASTRUCTURE
Missing documentation
Processes change, specs outdated

+ RETIRING EXPERTS
“BRAIN DRAIN”
Doing more with less experience

+ UNDER INVESTMENT
Don’t know what is failing or what to do about it

= INCREASING RISKS
Improving Reliability &
Total Operating Costs

OBJECTIVE
Reduce complexity and standardize

RESULT
Eliminate misapplications and repeat failures

OBJECTIVE
Specify correct configurations for process conditions

RESULT
Improve reliability with configurations that can handle operating conditions

OBJECTIVE
Prevent expensive, essential equipment failure

RESULT
Provide functional gauges for troubleshooting, PdM capabilities
FAST Services

Offerings & Benefits
Questions

jason.deane@wika.com
www.WIKA-FAST.com
1-855-651-FAST (3278)